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ABSTRACT

Given a general graph G, a fundamental problem is to find
a spanning tree H that best approximates G by some mea-
sure. Often this measure is some combination of the conges-
tion and dilation of an embedding of GG into H. One exam-
ple is the routing time p(G, H) < O(congestion + dilation),
the number of steps necessary to route pairwise demands G
on network links H in the store-and-forward packet rout-
ing model. Another is the condition number kf(G,H) <
O(congestion - dilation), the square root of which bounds the
number of iterations necessary to solve a linear system with
coefficient matrix G preconditioned by H using the classical
conjugate gradient method. The algorithmic applications of
being able to find (efficiently) a good tree approximation H
for a graph G are numerous; but what if no good tree exists?

In this paper, we seek to identify the class of graphs G
which are intrinsically difficult to approximate by a partic-
ular measure. It is easily seen that with respect to routing
time, G is hardest to approximate by a tree H precisely
when it contains either long cycles (which yield high dila-
tion) or large separators (which yield high congestion). We
show that with respect to condition number, the existence
of long cycles or large separators in G is sufficient but not
necessary for it to be hardest to approximate, by demon-
strating a nearly-linear lower bound for the case in which
G is a square mesh. The proof uses concepts from circuit
theory, linear algebra, and geometry, and it generalizes to
the case in which H is a spanning subgraph of G of Euler
characteristic k. The result has consequences for the design
of preconditioners for symmetric M-matrices and perhaps
also of communication networks.
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1. INTRODUCTION

The challenge of finding a tree H that best approximates
a graph G is an important one in the design of efficient al-
gorithms. The paradigm is straightforward: many compu-
tational problems admit algorithms that perform better on
trees, due to their simple structure, than on general graphs.
Solving such a problem on a tree approximation H rather
than the original graph G is sometimes the best route to an
exact or approximate solution of the problem on G. Prob-
lems of this sort arise in parallel algorithms (e.g., routing)
and numerical algorithms (e.g., preconditioning).

1.1 Problemsand Results

Let G be a general graph on n nodes; we wish to find a
spanning tree H that best approximates G by some mea-
sure combining the congestion and dilation of an embed-
ding of G into H. One such measure is the routing time
p(G, H) < O(congestion + dilation), the number of steps
necessary to route pairwise demands G on network links H
in the store-and-forward packet routing model. Another is
the condition number ky(G, H) < O(congestion - dilation),
the square root of which bounds the number of iterations
necessary to solve a linear system with coefficient matrix
G preconditioned by H using the classical conjugate gra-
dient method.! Tree approximations are useful for routing
on fixed-connection networks, iterative solution of linear sys-
tems, and many other computational problems, and efficient
algorithms for finding them are known.

In this paper, we seek to identify the classes of graphs
G which are intrinsically the most difficult to approximate

We use the same notation to represent both a graph and
the associated matrix, assumed to be the Laplacian or more
generally an M -matriz, which we define shortly.



with respect to routing time or condition number; i.e., those
for which every tree H is a relatively poor approximation of
G.

It is easily seen that with respect to routing time, G is
hardest to approximate by a tree H precisely when it con-
tains either long cycles? (which yield high dilation) or large
separators (which yield high congestion). For any graph G,
there is a tree H such that p(G, H) < O(n); if G is a cycle
or an expander, this is optimal. If G is a square mesh, then
the optimal H satisfies p(G,H) = ©(y/n). These results
can be generalized to the case in which H is a spanning
subgraph of G of Euler characteristic k.> Bern, Gilbert,
Hendrickson, Nguyen, & Toledo [2] showed (implicitly) that
for any G, there is an H such that p(G,H) < O(45), or
p(G, H) < O(37) if G has bounded genus; we show that if
G is a fractal with many long cycles or an expander, then
p(G,H) > Q((kLH)lf"(l)). If G is a square mesh, then the
optimal H satisfies p(G, H) = 6((1@%1)1/2)‘

We show that with respect to condition number, the ex-
istence of long cycles or large separators in G is sufficient
but not necessary for it to be hardest to approximate. Bo-
man & Hendrickson [6] showed that for any G, there is a
tree H such that s;(G, H) < O(n'T°W); if G is a cycle
or an expander, then every H satisfies k¢(G, H) > Q(n).
We prove that if G is a square mesh, then every H satisfies
ki (G, H) > Q(n'=°MW). The proof uses concepts from cir-
cuit theory, linear algebra, and geometry, and it generalizes
to the case in which H is a spanning subgraph of G of Euler
characteristic k. Spielman & Teng [19] showed that for any

graph G, there is an H such that x5 (G, H) < O("Ho(l)
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or kp(G,H) < O(”lktfil) ) if G has bounded genus; we show
that if G is a square mesh, then every H satisfies k¢ (G, H) >
Q((k—L)lf"(l)). The same lower bound holds when G is a
fractal with many long cycles or an expander.

Our results have consequences for the design of precondi-
tioners for symmetric M-matrices, which arise from finite-
difference and finite-element discretizations of elliptic partial
differential equations, and perhaps also of communication
networks.

1.2 Related Work

The problem of approximating a general network by a low-
congestion tree, which has application to oblivious routing,
has been studied by Récke [17]. He gave a super-polynomial
time algorithm to construct for any network a Steiner tree
prescribing how to route demands obliviously so that the
congestion is to within a polylogarithmic factor of opti-
mal. Polynomial time algorithms were subsequently given
by Bienkowski, Korzeniowski, & Récke [3] and by Harrel-
son, Hildrum, & Rao [11]. The problem of approximating a
finite metric space (i.e., weighted complete graph) by a low-
distortion (i.e., low-dilation) tree, which has application to
the design of approximation algorithms, has been studied by
Rabinovich & Raz [16]. They showed that the metric repre-
sented by a simple cycle cannot be approximated to within
sublinear distortion by a tree metric. Naidu & Ramesh [15]

2Long nearly isometric cycles, to be precise. For instance,
the perimeter of the planar square mesh is nearly isometric
(to a simple cycle), but a Hamiltonian cycle of the mesh is
not.

3The Buler characteristic of H = (V, Er) is given by |Ep| —
V] + 1.

generalized this result to approximation by a metric of posi-
tive Euler characteristic. Gupta [9] showed that approxima-
tion by a tree metric is not asymptotically improved by the
addition of Steiner nodes, leading to a simpler proof of the
result of Rabinovich & Raz.

The problem of designing and analyzing combinatorial
preconditioners for linear systems was pioneered by Vaidya
[21]. Although he never published his results, they have
since appeared and been extended in Joshi [12], Bern, Gilbert,
Hendrickson, Nguyen, & Toledo [2], Boman & Hendrickson
[5], and Boman, Chen, Hendrickson, & Toledo [4]. The de-
velopment of Steiner tree preconditioners, which are typi-
cally more effective than spanning tree preconditioners, is
due to Gremban, Miller, & Zagha [8], Gremban [7], and
Maggs, Miller, Parekh, Ravi, & Woo [14]. Reif [18] was
the first to give a nearly-linear time system solver based on
combinatorial preconditioners, though the result was only
shown to hold for certain bounded-degree, planar linear sys-
tems. Boman & Hendrickson [6] gave the best upper bound
for preconditioning a general graph G with a spanning tree
H, using the spanning trees of Alon, Karp, Peleg, & West [1].
Spielman & Teng [19] generalized their result to H with pos-
itive Euler characteristic. Spielman & Teng [20] developed
a nearly-linear time system solver for certain linear systems
using combinatorial preconditioners in combination with a
recursive application of the conjugate gradient method.

1.3 Outline

The remainder of this paper is organized as follows. In
Section 2, we introduce notation and concepts needed in
the following sections. In Section 3, we illustrate two appli-
cations of our results, to packet routing and precondition-
ing. In Section 4, we present dilation and congestion lower
bounds for fractals, expanders, and square meshes. In Sec-
tion 5, we give nearly-linear condition number lower bounds
for fractals, expanders, and square meshes. In Section 6, we
offer some final remarks.

2. PRELIMINARIES

The following definitions and mathematical background
on graphs, matrices, and electrical networks are prerequisite
for understanding later sections.

2.1 Graphsand Matrices

Let G = (V,E¢) be a loopless, undirected graph on n
nodes. The boundary OcU of U C V is the set of edges in Eq
connecting U to V\U. An a-separator is a set of edges dcU
for some U C V which satisfies min{U, V' \ U} > an. The
genus of a graph is the minimum-genus surface onto which
it can be mapped properly (i.e., without edge crossings).
For example, a planar graph has genus zero. The skeleton
of a graph is the subgraph that remains after all nodes of
degree one or two have been eliminated (iteratively) via edge
contraction.

We define a vine to be a set U C V such that (i) G|U
(i.e., the restriction of G to U) is a spanning tree, and (ii)
the number of nodes of U incident to dgU (the fized ends of
the vine) is either one or two. We say the vine is fized if it
has two fixed ends, and loose if it has only one. If the vine is
loose, we can choose any leaf node of G|U (except the fixed
end) to be the loose end. The stem of the vine is the unique
path in G|U from one end of the vine to the other.



A fractal is a graph which is self-similar (i.e., it is con-
structed from an initial graph by successively replacing edges
in the graph by copies of the initial graph). An ezpander
is a graph for which there is a constant ¢ > 0 such that
[0cU| > ¢ - min{|U|,|V \ U|} for all U C V. The planar
square mesh is the Cartesian product of a path with itself.
The toroidal square mesh is the Cartesian product of a cycle
with itself. When we refer to a square mesh, we mean either
a planar or toroidal square mesh.

Let G be an n X n symmetric matrix. Its finite spectral
condition number k¢(G) can be expressed by the following
Courant-Fischer characterization:
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Here max Af(G) and min A\;(G) denote the maximum and
minimum finite (nonzero) eigenvalues of G, respectively.

We say that G is an M -matrix if it is diagonally dominant
(ie., satisfies the property Gii > >_., |Gij| for each i) and
has nonpositive off-diagonal entries. In particular, an M-
matrix is either nonsingular and positive definite, or it has a
nullspace of the all-ones vector and is positive semidefinite.
In the latter case, the M-matrix is said to be in Laplacian
form.

Henceforth, any reference to a matrix form G of some
graph G should be taken to mean the Laplacian form defined
by Gij = —1if (7,7j) € Egq, Gij = 0 if (Lj) ¢ FEg, and
Gii = 3254 |Gijl-

2.2 Electrical Networks

Suppose we view two graphs G = (V, Eg) and H = (V, En)
as (resistive) electrical networks, with nodes representing
junctions or terminals and edges representing unit-size branch
conductors. Let x be a vector defined on the nodes. Then
Eo(x) =2"Gx = 2 Gi)eEs (zi—2z;)? and Ep(z) = 2" Ha =
Dtiyeny (@i — x;)? measure the power dissipation of the
circuits G and H, respectively, when the potentials at the
nodes are set according to the values of x. This is simply the
power law: the power dissipation is equal to the conductance
times the square of the potential difference. In keeping with
the electrical analogy, we'll refer to the quadratic form Eg
as the energy burned on G by the potential vector x. This
gives some physical meaning to the finite spectral general-
ized condition number k(G, H), which is given by:

o fo@) | Eul)
z:Hz#0 SH(m) z:Gx#0 SG(JZ)

= (max\;(G, H)) - (min \f(G, H))™" (2)

Here max A ¢ (G, H) and min A\f(G, H) denote the maximum
and minimum finite (nonzero) generalized eigenvalues of the
matrix G preconditioned by H.

When G has bounded degree and H is a spanning sub-
graph of H (as the case will be henceforth), it is easy to see
that the eigenvalue min A ¢ (G, H) must be ©(1). In this case,
to bound kf(G, H) from below, it suffices to present a po-
tential vector x on the nodes which burns many times more
energy on G than on H. Of course, the potential vector x
yielding the strongest possible lower bound is simply the
eigenvector associated with the eigenvalue max A¢(G, H);
however, this eigenvector is typically difficult to determine
analytically.

k(G ,H) =

3. APPLICATIONS

As we have already suggested, the routing time and the
condition number bound the running times of two important
practical applications: routing on fixed-connection networks
and iterative solution of linear systems.

3.1 Packet Routing

Consider the following packet routing problem. Let G =
(V, Ec) be a graph representing pairwise traffic demands;
ie., (i,j) € Eg if and only if nodes ¢ and j wish to exchange
packets. Let H = (V, En) be a subgraph of G representing
physical network links; i.e., (¢,7) € Eg if and only if nodes
i and j are connected by a pipe.? The task is to satisfy
the demands G by routing the packets on the network H as
quickly as possible. This is done using the store-and-forward
model of packet routing: packet motion through the network
is synchronous (at each step, each network link is traversed
by either 0 or 1 packets), and packet storage is provided
in the form of a constant-size queue residing at each link.
A solution to the packet routing problem consists of two
parts: the selection of a routing path for each packet, and a
schedule for packet motion along each path. The first part is
a mapping of each edge (7,7) of G to an (edge-simple) path
in H between ¢ and j, or an embedding ¢ : G — H. Given
an embedding ¢ and an optimal schedule for packet motion,
we would like to know how many steps the routing solution
takes.

The dilation d,(G, H) of an embedding ¢ is the length
of the longest path in H to which an edge of G is mapped.
The congestion c, (G, H) of ¢ is the largest number of such
paths mapped through a particular edge of H, over all edges
of H. To the network user, dilation and congestion represent
a delay and a bottleneck, respectively; thus, we would like to
minimize them. We call an H designed to minimize dilation
or congestion a spanner or filler, respectively.

Both dilation and congestion are lower bounds on the
number of steps taken by a routing solution. Perhaps sur-
prisingly, they are also upper bounds: Leighton, Maggs,
& Rao [13] proved a more general version of the following
lemma:

LEMMA 3.1 (ROUTING LEMMA). For each selection of
routing paths ¢ : G — H, there is an (optimal) schedule
for packet motion that yields a solution to the packet routing
problem in ©(cy,(G, H) + d,(G, H)) steps.

In particular, the routing time p(G, H), the number of
steps needed to solve the packet routing problem using an
optimal selection of routing paths and an optimal schedule
for packet motion, satisfies p(G, H) = ©(min, ¢, (G, H) +
dy (G, H)).

3.2 Preconditioning

Consider the problem of solving the linear system Gx = b,
where G is the Laplacian matrix form of a graph G.° The

41f the edges of G missing from H represent down links, then
the problem is one of fault tolerance. If H is restricted to be
a tree, then the problem is one of finding the best subgraph
on which routes are unique.

5Such a system arises, for example, when the Poisson equa-
tion Au = f with Neumann boundary conditions on a com-

pact domain  C R? is discretized by finite differences, using
the standard (2d + 1)-point central difference scheme.



simplest solution technique is the direct method of Gaussian
elimination: first compute the Cholesky factorization LLT
of G, then solve the lower- and upper-triangular systems
LLTxz = b by forward- and back-substitution. Naively, this
takes time O(n®); typically, however, G has some special
topological structure that permits faster solution. If G is a
tree, then there is a zero fill elimination order taking time
O(n). If G is a square mesh, then there is a nested dissection
elimination order taking time O(n3/ 2). In the former case,
Gaussian elimination is optimal. In the latter case, Gaussian
elimination can be beaten by an iterative method, such as
the conjugate gradient method.

The conjugate gradient method solves the system Gx = b
by minimizing the quadratic form ¢(z) = %:cTG:c —zTb
over the orthogonal complement of the nullspace of G. It is
a Krylov method: the ith approximation to z lies in the sub-
space spanned by the first ¢ vectors of {b,Gb, ..., G" " b}.
During each iteration of the method, the key operations (and
costs) are a matrix-vector multiplication involving G and,
typically, the direct solution of a linear system with coeffi-
cient matrix H. The matrix H, called the preconditioner,
is a sparser approximation to G used to accelerate conver-
gence. In the presence of roundoff, the preconditioned con-
jugate gradient method is guaranteed to converge to an e-
approximate solution (i.e., an z’ satisfying ||Gz'—b|| < €[|b]])
in O(\/ks(G, H)log(ks(G)/e)) iterations. The challenge of
preconditioning is to find an H for which (i) Gaussian elimi-
nation on H is fast (faster than on G), and (ii) the condition
number kf(G, H) is small (smaller than x¢(G)).

Vaidya [21] was the first to observe that by choosing H
to be a good, relatively low-characteristic spanner and filler
of G simultaneously, H can serve as a good combinatorial
preconditioner of G.° Subsequently, Gremban [7] proved
the Congestion-Dilation Lemma, a more general form of the
following result:

LEMMA 3.2 (PRECONDITIONING LEMMA). Let G be any
graph and H be a spanning subgraph of G. Then ks (G, H) <
O(ming ¢ (G, H) - du(G, H)), where p : G — H.

Unlike the routing lemma, the preconditioning lemma is
not in general asymptotically tight. Bounding the condition
number from below is typically more difficult than simply
computing congestion or dilation, as we shall see.

4. LOWER BOUNDSFOR SPANNERSAND
FILLERS

In this section, we prove lower bounds for low-characteristic
spanners and fillers of sparse graphs, nearly matching the
known upper bounds. We also introduce a scheme for parti-
tioning meshes; the technique is critical for extending span-
ning tree results to spanning subgraphs of positive charac-
teristic.

4.1 Fractalsand Expanders

Intuitively, graphs with relatively poor spanners are that
way because they contain long cycles. For example, the
graph with the worst tree spanner is a simple cycle. As we
show below, this principle generalizes: fractals with many
long cycles have the worst spanners of positive characteristic.

SMoreover, iterative methods for solving linear systems us-
ing combinatorial preconditioners are highly parallelizable.

The fractals are based on those of Gupta, Krauthgamer, &
Lee [10].

Figure 1: The graph F; in Theorem 4.1, for i = 3.

THEOREM 4.1. There ezists a bounded-degree planar frac-
tal F = (V, Er) onn nodes of which every spanning subgraph
H = (V,En) of characteristic k yields min, dy(F, H) >

Q) W),

PrOOF. The fractal F' is constructed by the following re-
cursive procedure. Let n and i be integers satisfying n =
(4r;)" — Z;;i (4r;)7, where r; = [(3)"]. Let F1 be the graph
consisting of four paths of length r; glued together as shown
in Figure 1, and for each j > 2 construct the graph F}; by
taking a copy of F;_1 and replacing each edge with a copy
of . We define F' to be the graph F;. One can check that
F' is bounded-degree and planar and that it has n nodes and
(4r;)" edges.

Let C; be the collection of all (4r;)7~" (disjoint) cycles of
Fj of length 2r;. Let S; be the collection of all (4r;)7~! (dis-
joint) connected subgraphs of F generated recursively from
the (47“1-)7'71 cycles of Fj in C;. In particular, each subgraph
in S; contains a simple cycle of length 2r;(3r;)" =71,

Let t = ﬂoghi(k +1)]. At least one of the (4r;)""" sub-
graphs in S, say S, must be such that H|S is a tree. Let
C be a simple cycle of length 27,1_(3”)1'471 in S with all
but one edge (z,y) contained in H. Then the the shortest
path from x to y in H is the long way around C. Hence,
the edge (z, y) suffers a dilation of 2(3r;)"~* — 1, which is at

least (kiﬂ)lfl/\/ 184/3™  Thus, we have miny, dy(F;, H) >

AGEH)'). O

Intuitively, graphs with relatively poor fillers are that way
because they contain large separators. For example, the
graph with the worst tree filler is an expander. As we show
below, this principle generalizes: expanders have the worst
fillers of positive characteristic as well. The result is likely
folklore.

THEOREM 4.2. Let X = (V, Ex) be a bounded-degree ezx-
pander on n nodes and H = (V, Ex) be a spanning subgraph

of X of characteristic k. Then miny ¢y (X, H) > Q(357)-

PRroOF. Let H' be a spanning tree of H. Since H’ is
bounded-degree, there is a single edge e of H' and a constant
a > 0 such that e is an a-separator of H'. Let this separator
of H' partition the nodes into sets U and V \ U, say. Then
the separators of H and X into U and V' \ U contain at most
k 4+ 1 and at least Q(n) edges, respectively. Thus, we have
ming o (X, H) > Q(537). O

It follows immediately from Lemma 3.1 that every n-node
fractal F and expander X satisfy p(F, H) > Q((;—il)l*"u))
and p(X,H) > Q(kLH), respectively, for every spanning sub-
graph H of characteristic k.



4.2 Square Meshes

The following lemma shows how to partition the nodes of a
square mesh in such a way that spanning tree results can be
extended to spanning subgraphs of positive characteristic.

LEMMA 4.3  (PARTITIONING LEMMA). Let M = (V, En)
be a square mesh on n nodes and H = (V, Ex) be a spanning
subgraph of M of characteristic k. Then V contains a vine

in H of size Q(377).

PRrROOF. Obtain the skeleton H' of H by successively con-
tracting edges to remove all nodes of degree one or two. Note
that H' has ©(k+ 1) nodes and edges and has characteristic
k. Now color the nodes and edges of H' as follows. First,
assign a unique color to each edge in H’, and assign to each
node in H' the color of one of its incident edges. Then, re-
cover H by running the edge-contraction procedure used to
derive H' from H in reverse. Each time an edge of H is re-
covered by subdividing an existing edge, assign the new node
and edge the same color as the edge that was subdivided.
Each time an edge of H is recovered by branching from an
existing node, assign the new node and edge the same color
as the node from which the branch occurred. Each of the
O(k + 1) color classes of nodes in H defines a vine. Hence,

some vine has size Q(375). O

Lemma 4.3 enables us to prove dilation and congestion
lower bounds for the square mesh.

THEOREM 4.4. Let M = (V,En) be a square mesh on
n nodes and H = (V, Ex) be a spanning subgraph of M of
characteristic k. Then min, d,(M, H) > Q((2)?) and

E+1
ming ¢, (M, H) > (355 )2).

ProOF. By Lemma 4.3, there exists a vine U in H of size
Q(437). Since H has bounded degree and only two nodes
of U are incident to OgU, |0gU]| is bounded. On the other
hand, |OnU| > Q((!—il)lm), by the isoperimetric inequal-
ity in two dimensions. Hence, we have min, c,(M, H) >

Q((k—?rl)l/Q). Moreover, since the diameter of U in M is

Q((k—il)lm), there is an edge of 0qU at distance Q((k—fﬁl)lm)

from 9 U. It follows that min, di, (M, H) > Q((25)"?). O

Theorem 4.4 is tight: there exists a spanning subgraph H
of characteristic £ and an embedding ¢ : M — H for which

do(M, H) < O((2)"/?) and ¢, (M, H) < O((21)"/),

hence p(M,H) < O((kiﬂ)lm) by Lemma 3.1. The sub-
graph H is not unique; any characteristic k subgraph whose
skeleton is a reasonably uniform coarser mesh and whose
branches are reasonably good trees (e.g., those in Figures 2
and 3, the latter of which is due to Alon, Karp, Peleg, &
West [1]) will be asymptotically optimal. The embedding
¢ mapping edges in M to shortest paths in H is sufficient
here.

5. LOWERBOUNDSFOR COMBINATORIAL

PRECONDITIONERS

In this section, we prove lower bounds for low-characteristic
combinatorial preconditioners of sparse graphs, nearly match-
ing the known upper bounds. Most importantly, we show
that a simple square mesh is as hard as any graph to pre-
condition.

Figure 2: A good spanning tree for the square mesh.

Figure 3: Another good tree for the square mesh.

5.1 Fractalsand Expanders

Recall that in order to prove a lower bound on the con-
dition number, we need to bound the energy burned by a
graph (from below) and a spanning subgraph (from above)
for a potential vector x.

For instance, let M be the square mesh and H be either
of the spanning trees in Figures 2 and 3. For reference, let
(i,7) be the node in the ith row and jth column. Then it
is a simple puzzle to find a potential vector x which burns
Q(n) times more energy on M than on H. For the tree in
Figure 2, one such z is the vector which sets the nodes on
the path from (1,1) to (1,/n) to potentials \/n —1,...,0,
respectively, and sets all other nodes to ground (zero po-
tential). For the tree in Figure 3, one such z is the vector
which sets the nodes on the path P from (1/n, 2/n+1) to
(5v/n+1,2/n+1) to potentials 0, ..., /n— 1, respectively,
sets the nodes on the path P, from (3v/n+1,1y/n+1) to
(3y/n,%\/n + 1) to potentials 0,...,y/n — 1, respectively,
and floats (or colors) the potential at each remaining node
to the potential of the closest node in P, U P>. Hence,
kf(M,H) > Q(n) if H is either of the trees in Figures 2



and 3. This generalizes to ny(M,H) > Q(37) if H is a
spanning subgraph of M of characteristic k& whose skeleton
is a coarser mesh and whose branches are either of the trees
in Figures 2 and 3.” Indeed, rs(M, H) = ( 71) by Lemma
3.2, since there is an embedding ¢ : M — H for which
do (M, H) < O((525)"/?) and ¢, (M, H) < O((527)'/?).

The following lemma extends the ideas above to provide a
general technique for proving a lower bound on the condition
number.

LEMMA 5.1 (ToOPOLOGICAL LEMMA). Let G = (V, Eg)
be a bounded-degree graph and H = (V,En) be a span-
ning subgraph of G. Suppose there exist sets A, B C V
and vines C1,...,Cy in H (with stems S1,...,Sy and ends
{ur,v1},..., {ur,vr}) such that: (i) V= AUBUC; ---UC,;
(ZZ) ANB :Q), CiﬂCj :Q), ANC; = {ul}, and BNC; =
{vi}; and, (i4i) Si contains at least s+ 1 nodes including u;
and v;. If the edges from a A to B contains p edges in G
and q edges in H (not counting the edges in the C;), then
k(G H) >

- qs+r

PROOF. The statement of the lemma is more subtle than
the proof. We construct a potential vector x on the nodes for
which G burns at least p units and H burns at most g+ /s
units. First, let the potential at the nodes of A be set to
0 and the potential at the nodes of B to 1. Next, set the
potentials at the nodes along S;, starting at u; and ending
at v;, t0 0,1/s,...,s/s. Finally, float the potential at each
remaining node in C; to the potential of the closest node in
S;. In G, z burns at least p - 12 across the cut between A
and B. In H, z burns at most ¢ - 12 across the cut between
A and B and rs - 1/s? collectively on the C;, for a total of
at most ¢ + r/s. It follows that k¢ (G, H) > O

— qs+'r

Lemma 5.1 enables us to bound the condition number
from below for the fractals we defined earlier. The proof is
a simple extension of Theorem 4.1.

THEOREM 5.2. There exists a bounded-degree planar frac-
tal F = (V,Er) on n nodes of which every spanning sub-
graph H = (V, En) of characteristic k yields ky(F,H) >

Q) M),

PROOF. Let F be defined as in Theorem 4.1. Define the
subgraph S, the cycle C, and the edge (x,y) as before. Since
H|S is a tree, there is a loose vine W in H whose stem
contains at least 1/4 of the nodes of C' and whose loose and
fixed ends, respectively, are one of either = or y (say, x) and
some other node z in C. Let A = {z}, B =V \ W U{z},
and Cy = W. Then we can apply Lemma 5.1 with p = 1,
q=0,7=1 and s > Q(35 =) °W) to get ky(Fi, H) >
()W), O

Lemma 5.1 also enables us to bound the condition number
from below for an expander. The proof is a simple extension
of Theorem 4.2.

THEOREM 5.3. Let X = (V, Ex) be a bounded-degree ez-
pander on n nodes and H = (V, Ex) be a spanning subgraph
of X of characteristic k. Then ky(X, H) > Q(

"These H are precisely the combinatorial preconditioners
generated by Joshi [12] and Spielman & Teng [19] for square
meshes.

k+1)

PROOF. Define the edge e = (x,y) and the set U as in
Theorem 4.2. Let A =U, B =V \U, and C; = {z,y}.
Then we can apply Lemma 5.1 with p > Q(n), ¢ < k + 1,
r=1,and s =1 to get ks(X,H) > Q( O

5.2 Square Meshes

We now show our main result: a nearly-linear lower bound
on the condition number for a square mesh, from which it
follows that a square mesh is as hard as any graph to pre-
condition.

Before we begin we will need a few definitions. Let G =
(V, E) be a graph. An i-sphere centered at vertex z are all
the vertices in G at distance ¢ from z. An i-shell centered
at vertex z are all the edges in G with one endspoint in -
sphere and the other in either i-sphere or ¢ 4+ 1-sphere. We
state a few facts about sphere and shells true for the mesh.
These seem to be the only hypothesis needed for the lower
bound to follow.

k+1)

LEMMA 54. Let M = (V,Eum) be a square mesh on n
nodes. If i < \/5/2 and Sph; an i-sphere and Sh; is an
i-shell then

] |Sphz| 2 7

e If a subgraph H cotains a point of Sph; then either
H contains Sphi and Sphiy1 or the boundary of H
contains an edge in Sh;

o IfU CV the diameter of U is at least \/|U|.

LEMMA 5.5. Let M = (V,En) be a square mesh on n
nodes and H = (V, Ex) be a spanning subgraph of M. Sup-
pose there is a vine U C V in H such that the distance
between the endpoints P is 2d in M and number of vertices
of U is at most d* /2 then there exists a set of boundary edges
B such that

> d(e, P)? > d’/24

ecB

where §(xz, P) the the distance in M from x to P in M

PROOF. Suppose the x and y are the ends of the vine
U then the sheres and shell about = and y are disjoint for
1 < i < d. We shall count the number of shells contains a
boundary edge. We consider the shells of x and argue those
of y be symetry. By Lemma 5.4 we know that any ¢-shell not
containing a boundary edge must have its i-sphere contained
in U. This gives us the inequality:

di<d /4
ieC

where C and C are the indices of full and not full spheres is
U. Subject to 5.2 we would like to minimize:

>
ieC
We minimize 5.2 subject to 5.2. It follows that 5.2 is mini-
mized when C' = {k, ..., d} for some integer k. The lefthand
side of 5.2 is at most (d*> — k?)/2 and thus d?/2 < k*. Thus
5.2 is mimimized when C = {1,...,d*/2}. This gives our
bound. [



We need a slightly mesier version of Lemma 5.5. The
proof is essentially the same.

LEMMA 5.6. Let M = (V,Enm) be a graph statisfing the
concultion of Lemma 5.4 on n nodes and H = (V, Eg) be
a spanning subgraph of M. Suppose there is a vine U with
ends x and y. the stem from x to y contains to points x’
and y' in that order such that ' and y' decompose U into
three subvines Ur, with ends x and ', Uy with ends ' and
y', and Ur with ends y' and y with the follow properties:

e diaUr, diaUr, < d/t
o |Un| < d?/c
o §(z,x'),6(y,y) > s
o §(x',y')>d
then there exists a set of edges B from Unr to U such that
Z 6(e,P)*> > d-s*/con

eeB

For some constant con.

PROOF. As in the last proof we consider the spheres and
shells of z and y of radius {s + 1,...,s + d/2}. Again we
only conside those centered at z. Let C be the index of the
full spheres in [

LEMMA 5.7  (ISOPERIMETRIC LEMMA). Let M = (V, Ear)
be a square mesh on n nodes and H = (V, Eg) be a span-
ning subgraph of M. Suppose there is a vine U C V in H of

diameter at least d in M. Then ky(M,H) > Q(ﬁ—;‘)

PRrROOF. We may assume that the stem of U has diameter
% in M; otherwise, there is another vine in H with this
property. We construct a potential vector x as follows. Let
the potential at every node outside U be set to ground, and
set the potential at each node inside U to its distance in
H|U from 0xU. In H, z burns at most 12 across each edge
in H|U, for a total of at most 4|U|. In M, = burns at least
(%)2 across each of the at least % edges in OpU that are at
distance at least § from OnU, for a total of at least (&)°.

Hence, k5 (M, H) > Q(%). 4

LEMMA 5.8 (TRADEOFF LEMMA). Let M = (V, Exr) be
a square mesh on n nodes and H = (V, Ex) be a spanning
subgraph of M. Suppose there is a vine U C V in H of
diameter at least d in M. Then for any positive integer
s < d/3, either: (i) ky(M,H) > Q(ds); or, (ii) there is a
vine U' C U in H of diameter at least d/15 in M such that
U] < 120,

PrOOF. We may assume that the distance between the
stem endpoints of U has % in M; otherwise, there is a sub-
vine of U with this property. Consider the finite sequence of
nodes traversed by while walking from one end of the stem
of U to the other. From this sequence, we can pick out a
subsequence {wk}z/: SOS of nodes, any pair of which is sepa-
rated by distance at least s in M. Intuitively, this partitions

the nodes in the stem of U into intervals [wg—1, wy) of length

at least s in M. For each k between 1 and d/3s, let Wy, be
the set of nodes in U whose closest node in the stem of U
lies in the interval [wi_1,wy). The (disjoint) union of the
W), partitions U.

Suppose that at least one of the Wi,...,Wy,15, and at
least one of the Wyq/15541, - .., Wa/3s have diameter at most
d/15s in M; let these be W; and Wj, respectively. Define
CL = WiU{wi}, Coy = Wj U{wjfl}, A= Wi+1U' . 'Uijl,
and B=V\(AUC1UC2)U{w;—1,w;}. Then we can apply
Lemma 5.1 with p > d/15, ¢ = 0, r = 2, and s as given to
get ky(M,H) > z5ds.

Suppose instead that either all of the Wa,...,Wy,155 or
all of Wyq/15s, - .., Wq/3s have diameter at least d/15s in M.
Then trivially, one of them must enclose a vine U’ C U in H
of diameter at least d/15 in M such that [U’| < £22|U]. O

Lemmas 4.3, 5.7, and 5.8 enable us to prove the condition
number lower bound for square meshes.

THEOREM 5.9. Let M = (V,Eum) be a square mesh on
n nodes and H = (V, Eg) be a spanning subgraph of M of

characteristic k. Then kg(M,H) > Q((;—il)l*"u)).

Proor. Fix the constant € > 0 arbitrarily. Define ¢ =

[1/2¢], d = (k—il)l/2 and s = d'~'/*. By Theorem 4.3,

there exists a vine Uy C V' in H of size Q(7). The di-
ameter of Uy in M is Q(d), by the isoperimetric inequal-
ity in two dimensions. By Lemma 5.8, either «s(M,H) >

Q(ds) = Q((kLH)I*E), or there is a vine Uz C Uy in H of

diameter Q(d/15) in M satisfying |Uz| < 15d~*|U1|. (We
may assume the latter.) Applying Lemma 5.8 again, ei-
ther ky(M,H) > Q((d/15)s) = Q((kiﬂ)lfe), or there is a
vine Us C Uz in H of diameter Q(d/15%) in M satisfying
|Us| < 152d~2/"|U1|. (Again, we may assume the latter.)
We continue this process until we obtain a vine U; C U;—1 C

- C Uy in H of diameter Q(d/15"™') = Q(d) in M and

size U] < 1571 d-C7VIUh] < O((#25)"/%F). Then by
Lemma 5.7, we must have k5 (M, H) > Q((kLH)lfé). Since

this result holds for any sufficiently small €, we conclude that

k(M H) > Q(()' ") O

6. CONCLUSION

We have demonstrated that a square mesh is as hard as
any graph to precondition by a spanning tree or subgraph
of prescribed Euler characteristic. It remains to construct
a method to identify, based on geometric and topological
properties, precisely how well a particular graph can be pre-
conditioned and what the preconditioner should be.

In particular, we conjecture the following: if G is a hy-
percubic mesh in d > 2 dimensions, then there is a span-
ning subgraph H of G which is an (asymptotically) op-
timal spanner, filler, and combinatorial preconditioner of
characteristic k simultaneously, and it satisfies ky(G, H) =
O(miny, ¢, (G, H) - dy (G, H)) = O(() - (551) ) =
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