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Abstract

A bounded aspect-ratio coarsening sequence of an unstructured mesh Mg is a sequence of

meshes My, ..., M such that:
e M; is a bounded aspect-ratio mesh, and
e M; is an approximation of M;_1 that has fewer elements,

where a mesh is called a bounded aspect-ratio mesh if all its elements are of bounded aspect-
ratio. The sequence is node-nested if the set of the nodes of M; is a subset of that of M;_;.
The problem of constructing good quality coarsening sequences is a key step for hierarchical and
multi-level numerical calculations. In this paper, we give an algorithm for finding a bounded
aspect-ratio, node—nested, coarsening sequence that is of optimal size: that is, the number of
meshes in the sequence, as well as the number of elements in each mesh, are within a constant
factor of the smallest possible.

1 Introduction

Numerical methods such as the finite element, finite difference, and finite volume methods apply the
following basic steps to solve a partial differential equation (PDE) over a continuous domain Q:

1. Geometric modeling: the continuous domain is approximated using a simpler, discrete de-
scription.

2. Mesh generation: the interior of the domain is decomposed into a mesh M of simple and
well-shaped elements.

3. Approximation: a system of linear or non-linear equations is formed over M for the governing
PDEs (e.g., the stiffness matrix and the right hand vector are assembled).

4. Solution: the system of equations is solved, and the error of the solution is estimated.

5. Adaptive refinement: if necessary, the mesh is refined and steps 4 and 5 are repeated over
the refined mesh.
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Once the mesh M is generated, a system of equations is formed over M and has to be solved.
The class of multi-level techniques has become one of the most effective and successful classes of
numerical techniques for solving PDEs. These techniques have been used in multigrid methods [6]
and multi-level domain decomposition [7]. A multi-level method solves a system of equations by first
constructing a coarsening sequence of meshes My, ..., My, where My = M is the finest mesh that
discretizes €2. For each 7 in the range 1 < i < k, the mesh M, is a geometric coarsening of M,;_;.
At the heart of multigrid methods and other multi-level numerical methods is the transformation of
partial solutions from mesh M; to mesh M;_; using interpolation, and from mesh M; to mesh M;;
using restriction. Informally, these methods solve a PDE on 2 by first obtaining an initial solution
either for My or for M}, and then improving the quality of the solution by transforming it up and
down the coarsening sequence hierarchy while applying some simple and efficient iterative methods
at each level.

The simplest form of a coarsening sequence is a series of nested structured meshes (regular grids).
For this class of meshes, Brandt [6] showed, by carefully using restriction and interpolation, that the
solution for My can be efficiently obtained using multigrid methods. (See also Bramble, Pasciak and
Xu [5].) Nested structured coarsening sequences are attractive choices in practice because they can
be easily generated and because the convergence behavior of the structured multigrid methods on such
sequences is well understood. However, the use of structured regular grids limits the applicability
of the method to problems whose domains are simple and whose solution functions have a small or
constant Hessian [7, 16, 21].

The use of unstructured meshes is inevitable in the solution of complex problems with more
intricate domain geometry and solutions. The theory behind applying multigrid and multi-level
methods to unstructured meshes is not as well understood as it is for the structured case. However,
it is an area of active research, with increasing theoretical progress [5, 7, 8]. Also, in practice,
multigrid methods on unstructured meshes are popular despite this current lack of full theoretical
foundations [3, 18].

The algorithmic and computational geometry aspects of generating coarsening sequences are
important issues to address in view of the theoretical and experimental interest in applying multigrid
and multi-level methods to unstructured meshes. The effectiveness of a multi-level method that uses
an unstructured coarsening sequence My, . .., My depends on the quality of this sequence [5, 7, 8]. In
particular, Chan and Zou [8] provided sufficient conditions for multi-level additive Schwarz methods to
work on unstructured meshes. Informally, their conditions require, for each ¢ in the range 1 <1 < £,
that (1) M; is well-shaped, e.g., in two dimensions elements of M; should have a bounded aspect-
ratio; and (2) M; approximates M;_; in the numerical formulation. The coarsening problem can thus
be informally defined as: Given a well-shaped mesh My and a threshold size b, construct a sequence
My, ..M}, with | M| = O(b) that satisfies conditions (1) and (2).

The problem of mesh coarsening can be viewed as a generalization of the problem of mesh
generation. In particular, a sequence of meshes has to be constructed rather than a single mesh,
and furthermore, the coarsener is restricted to sample only from the discrete set of the initial mesh
nodes instead of having the freedom to sample arbitrarily from the domain. Thus, the challenges of
mesh coarsening, as contrasted with mesh generation, are twofold: first, that of understanding the
shape and size of each mesh in the sequence that satisfies conditions (1) and (2) specified above, and
second, the challenge of constructing such a sequence over a discrete node set. However, without the
foundations laid by recent advances in the theoretical understanding of mesh generation techniques,
as in the work of Bern, Eppstein and Gilbert [4], Chew [9], Ruppert [19], Mitchell and Vavasis [17],
and Miller, Talmor, Teng, Walkington [16], this work would not be possible.



In this paper we describe a new algorithm for the coarsening problem in two dimensions. This
algorithm guarantees that the coarsening sequence satisfies conditions (1) and (2). It also minimizes
the size of the mesh at each level up to a constant factor. A sequence is node-nested if the set of the
nodes of M; is a subset of that of M;_;. The approach presented here can be used to generate both
node-nested and non-nested coarsening sequences.

The paper is organized as follows: Section 2 gives basic definitions and more formal discussion
of the problem of mesh coarsening. Section 3 reviews previous work on mesh coarsening. Section 4
presents the coarsening algorithms. Section 5 explains spacing functions and their properties —
spacing functions are the main technique behind our coarsening algorithm. Sections 6 and 7 show
the correctness of our approach for one-level and multi-level schemes respectively. Section 8 discusses
the run-time complexity of our scheme, and efficient variations of the approach. Section 9 gives some
experimental evidence that the approach generates high-quality coarsening sequences in practice.
Section 10 concludes the paper.

2 The problem of mesh coarsening

This section provides the background for the rest of the paper. We first introduce the basic definitions
and the notation used in this paper. We then formally define the problem of mesh coarsening.

2.1 Basic mesh qualities

A Planar Straight Line Graph (PSLG) is a collection of line segments and points in the plane,
closed under intersection. A domain 2 is a planar straight-line graph (PSLG), whose boundary is
a collection of polygons (i.e., holes are allowed). The PSLG is a linear modeling of some continuous
domain in the plane, possibly containing internal edges and points representing boundaries between
two materials, and points of special interest.

A two-dimensional mesh is a discretization of the geometric domain, described by a PSLG, into
simple polygonal elements. The intersection of two neighboring elements must either be an edge of
both elements, or a vertex of both. The mesh nodes are the vertices of its elements. The following
notation is used to describe a mesh: M = (P, T, B), where P is the set of mesh nodes, F is the edge
set, and B is the PSLG boundary description. Nodes from P that reside on boundary segments or
points are called boundary nodes. To distinguish between boundary nodes and points of B, we
refer to the latter as boundary vertices. Edges from F that reside on boundary segments of 5 are
called boundary edges.

The mesh can be structured or unstructured. For a structured mesh, the local geometrical
and combinatorial structure of the mesh at each of its nodes is identical, with the possible exception of
the mesh’s boundary nodes. Unstructured meshes allow for full flexibility, and the local geometrical
and combinatorial structure can differ from one node to another. Structured meshes often use
quadrilateral elements, whereas unstructured meshes typically use triangular elements.

The following mesh categories play an important part in this paper: grids are uniform structured
meshes composed of square elements; quasi-uniform unstructured meshes are unstructured
triangular meshes, whose elements have edge-lengths that are within a constant factor of each other;
general unstructured meshes are unstructured triangular meshes, with no special restrictions.

A mesh is generated as an intermediate step of a numerical method to compute or simulate
physical quantities over the original domain. Not all meshes perform equally well in the subsequent



numerical computations. Numerical and discretization errors depend on the geometric shape and size
of the mesh elements. The following measures are defined to quantify these mesh qualities.

Definition 2.1 (edge-length function (elys)) Let M be a mesh over a two-dimensional domain
Q. For each x € Q, ely(z) is defined to be the length of the longest edge of all the mesh elements
that contain x.

Note that only the mesh nodes and the mesh edges are contained in more than one element. This
definition has been used in several mesh generation papers, such as [4, 17, 19].

The geometric quality of a triangular element is measured using its aspect-ratio. In general, long
and skinny triangles are undesirable; for example see [1].

Definition 2.2 (aspect-ratio) The aspect-ratio of a mesh element is R/r, where R is the radius
of the smallest ball containing the element and r is the radius of the largest ball contained in the
element. The aspect-ratio of a mesh is the maximal aspect-ratio among its elements.

If a mesh has a bounded aspect-ratio, then its smallest angle is bounded from below by a constant
and vice versa. Therefore, by “a mesh has a bounded aspect-ratio”, we mean that its aspect-ratio is
smaller than a given constant C', or, equivalently, its smallest angle is larger than a given constant
angle 6.

The el function is a measure of the mesh element size at a given point in the domain; the aspect-
ratio is a measure of the element shape. These two qualities are often at odds: a better aspect-ratio
mesh conforming to a given boundary usually has more elements.

2.2 Mesh coarsenings and coarsening sequences

Definition 2.3 (coarsening) A coarsening M' = (P', E',B) of a mesh M = (P, E,B) is a mesh
whose edge-length function elyy is point-wise larger than elyy but still conforms to the same domain.
The mesh M is then a refining of M'.

Mesh coarsening is the inverse problem of mesh refining. Adaptive refinement is often used to
generate an unstructured mesh: a new mesh is obtained by refining a previously generated mesh
at regions where more accurate information is desired, or where large errors are suspected. If all
intermediate changes have been kept, a coarsening sequence can be obtained by undoing the changes
made by reversing the refinement process. However, it is unreasonable to assume that such a mesh
refinement history is always available, or if available, that it generates an optimal coarsening sequence.
In addition, not all meshes are generated by a refinement method. In a black-box approach to mesh
coarsening, the only information available is the input mesh M itself.

A coarsening can be element-nested, node-nested, or non-nested. In an element-nested
coarsening, each element of M’ can be represented as a union of elements in its refinement M, while
elements in the other two types may be unrelated. A coarsening is node-nested if each node of
mesh M’ is also a node of mesh M; otherwise it is non-nested.

In general, a triangular mesh does not have any element-nested coarsening, unless it was carefully
crafted as such. Even mesh refinement methods that mostly use element decomposition in the
refinement process are not purely decomposition based; a certain amount of edge flipping and deleting
must be used to maintain good aspect-ratio.

Coarsening, even in the relaxed sense of node-nested meshes, might cause a degradation in the
aspect-ratio of the coarser mesh compared to that of the finer one. This degradation should be



avoided. Our goal is to automatically generate a sequence of coarsened meshes from an initial high-
quality mesh, with tight controls on the aspect-ratio, the number of elements in each coarsened mesh,
and the number of meshes in the sequence.

Definition 2.4 (coarsening sequence) A coarsening sequence of a mesh My is a sequence of
meshes M = My, My ... My, such that M;41 is a coarsening of mesh M;.

Definition 2.5 (length and width of a coarsening sequence) The length of a coarsening se-
quence is the number of meshes (levels) in the sequence; the width of the sequence is a function of
its level: at level i, the width is |M;|, the number of nodes and elements of mesh M;.

Meshes in a coarsening sequence should approximate each other. The approximation condition
can be expressed by their edge-length functions:

Definition 2.6 (local similarity) Two meshes My and My are I-locally similar if
1
feIM2 <elyy, < Zelpy,

Definition 2.7 (well-shaped coarsening sequence) A coarsening sequence M = {Mgy--- My}
is (0,Z,b)-well-shaped if

o M is a bounded aspect-ratio coarsening sequence with smallest angle bound 6.
o Mesh M; and M;yy are Z-locally similar.
o | M| =0(b)

The first condition, bounded aspect-ratio, is motivated by iterative methods: at each level of
the multigrid method an iterative method is used for a few rounds to “smooth” the error. The
convergence properties of iterative methods are related to the aspect-ratio of the underlying mesh.
The second condition, local similarity, is motivated by the restriction and interpolation phases of
the multigrid methods, used to transform partial solutions between meshes in adjacent levels of the
hierarchy. To reduce the interpolation and restriction errors, adjacent meshes should approximate
each other, i.e., they should be locally similar.

3 Previous work

The problem of mesh coarsening has two aspects: numerical analysis and computational geometry.
Most of the previous research is concentrated on the numerical analysis aspect of mesh coarsening.
The numerical analysis investigation must naturally take precedence, to uncover the necessary and
sufficient conditions that a desirable coarsening sequence should satisfy. However, as the multigrid
method has been gaining some acceptance and maturity, software development requires better un-
derstanding of the underlying computational geometry issues. Therefore, one objective of this work
is to initiate the study of mesh coarsening from its computational geometry aspects.

To the best of our knowledge, all current algorithms for mesh coarsening provide no guarantees
on the size and shape of the elements that they produce. In fact, for most algorithms, we can provide
counterexamples that show that these algorithms can fail to produce a good coarsening sequence.

Arguably the most popular approach is the topologically based coarsening paradigm. Other
approaches can be found in Bank and Xu [2], and Barth [3] for example. In topological coarsening,
the topological structure of the mesh, i.e., the neighborhood graph structure of either its elements or
nodes, is used. MIS-based coarsening is the prominent topological based method:



MIS-based methods: A maximal independent subset of the node neighborhood graph is selected
to be the coarser mesh nodes. This node set is then triangulated, and the process is repeated
iteratively to generate the coarsening sequence. The coarse nodes may be triangulated by any
triangulation method. For example, Guillard [12] uses the Delaunay triangulation, whereas Ollivier-
Gooch [18] iteratively removes the nodes not selected, and locally repairs the mesh structure.

Definition 3.1 (maximal independent set (MIS)) The MIS of a graph G = (V, E), where F is
the edge set and V' is the node set, is a set U C 'V such that the following are true:

1. independence: if uy,uy € U then (uq,uz) ¢ F, and

2. maximality: no node v € V can be added to U without violating independence, i.e., all nodes
v € V\U are incident to some edge (v, u) such that u € U.

Agglomeration methods: This topological method is applied to control-volume discretizations, a
description of which can be found in Mavriplis” survey [14]. In a control-volume discretization, each
mesh node is assigned a volume; these may be the Voronoi diagrams when the mesh is a Delaunay
triangulation, or the volumes formed by connecting all the midpoints of edges and centers of triangles
incident to a node.

Agglomeration methods coarsen this partition by joining neighboring volumes together. The
complexity of the cell or volume description increases with the levels of the coarsening process.
The coarsening proceeds by iteratively considering all volumes. If a volume has been coarsened
already, then it is skipped. Otherwise, the volume grabs some or all of its un-coarsened neighboring
volumes, to form a new, larger cell. As in the MIS-based schemes, the order in which the volumes
are traversed can be prioritized to proceed from the boundary cells inward, or in an advanced front
fashion. See [13, 14, 15, 22].

3.1 Problems of topological coarsening: repeated degradation

An MIS-based method does not guarantee the geometric quality of the resulting coarsening mesh
sequence. This problem is illustrated in Figure 1: certain choices of an MIS of the original mesh
degrade the aspect-ratio of the coarser mesh. The aspect-ratio degradation compounds with repeated
applications. This can be observed even for highly uniform meshes, as in the grid-like mesh of
Figure 1. Agglomeration methods are in a sense dual to MIS-based methods, and can be shown to be
subject to the same aspect-ratio degradation problem. For general unstructured meshes, the problem
of repeated degradation is even more severe as stated in the following Lemma.

Lemma 3.2 There exists an unstructured mesh such that any selection of a maximal independent
set results in a coarsening sequence with increasingly worse aspect-ratio.

The mesh in Figure 6 is an example of one such mesh. It is characterized by rapidly increasing
element sizes. Taking this example to the extreme, one can construct a bounded aspect-ratio mesh
with O(n) elements, and edge-lengths varying from 2 to 2”. Such a mesh does not have a well-
shaped coarsening sequence with only O(logn) levels. The results of this paper show that unless one
compromises either on the local-similarity property or on the bounded aspect-ratio requirement, any
well-shaped coarsening sequence of this extreme example must contain O(n) levels. Since topological
coarsening methods always reduce the size of the mesh by a constant factor at each level, they must
fail to produce a well-shaped coarsening sequence of this mesh.



Figure 1: Repeated applications of MIS can degrade the aspect-ratio.

The two examples, the grid of Figure 1 and the mesh of Figure 6 demonstrate two different
points: for the grid, a simple O(logn) length coarsening sequence exists. Some choices of an MIS
may yield an optimal well-shaped coarsening sequence of the grid, and in practice they indeed perform
favorably. However, the example showed that not all choices of an MIS lead to good grid coarsenings.
Furthermore, one can show that even when selecting nodes for the MIS randomly, the aspect-ratio of
the grid coarsening sequence degrades with probability approaching one as the size of the initial grid
is increased [20]. The second example involved a mesh for which an O(logn) well-shaped coarsening
sequence simply does not exist. Topological approaches, including the MIS, consider a mesh solely
based on its neighborhood structure. However, highly graded meshes can not be as easily coarsened
as their quasi-uniform counterparts even when they have the same topological structure. To obtain
elements with high geometric quality, one may have to coarsen less aggressively in areas of high
geometric gradation. Notice that there is a necessary tradeoff between the size of the coarsening
sequence and its geometric quality. Our method uniformly handles both examples, providing size
and shape guarantees while generating a coarsening sequence of optimal size.

4 New approach: function based coarsening

In this section, a new approach for mesh coarsening is introduced: a representation we term “spa-
cing functions” is used to capture the geometric structure of the mesh, and to generate an optimal
coarsening sequence while avoiding the pitfall of repeated degradation.

Let My be the initial mesh. Its spacing function representation is a function fy which describes
the typical size and node spacing of My: fo is defined by its values at the mesh nodes. The idea
is to compute a spacing function f; for each level, and use it to generate M; from the original (or
previous) node set. Given the spacing functions, the task is then to create a node set that is “spaced”
according to that function, and triangulate it. We call this coarsening technique function-based
coarsening. It contains four steps:

1. recover the spacing function of the initial mesh;
2. increase the spacing value of the mesh nodes smoothly to obtain the new spacing functions;

3. delete some mesh nodes so that the remaining nodes are spaced according to the new spacing
function; and

4. generate the new mesh by triangulating the nodes obtained in Step 3.
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Figure 2: Function-based coarsening: the spacing function value at a node is denoted by a sphere
whose radius is proportional to the function value. The initial mesh, generated by Barth and Jes-
persen, is plotted in (a). The first step is recovering the spacing function of the mesh using the NN
function (b). The function is then coarsened (c), and a subset of the nodes forming a maximal set
of disjoint spheres is picked (d) and triangulated (e).



In the function-based coarsening approach presented in this paper, we use a simplifying assump-
tion that all the meshes of the coarsening sequence conform to the same boundary description. Thus,
the problem of simplifying the domain description itself is not handled theoretically in this paper.
We allow boundary nodes lying on the segments to be removed, but the vertices of the boundary
segments are always retained. For example, if the domain is a square, the square vertices are always
retained but boundary nodes placed on the sides of the square may be pruned away.

It is sometimes desirable to combine mesh coarsening with boundary description simplification.
In boundary simplification, some of the vertices of the boundary segments may be removed and a new
boundary description is formed, under the restriction that the new boundary approximates the old
boundary. This might enable continuing the coarsening beyond the original boundary restrictions.
However, it is easy to find domain counter-examples where no reasonable boundary simplification
that approximates the original boundary allows for good aspect-ratio meshing. Examples and a more
detailed discussion of this problem can be found in [20].

Nonetheless, for many interesting and practical domains the ideas of function-based coarsening
can be easily adapted to handle simplification as well. Figure 2 shows function-based coarsening
employed on a domain with a complex boundary, where the boundary is allowed to be coarsened.

The following sections describe the coarsening algorithm in more detail. Section 4.1 shows how
to recover the spacing function from the original mesh. Section 4.2 describes how to coarsen the
spacing function. Finally, Section 4.3 shows how to generate the coarse mesh using the coarse
spacing function. This basic coarsening scheme is described in algorithm ONE_LEVEL_COARSEN of
Figure 3.

4.1 Recovering the spacing function

We first formalize the notion of spacing functions. Any slowly changing function may serve as a
spacing function.

Definition 4.1 (1-Lipschitz) A function f is 1-Lipschitz over a domain Q if for any two points
2y in K, [f(z) = fy)l < llz —yll.

To space nodes according to a spacing function, we draw spheres around the nodes and restrict
the spheres to be disjoint. The radius of a sphere at a node is proportional to the spacing function.
We found it more convenient to deal with functions normalized to be 1-Lipschitz, at the cost of
introducing a parameter that controls how to space the nodes according to the function.

Definition 4.2 (f’-spaced points) Let 3 > 1 be a real number, f a 1-Lipschitz function. A point
set P is fP-spaced if for any two points p,q € P, % + % < |lp = q||, i-e. the spheres of radius
f(p)/B and f(q)/B centered at p and q respectively are required to be disjoint. In that case, we say
f B-spaces the point set, and we refer to the spheres as the fP-spheres. When 3 is clear from the

context, we omit it from the notation.

The initial spacing function is recovered from the natural spacing of the original mesh as follows:

Definition 4.3 The nearest neighbor (NN) function of a node set P C Q assigns to each node
p € P the distance to the node ¢ € P that is nearest to it. It can be extended to the domain 2 by
assigning to a point x € §2 the radius of the smallest sphere centered at x that contains at least two

nodes of P.



4.2 Coarsening the spacing function

Each node has a desirable coarsening goal which, because of the Lipschitz condition, can also be used
to derive restrictions on the coarsened function values at other nodes. The final coarsening function
is the largest Lipschitz function that obeys all these restrictions. The following definition describes
this coarsening function.

Definition 4.4 (coarsening function) Let P be a node set in a domain Q C R*. Let g be a
spacing function over Q). Let C > 1 be an arbitrary real number which is the desired coarsening
factor. The local C-coarsening of g at a node q € P is a cone-shaped function centered at q:

focal@)=C-g(a) +lg - =||
The C-coarsening of f with respect to P is defined as a minimum of all the local coarsenings:
focp(@) = ggg fg,C,q($)7
When clear from the context, g, P and C are omitted from the notation. For complex domains, the
distance metric used is the geodesic distance metric.
Sequence of coarsening functions: to generate the sequence of coarsening meshes from the initial

mesh My, a corresponding sequence of spacing functions is defined:

Ji = Inngip

4.3 Coarsening the meshes

Let My be the initial mesh and C be the coarsening factor. Refer to Figure 3 for the basic algorithm.
To coarsen the mesh, we first generate the coarsened spacing function values for each node of the
mesh using C, and then select a subset of the mesh nodes which is f%-spaced according to this spacing
function. We select the coarsened mesh nodes using a conflict graph.

Definition 4.5 The conflict graph CG(P) of a point set P with respect to a 3-spacing function f
and a boundary description B is a graph CG(P) = (P, F) with the following edge set:

f(pi) + f(pj) }
B

such that (p;,p;) is contained in the domain (i.e., node p; visible to node p;)

E= {<pz»,pj> i = pill <

The coarsened point-set Q is essentially an MIS of the conflict graph with respect to the coarsened
spacing function. This basic scheme is enhanced in order to handle the boundary. The coarse point
set, Q, is built in increasing order of dimensions: initially the boundary segment vertices and points
are included in @, then an MIS of the conflict-graph of the boundary nodes is added to Q, and new
boundary edges are formed by edge-contraction of removed boundary nodes. Finally, Q is completed
to include the interior nodes that are not too close to the boundary edges, and that form an MIS of
the corresponding conflict-graph. To prevent interior nodes that are too close to a boundary edge
from joining Q, a protective zone around each boundary edge is used:

Definition 4.6 (v protective zone) Let e be an edge. The v protective zone around e is a rect-
angle of height 2v|e|, extending to a height of v|e| on each side of e and of width |e|. If this rectangle
intersects any boundary edge, a truncated protective zone is used. (However, v can be set to guarantee
intersection occurs only with incident boundary edges).
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Procedure: ONE_LEVEL_COARSEN(My, fo,C, 3,7)

Input: M, = (P, E,B), a mesh over a domain described by 5.

fo, the spacing function of M.

C, the coarsening factor.

(3, the spacing constant.

7, the boundary edges protective zone constant. (See Section 4.3 and definition 4.6.)

Output: M; = (Q, F4, B), a coarser triangular mesh conforming to 5.
Method:

1. Compute fi(p;) = fs,.c.p(p;) for each p; € P.

2. Let PP be the boundary vertices; P! My's nodes located on the segments of B; P? the mesh nodes.
Note that P° C P! C P? =P.

3. Set Q¥ = P°.

4. Let Gy = CG(P') be a conflict-graph with respect to f; over P!. (see Definition 4.5)
Set Q! to be a completion of Q° to an MIS of G;.

5. Form E, the set of boundary edges of M;. FE is formed by edge contraction of the nodes P!\ Q.
Let Q2 be the set of nodes from P2 that are outside the ~-protective zones of F.

6. Let G5 = CG(Q'U QZ) be a conflict-graph with respect to f;.
Set Q? to be a completion of Q' to an MIS of (5.

7. Set £ = CDT(QQ, E), the edges of a constrained Delaunay triangulation of Q2 with constraints
FE.
Return My = (Q?, F1, B).

Figure 3: One level function based coarsening.

Procedure: MULTI_LEVEL_COARSEN(Mj, fo, 3,7)

1. Let k be the length of the required coarsening sequence:

2. Let ONE_LEVEL_MODIFIED(My, fo,C, 3,7, P) be a modification of ONE_LEVEL_COARSEN that
forces P into the output coarsened mesh. (see Lemma 4.7).

3. Let Pry1 = 0.
4. Fori=Fkto 1

e M; = ONE_LEVEL_MODIFIED (Mo, fo, 2", 3,7, Pi+1)
e Set P, to the node set of mesh M;.

. Return (M, ..., My).

Figure 4: Multi-level function-based coarsening: coarse-to-fine approach.
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Multi-level schemes: The basic one-level scheme is outlined in Figure 3. We have two approaches
to apply this one-level scheme to build a multi-level scheme:

1. Constructing the coarsening meshes in a fine-to-coarse order: mesh M, is generated first,
followed by Ms, etc. To generate M; 41, algorithm ONE_LEVEL_COARSEN is called with M; as
the input mesh and with coarsening factor C = 2.

2. Using a geometrically increasing coarsening constant C; = 2' to generate the coarsening mesh
M; directly from the initial mesh My with coarsening factor C;.

The first scheme is simple and generates a node-nested coarsening sequence. Our experiments (see
Section 9 and also in [20]) show that in practice this scheme successfully avoids repeated degradation
on both quasi-uniform and highly graded meshes. However, only for the quasi-uniform case were
we able to show that the scheme produces optimal coarsening sequences [20]. It is interesting to
compare this approach to MIS approaches. Our experiments show that MIS approaches fail in
practice on highly graded meshes. Moreover, as we have shown previously, MIS approaches fail even
quasi-uniform meshes.

In the rest of this paper, we show that our second scheme always generates an optimal well-shaped
coarsening sequence. A variant of this scheme can be used to generate a coarsening sequence which
is node-nested as well. The variant generates first the coarsest mesh and proceeds to generate finer
meshes level by level. At each level it ascertains that coarser mesh nodes are included in the current
mesh. Lemma 4.7 shows that the node set of My can then be forced to be included in My_;. Figure 4
contains a pseudo-code description of the scheme.

Lemma 4.7 Let P; be the node set of the coarse mesh M; generated by the algorithm of Figure 3
with input My, fo,C;i, 3,v. Let C; < C; be a smaller coarsening factor. The algorithm can be modified
to complete P; into a coarse mesh M;, using input parameters My, fo,C;, 3,7.

Proof: C; < C; implies that f; < f;. Therefore, any conflict-graph generated for f; is a super-graph
of the corresponding graph for f;. By simply adjusting the priorities of the node set Py such that
the nodes of P; are always considered first, it is straightforward to complete P; into an MIS of the
less constrained conflict-graph.

Similarly, since the boundary edges of M; are smaller too, the protective zones are smaller and
fewer nodes are deleted by them. |

5 The equivalence between spacing functions and meshes

Spacing functions are at the heart of our coarsening approach. This section discusses spacing func-
tions and their connection to bounded aspect-ratio meshes. The main result of this section, The-
orem 5.3, shows that the concept of points spaced according to a spacing function with appropriate
restrictions on the formation of gaps among points, is equivalent to the concept of bounded aspect-
ratio meshes.

The following definitions enable the handling and controlling of gaps:

Definition 5.1 (gap) Let L be a positive constant. A point set P (or its mesh M ) is said to have
an L-gap at x with respect to a spacing function f if there exists a sphere S with radius Lf(z) that
contains x on its circumference but does not contain any node of P wvisible to x in its interior. Let
c be the center of S. L is called the gap parameter.
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e S is an interior L-gap at z if the radius from x to ¢ is inside the domain.

e a one-dimensional sphere S is a boundary L-gap at z if there exists a boundary segment B
of the mesh such that x,c € B.

Definition 5.2 (bounded gaps property) Let £ be a positive constant. A mesh M = (P, E,B)
is said to have the bounded gaps property with gap parameter L if all its interior and boundary gaps
have a gap parameter smaller than L.

Points spaced according to a spacing function, together with the concept of bounded gaps, are
equivalent to bounded aspect-ratio meshes in the following sense:

Theorem 5.3 (equivalence) The following two statements show that bounded aspect-ratio meshes
and points spaced by a spacing function with bounded gaps are equivalent:

1. From a mesh to a spacing function: For every bounded aspect-ratio mesh M = (P, E, B)
there exists a spacing function f 2-spacing the mesh nodes, such that for some positive constants

L and b:

(a) M has the bounded L-gaps property with respect to f.

(b) Let p be a node of P, let B be a boundary segment such that p and B are disjoint. The
geodesic distance between p and B is greater than bf(p).

2. From a spacing function to a mesh: If a point set P of a domain ) is 3-spaced with respect
to a spacing function f, and has properties (a) and (b) above for some positive constants b and
L, then a constrained Delaunay triangulation of P is a bounded aspect-ratio mesh.

The rest of this section is organized as follows: Section 5.1 discusses previous usages of mesh
functions. Sections 5.2 and Section 5.3 prove the two parts of Theorem 5.3. Finally, Section 5.4
proves some properties of spacing functions that are used in later sections.

5.1 Previous usages of mesh functions

There are many previous instances of associating local size, or local scale functions with meshes.
The two examples most directly related to this paper are the work of Mitchell and Vavasis [17] and
the work of Ruppert [19]. In both works edge length functions describing the typical local size are
used to bound the number of elements in the meshes that their algorithms generate. Ruppert also
introduced a function called the local feature size. He showed that all bounded aspect-ratio meshes
of the same domain have edge length functions that are at most a constant factor larger than the local
feature size function, and thus provided an absolute way to measure (up to a constant factor) the
size of the smallest bounded aspect-ratio mesh conforming to the domain. The following definitions
and results by Ruppert are used here:

Definition 5.4 (Ruppert: Local feature size (Ifs)) Given a PSLG B, the local feature size at
point z, fsp(z), is the radius of the smallest disk centered at x that intersects two unrelated features
of B. Two features (segments or vertices) are unrelated if they are disjoint (non-incident).

Lemma 5.5 (Ruppert) The lfs function is 1-Lipschitz.

13



Under certain restrictions on the boundary B (e.g., the smallest domain angle between segments
of B has to be larger than 90°), Ruppert showed the following theorem:

Theorem 5.6 (Ruppert) Given a PSLG B, and 8 < 20°, suppose T is a triangulation of B with
minimum angle bound 0. There exists a constant C' such that: el(z) < Clfs(z), Vz € Q.

Note that Ifs depends only on the boundary B and not on the actual discretization of the do-
main, whereas the nearest neighbor function NNp depends on the discretization itself. Therefore,
Theorem 5.6 can be strengthened for NNp (under the same assumptions):

Theorem 5.7 Let M = (P, E, B) be a mesh with smallest angle 6. There exist two positive constants
C1,Cy depending on 8 only such that Chelys(z) < NNp(z) < Caelps(z).

Proof: Create a new boundary description B; = P. The mesh M conforms to the boundary B; as
well. Note that Ifsg, = NNp. Theorem 5.6 implies that Chelys(z) < Wsp, () = NNp(z). For the
other direction, first consider the inequality for some p € P: NNp(p) < el(p) since the longest edge
at p must be larger than the distance to its nearest neighbor. Now consider z € Q\ P, and suppose
x is in a triangle T. Let p be one of the vertices of T. Since the edges of neighboring triangles
in a bounded aspect-ratio mesh can differ by at most a constant factor, there exists a constant C,
depending on # only, such that el(p) < Cel(z). The distance between z and p is at most el(z),
therefore: NNp(z) < NNp(p) + el(z) < el(p) +el(z) < (C + 1)el(z). ]

5.2 From a mesh to a spacing function

Let M = (P, E,B) be a bounded aspect-ratio mesh. This section shows that the function NNp, of
Definition 4.3, is a spacing function exhibiting all the desirable properties stated in Theorem 5.3.

Lemma 5.8 P is 2-spaced according to NNp.

Proof: Let p,q € P. ||p— q|| > 0.5(NN(p) + NN(q)). O

We now proceed to show that interior and boundary gaps of NNp are bounded. By definition,
if S is an interior gap, the radius at some point z on the boundary of S is inside the domain. The
triangles intersecting that radius form a connected component. The following lemma bounds the
number of triangles in such a connected component.

Lemma 5.9 Let M = (P, E,B) be a mesh with smallest angle 8. Let S be a sphere containing no
nodes from P. Let T be a connected component of triangles of M intersecting S. Then, T contains
at most 2 + ﬁ triangles of M.

Proof sketch: We give a high-level proof. The derivation of the constants involved can be found

in [20]. A triangle can intersect S with one, two, or three edges. In a connected component, a triangle

with one edge intersecting S is either incident to a triangle with two or three edges intersecting .5,

or only two triangles intersect S. Triangles that intersect S with two or three edges, and have

smallest angle larger than 6, contain at least a constant fraction of the area of S. Hence by a volume

argument, at most a constant number of them exist. |
The following theorem bounds the size of gaps:

Theorem 5.10 Let M = (P, F,B) be a mesh with smallest angle 8. There exists a constant L,
depending on 8 only, such that all interior gaps have a gap parameter smaller than L with respect
to the spacing function NNp.
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Proof: Let € 2 be an arbitrary point and let S be a sphere through z with radius r and center
¢, such that the radius from z to ¢ is contained in €. Consider 7, the connected component of
triangles that intersect the radius. If S contains no node of 7, then, by Lemma 5.9, T contains
at most C'(#) triangles of M, where C' is a constant depending only on 6. The center ¢ is in some
triangle (p,q,t). Let |(p,q)| = ¢ be the longest edge of the triangle. Clearly, r < |¢ — p| < ¢, and
therefore r < el(¢). The number of triangles separating z from ¢ is at most C'(#). The rate at which
el can increase from one triangle to its neighbor is bounded by another constant D(6). Therefore,
el(z) > D(@)Oel(c) > D)@ r. By Theorem 5.7, NNp(z) > Crel(z) > C1D(0)@r, and the
radius of a gap at z is thus bounded in terms of NNp. O
The following theorem bounds boundary gaps:

Theorem 5.11 Let M = (P, E,B) be a mesh with smallest angle 8. There exists a constant L
depending on 6 only such that all boundary gaps, with respect to NNp, have a gap parameter smaller
than L.

Proof: Let z be a point on a boundary edge B. Let p,g € BN'P be the nodes of B. By the definition
of the el function, the size of the gap at z that contains either p or ¢ must be smaller than el(z). By
Theorem 5.7, the gap size is at most CLlNNp(ac). To obtain the result, set £ > C% O

Theorem 5.12 The geodesic distance between a node p of mesh M = (P, F,B) and a boundary
segment B, such that p is not incident to B, is at least bNNp(p), where b = sin 6.

Proof: The geodesic distance between p and B must be at least as large as the distance between p
and e, where € is the closest opposite edge to p in a triangle T incident to p. Let H be the height to
e, let L be the length of e;, one of the other edges of T'. Since the angle between e; and e is larger
than #, H > Lsiné > NNp(p)siné. O

5.3 From a spacing function to a mesh

We now show that points spaced according to a spacing function, with bounded gaps, can be used
to build a bounded aspect-ratio mesh. Furthermore, the el function of the resulting mesh is similar
up to a constant factor to the original spacing function.

Theorem 5.13 Let P be a set of points 3-spaced according to a 1-Lipschitz function f. Let b < L
be two positive constants with the following properties:

1. The geodesic distance between any point p € P and a boundary segment B not incident to p is
greater than bf(p).

1. P has the bounded L-gaps property with respect to f.

Then the constrained Delaunay triangulation of P, CDT(P), has a bounded aspect-ratio. In partic-
ular, let T' be a triangle of CDT(P), let S be its circumsphere, and let 8 be its smallest angle:

. . . . . 1 .
1. if S is an interior gap then sin @ > erat and

2. if S is not an interior gap then sin @ > m.
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Proof: Let T € CDT(P), and o, p,q be its vertices. Let (p,q) be the shortest edge of T" and
assume ||p — ¢|| = d. Because P is (-spaced, f(p) + f(q) < pd. Without loss of generality, assume
f(p) < Bd/2, then since f is 1-Lipschitz f(q) < f(p)+d < d(1+ (3/2). Let R be the radius of the
Delaunay ball S of T'. Note that S is empty in the constrained sense: no other node of P is visible
to p, g or o inside S. Let ¢ be the center of S. If ¢ is visible to either p or ¢, then S is an interior
gap, otherwise S contains a boundary gap. We now argue according to these two cases:

1. S is an interior gap: without loss of generality, since our bound on f(g) is weaker, assume c is
visible to ¢. By property I, R < L£f(q) < Ld(1+ /2). The corresponding angle bound is:

i — d S 2
sinf = 5 > 7ﬁ(2+ﬂ)

2. S is not an interior gap: There exist boundary edges blocking ¢ from p and ¢. Let B be one of
the edges that intersect the radius from ¢ to c. Note that B can not be the edge (p, ¢) itself, for
otherwise, it would imply that the shortest edge of T" separates the circum-center away from 7.
Consequently, the smallest triangle angle is larger than 90°, a contradiction. Also, the vertices
of B are on or outside S: if B is one of the triangle edges (p,0) or (g, 0), then this is true;
Otherwise, assume the triangle has no boundary edges. Then if B has a node inside S, there
must exist a node of some boundary edge visible to either p or ¢ within S.

Without loss of generality, since p and ¢ can not both be incident to B, assume ¢ is not incident
to B. By property I, the distance [ between ¢ and B is at least bf(q). The distance [ must
be smaller than £f(q), for otherwise S contains an interior £-gap through ¢. As a result it
contains a node u visible to ¢, which is a contradiction. Hence bf(q) <1 < Lf(q).

If B is at distance [, by the bounded boundary gaps property, the length of B is at most
2(f(g) +1)L. Let 2K be the length of the chord at distance [ from ¢q. Note that K* = 2RIl — [,
If K > (f(q)+ ()L then the gap at B is shorter than the chord and one of the boundary
nodes of edge B are inside S, a contradiction. The proof proceeds by showing that if R =
4(L3+L2/b) f(q) (assuming L is a large enough constant) then K > (f(¢)+{)L. It suffices to
observe that K > (f(¢q) 4+ )L at distance [ = bf(q) and [ = Lf(g). At the distances between
them, the size of B is a linear interpolation and will be smaller than the chord length as well.

Applying the bound on f(q) to R, we obtain R < 2£%(L + 1/b)(8+ 2)d, and

. 1
Sl 2 B2 D)

O
The following theorem connects the spacing function f to the NN function of P. By Theorem 5.7,
a similar connection between eICDT(p) and f hold as a consequence.

Theorem 5.14 Let P be a set of nodes 3-spaced according to a 1-Lipschitz function f, with the
bounded gap property parameterized by L. Then:

% < f(z) < (26 + 1)NN(z)

Proof:
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o f(z) < (284 1)NN(z): First assume p € P, and let ¢ € P be the node nearest to p. Then
NN(p) = [|[p — ¢||. On the other hand, since P is §-spaced according to f, f(p) < Bllp — ¢l
Therefore, f(p) < SNN(p).

Now let z € Q. By definition, NN(z) is the radius r of the smallest ball that contains two
(visible from ) nodes, say p and ¢, from P. Let ||z — p|| = r and ||z — ¢|| = r1 < r. Because
f is 1-Lipschitz, f(z) < f(p) +r < BNN(p) + r. But NN(p) < 2r, for ¢ is no more than 2r
(geodesic) distance away from p. Thus, f(z) < 28r +r < (26 + 1)NN(=z).

o NN(z)/(3L%2+ £)?) < f(z): Let z € Q. Consider a ball S of radius £ f(z) through z. If the
center of S is visible from z, then by the the bounded gaps property it contains a point of P
visible to z. Otherwise, a boundary edge B blocks the center of S. One of the nodes of B, p, is
then at distance at most f(z)L(L£ + 2) from z, using the bound on boundary gaps. Repeating
the argument with respect to p, a point ¢ exists at distance f(p)L(L£+2) from p. The distance
of ¢ from z is at most f(z)L(L +2) + f(p)L(L + 2). Using the Lipschitz derived bound on
f(p), and assuming that £ > 2, the distance from z to ¢ is at most 3 f(z)L£%(£ +2)?. So within
a geodesic distance of at most 3f(z)L2(L + 2)? two non-incident features are found, providing

a bound on NN(z).

5.4 Properties of coarsening functions

This section establishes some of the properties of these coarsening functions. First, the coarsening
functions are shown to be 1-Lipschitz as well.

Lemma 5.15 (1-Lipschitz) If g is 1-Lipschitz, then for any C > 1, f, ¢ p is 1-Lipschit.

Proof: Let f = f,cp. Let z,y be two points in Q. Without loss of generality, f(z) < f(y). Assume
further f(z) = fc . (z), and fe p(y) = fep, (y). Then,

F@) = f@) = Jew, (v) = fewi(2) < Jep(y) = Jep (@) < llz =y
The last transition uses the obvious fact that fC,pi is 1-Lipschitz. a
Lemma 5.16 (linearity and monotonicity) For any C;,Co > 1
Joeip () < fyeicap(@) < Cafye p(T).

Proof: Since f,¢, p is a minimum over a collection of functions {fpl.| p; € P} it suffices to show
the inequality for each such function. The first inequality is obvious. The second one holds because:

Jerspi(x) = C1Cag(pi) + [pi — 2l < C2(Cag(p) + llp — 2l1) < Cafey . (2)-

O
The following Lemma strongly motivates the choice of the coarsening functions: they are the
largest possible 1-Lipschitz functions that coarsen the original function by a factor of C at the points

P.

Lemma 5.17 (maximality of fop) Let C > 1. Let h be a 1-Lipschitz function over the domain
Q such that for all p; € P h(p;) < Cg(pi). Then for all z € Q, h(z) < fycpr(z).
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Proof: f¢ p is a minimum over a collection of functions {fpi| pi € P}. It suffices to show h(z) <
fepi(2). Recall that fe . () = Cg(p;) + ||p — ||. Because h is 1-Lipschitz,

h(z) < h(p)) + |lpi = 2| < Ca(pi) + [Ipi = 2ll = fe ().

6 Bounds for one-level mesh coarsening

Given an initial bounded aspect-ratio mesh My, algorithm ONE_LEVEL_COARSEN of Figure 3 is used
to produce the meshes of the coarsening sequence. To produce the i-th mesh in the sequence M;,
the algorithm is called with coarsening factor C = 2°. Therefore, obtaining bounds on the one-level
scheme translates with little extra effort into bounds for the entire coarsening scheme.

Let C stand for an arbitrary coarsening factor. In this section we prove the following two bounds
on the quality of the coarsening meshes:

1. aspect-ratio bound: if mesh Mj is a bounded aspect-ratio mesh, and the coarsening para-
meters are 3 and v (chosen carefully as a function of the aspect-ratio of M) then the mesh M;
resulting from the coarsening algorithm is a bounded aspect-ratio mesh. The bound depends
on the quality of My only.

2. size optimality: let M be some other bounded aspect-ratio mesh coarsening My by coarsening

factor C, then |My| = O(|M]).

6.1 Aspect-ratio bound

The main tool used in proving the aspect-ratio bound is the one developed in the previous section, the
equivalence between bounded aspect-ratio meshes and points spaced according to a spacing function
with bounded gaps. The input to algorithm ONE_LEVEL_COARSEN is a bounded aspect-ratio mesh
My = (Po, Eo, B), therefore the equivalence theorem implies that the mesh nodes, Py, are spaced
according to a spacing function fy and its gaps are bounded using a gap parameter Ly. The resulting
coarsened mesh My = (P4, E1, B), is, by construction, spaced according to a spacing function fj.
To employ the equivalence theorem, and show that M; has bounded aspect-ratio, all that remains
is to prove that P; has bounded gaps in terms of f;. This subsection is aimed at showing that the
parameters of algorithm ONE_LEVEL_COARSEN can be set to guarantee the bounded gaps property
for mesh M;, with a gap parameter £, depending on Lg only.

Mj is constructed by first coarsening the spacing function fy. The resulting function f; is a C
coarsening of the function fy over the point set Py. In this section, the only assumption made is that
Mj is constructed over My using a spacing function f; > fo. The coarsening parameter C is arbitrary
and plays no role in the proofs. Furthermore, it is assumed that f; < Ifsg, i.e., that coarsening is
subjected to the limitation posed by the local feature size of the boundary description, and that the
angle in the domain formed between two incident segments of B is greater than 60°. This is an often
used restriction, see for example [4, 19].

The proof proceeds in increasing order of dimensions. First, the boundary gaps of M; are shown
to be bounded, and then the interior gaps are bounded.

The following lemma establishes the fact that nodes on different boundary elements do not share
conflict graph edges, so different segments can be coarsened independently.
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Lemma 6.1 (Boundary independence) Let My = (Po, Eo, B). Let fi be a spacing function such
that fi < Wsg. Let a > 60° be the minimal angle between two segments of B. Let the spacing
parameter 3 > ﬁ The following are true during the coarsening algorithm:
2
1. fi-spheres placed on two non-incident boundary segments, or a segment and a boundary point
not on the segment, or two boundary points, do not intersect.

2. The fi-sphere of a node retained on segment By € B can not intersect the fi-sphere of a node
retained on segment By € B such that By and By are incident.

Proof:

1. Let p € Py be a node on a boundary point or segment. Let ¢ be another such node on a disjoint
boundary point or segment. Since they are on disjoint boundary elements, fi(p) < sp(p) <
[[p — ¢|| and similarly for q. Clearly, if § > 2, the spheres with radius fi(p)/5 and fi(p)/f do
not intersect.

2. Let s € PoN B be the segment vertex common to By and By. By the coarsening algorithm, Py
is built in increasing order of dimensions, and s is added to P; before any point ¢ on By U Bj.

When ¢ € By is added to Py, its fi-sphere does not intersect that of s, i.e., let d = ||s — ¢||
then fi(s) + fi(q) < pd.

To show ¢’s sphere does not intersect any sphere of a similar node on By it suffices to show that
q’s fi-sphere lies below the bisector between B; and Bs. This happens when the radius of the
sphere r = f1(q)/p < dsin(a/2), or, equivalently, when fi(q) < fdsin(a/2). Because f; is 1-
Lipschitz, forsome —1 < v < 1, f1(q) = fi(s)+~d. The previous facts imply 2 f,(q) —vyd < d,
or fi(q) < d(B+7v)/2 <d(B+ 1)/2. It suffices to require then that d% < Bdsin § or that
> 1/(2sin § — 1). This also clarifies the need to restrict & > 60°.

a

Theorem 6.2 (Bounded boundary gaps) Let mesh My = (Po, Fo, B) be a bounded aspect-ratio
mesh with the bounded Lo-gaps property. Let My = (P1, FE1,B) be a coarsening of My by algorithm
ONE_LEVEL_COARSEN using coarsening function fi, and a spacing constant 3 > 1. The boundary
gaps of My can be bounded using the boundary gap parameter Li:

4(1+ Lo) 1
o )

Proof: Let B € B be some boundary segment. Using Lemma 6.1 only the nodes p € Py N S need
to be considered, and the vertices of B belong to P;. Let x € B be an arbitrary domain point.
Without loss of generality, let fi(z) = 1. Let d be the length of Z, a sub-segment of B starting at z
and extending to z’s right. Segments extending to the left are treated similarly. The proof proceeds
to show that if d > ﬁl then Z NPy is not empty.

Split Z into three smaller intervals Zy, Z3 and Zs. The scheme of the proof is to argue that the
sizes dy, dy and dz of the three intervals can be set such that: (1) Z; must contain a node of Py, (2)
a node of PyNZ; can not be pruned out by any node of Py which is outside 7 since their fi-spheres
can not intersect.

If (1) and (2) are valid, this implies Z N Py is not empty, since either Z; contains a node of Py,
or Z \ Z; contains a node of P; which is responsible for Z; being empty.

L1=Lo+
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By the Lipschitz condition, fi(w) < 1+ ||z — w|| for any point w € €, and without loss of
generality we assume that f;(w) = 1+ ||z — w||. Since f; in reality must be smaller, this assumption
provides us with an upper bound for £;.

Setting dy: if dy = %, then for any y € Z, the sphere S(y, f1(y)/5) is disjoint from any sphere
placed left of . This can be proven by a straightforward application of the value of f;.

Setting dy: let dy = Lo(1+ %), and let y be the point at the intersection of 77 and Z5. Mesh
My has boundary gaps bounded by Ly, hence an interval of length Lg fo(y) must contain a point of
Po. Since dy was set to be Lo fo(y), Po NZ; is not empty.

Setting d3: let d3 = 2?3'3?0 (1 + %) then for any z € 7, the sphere S(z, fi(2)/3) is disjoint
from any sphere placed right of Z. This can be proven by a straightforward application of the value
of fi. Summing the interval lengths and letting ﬁl = dy + dy + d3, yields the result. a

The bound on interior gaps is more complex. However, the proof of the bound on interior gaps
also follows the ideas of the proof above. The difficulty comes from the fact that the interior gaps take
the form of spheres which are harder to work with than segments. As a consequence, our constant

bounds for interior gaps are weaker.

Theorem 6.3 (Interior gaps of 2D coarsening) Let mesh My = (Po, Fo, B) be a bounded aspect-
ratio mesh with bounded gaps parameter Lo. Let fi > fo be the coarsening function. Let My =
(P1, E1, B) be the coarser mesh, obtained with with spacing parameter 3 = max(3,12v/Ly), and
boundary protection parameter v = 1/(ﬁ1(8 + Lo)). Then, mesh My has the bounded gaps property

with parameter Ly, where L1 = max{4,12Lo, (4£? +1)(3Lo +2)}.

Proof: Let u € Q be an arbitrary point, and let S = S(c¢, R) be a sphere through u. Consider
Figure 5. Without loss of generality, let fi(u) =1, v = (0,0), and let the center ¢ lie on the y-axis.
S is an interior gap of M, at u, so the radius (u,c¢) is in the domain.

This proof shows that R can be set to a constant large enough such that S must contain a point
of Py visible to u, and thus all gaps are bounded.

Let Sp be a smaller ball nested in S of radius 3Ly centered at (0,2 + 3L). Let v = (0,2) be
a point on the circumference of Sg. Then fi(v) < fi(u) 4+ 2 = 3, so Sy, being of radius 3Ly, is
an interior gap of My containing a node g € Py visible to v. By Lemma 6.4, either ¢ is visible to
u as well, or S contains a boundary segment’s vertices, which are always chosen by the algorithm
to remain in Pp. In the latter case, S is not empty with respect to P; and the proof is complete.
Therefore, assume ¢ is visible to . The proof proceeds as follows:

1. If R > max(12£Lg,4) then by Lemma 6.5 node ¢ can not be eliminated from P; by any P; node
outside S.

2. If R > (4£2 4 1)(3Lo + 2) then no boundary segment protection can eliminate ¢ from Py, by
Lemma 6.8.

Hence, ¢ € P; or it has been eliminated because of a conflict with some node p € S N Py visible
to g. Then again by Lemma 6.4 .S must contain a node of Py visible to u, and M; possesses the
bounded gaps property. O

Lemma 6.4 (Visibility) Let S be a sphere through some domain point w € Q. Let v be some node
visible to u, and w is a node visible to v. Assume further that v,w € S. If w is not visible to u then
some vertex of a boundary segment is in S and visible to u.
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(0,3L+2)

Bo

Figure 5: After one level coarsening, a circle of radius 12£g f1 (1) must contain a node of Py

Proof: Consider the triangle with end-points (u, v, w). This triangle is contained in S by convexity.
Let B be the segment intersecting triangle edge (u, w) closest to u. Since w is not visible to u, such a
segment exists. No segments can intersect the edges (u,v) and (v, w). Therefore, one of the vertices
of B, call it p, must be in the triangle. Moreover, no other segment intersecting (u,w) can obscure
p from u.

Note however that segments totally contained in the triangle can obscure p from w. In that case,
let g be the vertex of the closest such segment and it must be visible to u. |

Lemma 6.5 If R > max(4,12Ly), and § > max(3,12v/Ly), then no node p placed outside S can
conflict with a node ¢ placed in Sy.

Proof: Refer back to Theorem 6.3 for the setting. Without loss of generality, let ¢ = (z,y) be on
the boundary of Sy (all bounds derived hold if ¢ is internal to By as well).
The following properties of ¢ are used:

I) By Lemma 6.6, the distance from ¢ to the boundary of S is larger than y/2.

1) By Lemma 6.7, if Lo > 4 and 8 = 12v/Lg, then f1(q)/3 < y/6. (It is also assumed that 3 > 3.
Note that Lo can be assumed to be as large as necessary — My still has the bounded gaps
property with a larger Lo).

Let Sy be the sphere centered at ¢ and of radius fi(q)/5 (see the dashed ball in Figure 5). Let
p € Py be some node placed outside S. We prove, by way of contradiction, that Sy can not intersect

the f; sphere of p. Assume the two spheres do intersect. Property | implies d = ||p — ¢|| > y/2.
Thus,

filp) < d+ fi(q) (because f is Lipschitz)
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filg) + filp) > pd (because they share a conflict graph edge)
2filq)+d > pd (follows from the two previous lines )
2filg) > (B-1d> (B—-1)y/2 (by property I)
By/3 > 2fi(q) = (B—-1)y/2 (by property II)
B/3 = (B-1)/2
This is a contradiction when > 3 and hence ¢ and p have disjoint fi-spheres. O

Lemma 6.6 The distance from any point (z,y) on the boundary of So to the boundary of S is
greater than y/2.

Proof: Note that y > 2. The distance from (z, y) to the boundary of S is equal to R—+/2? + (y — R)?,
where recall R = 12Lg. Because (z,y) is on the boundary of Sy, we have 2%+ (y—r —2)? = r?, where
r = 3Ly = R/4. By substituting 2% = r?—(y—r—2)?, it is easily shown that 22+ (y—R)* < (R—y/2)%
O

Lemma 6.7 Let ¢ = (z,y) be on the boundary of So. If Lo > 4, and let § > max(12y/Lo, 3), then
fila)/B < y/6.

Proof: fi(u) = 1 and f; is 1-Lipschitz, therefore fi(q) < 1+ ||u—¢||. It suffices to show that
1+ |lu—q|| < By/6. If 3 > 3 then By/6—1 > 0, since y > 2. Since u = (0,0), (|[u — ¢||)* = 2%+ y?,
and the goal is to show z? +y% < (By/6 — 1)%. ¢ is on the sphere So = S((0,2+r),r) where r = 3L,
therefore 22 4 y? = —4 — 4r 4 2yr + 4y. Using again that fact that y > 2, this leads to the bound on
B. O

Lemma 6.8 If R > (4£2+1)(3Lo+2) and v < m then q € Sy can not be eliminated from
1 0

P1 by the protection zone around any boundary edge e of M.

Proof: The proof proceeds in two parts: first, R is set so it can be shown that no boundary edge
can be too close to Sg, and second, 7 is set so that the protection zone around e can not eliminate ¢
when e is not too close to Sy.

It can be assumed that the nodes of e are not inside S. The reasoning is as follows: assume
that e is some edge such that ¢ is within its protective zone. Note that since e must be visible to
q, and the nodes of no other boundary edge can intrude on the protective zone of e (for example,
by Lemma 6.1), the two nodes of e are visible to ¢. If any of these vertices are inside S, then by
Lemma 6.4, they are visible to u as well contradicting the assumption that S is a gap at «.

e can not be close to Sg: Consider a ring G of width 1 around Sg. Using a constant 0 < e < 1,
a point z = (z,y) € G has the following property: 22 + (y — (3Lo + 2))? = (3Lo + €)%, or, 2% + y* =
(3Lo+ €)* — (3Lo + 2)% + 2y(2Lo + 2).

e’s nodes are outside S, and furthermore, e is a boundary gap through z. The chord is the shortest
segment through z with vertices outside S. The proof proceeds by showing that a boundary gap
through z must be shorter than the chord through z, thus a node of e must be inside S, contradicting
the assumptions on e. Therefore, no boundary edge can pass through z.

Let [ be half the length of a chord through 2, then [* = 2y R— (2% +4?). The length of an empty 1D
gap at z, by Theorem 6.2, must be smaller than £ f; (z) < Ly (1++/2% + y?). However, if R > (4ﬁ%+
1) (3Lo + 2) it is easy to show, using the formulation for % + y* above, that 1/2yR — (22 + y2) >

£1(1+ Vi +y?).
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if e is far from Sy, its protective zone can not eliminate ¢: Let d be the distance between
q and e. Since g € Sp, fi1(q) < 3+ 6Ly. Let z € e be the point of e closet to ¢. fi(z) < 3+6Ly+ d.
Therefore, the length of e is bounded (see Theorem 6.2): |e| < 2£;(3 4+ 6Lo + d). The protective
zone around e is a rectangle projecting a distance 7|e| around it. v should be set so that y|e| < d,
or 72L1(3 4+ 6Lo 4 d) < d. Rearranging, this reduces to: (v£1(6 4 2£0))/(1 — 2£17) < d, or, since
d> 1,7 < 1/(£1(8 4 2L0)). O

6.2 Size optimality of one-level coarsening

Since the number of elements in a bounded aspect-ratio mesh can be directly related to its spacing
function, the size optimality of mesh M; is a result of the optimality of the coarsening functions used.

The following Lemma and its corollary relate the size of a bounded aspect-ratio mesh to its
spacing function NN.

Lemma 6.9 Let M be a mesh with smallest angle 8. Let T be a triangle of M, then:

sin? 4 / dA 1
= < < —
20%% ~ Jr NN3, ~ 2sin6C?

Proof: Let el(T) be the longest side of T, «a, 3, and ~ its angles. The area of T is A(T)

IA

0.5el*(T) sinasin 3/siny. Using the bound on the smallest angle, 0.5el*(T)sin?8 < A(T)
0.5el*(T)/sinf. By Theorem 5.7
A(T) / dA A(T)
— < <
Co?el2(T) — Jr NN3, — Cy2el2(T)
or
sin? 0 / dA 1
< < :
205% — Jy NN3, — 2C%sinf
O

Corollary 6.10 The number of elements of mesh M with smallest angle 0 is:

dA dA

@ (0) [ o <M1 <) [ o

where a1(0), az(0) are constants depending on 6 only.

Theorem 6.11 (Size optimality of one-level coarsening) Consider the following three meshes:
e My, a mesh with smallest angle 6.
o My, the coarsening of My via algorithm ONE_LEVEL_COARSEN with coarsening factor C.

o M|, a mesh with smallest angle ', whose elements are at most a factor C greater than My,
i.e., eIer < Celyy,

There exists a constant b, depending on 8 and 8" only, such that |My| < b|M]|.
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Proof: Since eIle < Celpy,, Theorem 5.7 implies:

CCy(#)
C1(6)

NNy < Co(#)elyy < CC(8)elns, < NNy,

Therefore, we can assume that NNM{ < ECNNjpg, where £ = max (1, %1((60/))). Since NNM{ is 1-
Lipschitz, by Lemma 5.17:
NNaz < NN, ke Po

By Lemma 5.16: NNy < & fun, ¢,P- By Theorem 5.14, NN/ < k(26+1)NNpy, and Corollary 6.10
implies the result. O

7 Optimality of the coarsening sequence

The optimality of the coarsening sequence we produce is mostly due to the optimality properties of
the one-level coarsening algorithm. It only remains to show that neighboring meshes in the sequence
approximate each other well. This section states the optimality theorem for the coarsening sequence,
and shows the meshes are locally similar as well.

Theorem 7.1 (Bounded aspect-ratio coarsening sequence) Let My be a mesh with smallest
angle 0. The coarsening sequence (Mj, ..., M) constructed by Algorithm MULTI_LEVEL_COARSEN
has the following properties:

1. aspect-ratio: There is a constant 61 depending on 8 only such that for 1 <1 < k, the smallest
angle of mesh M; is bounded below by 6.

2. local similarity: There is a constant T depending on 6 only such that for each 1 < 1 < k,
elpr,,, < Zelyy,.

3. size guarantee: Let (Mj, ..., M}) be any other bounded aspect-ratio coarsening sequence of
My with smallest angle bound @', then there exists a constant b depending on 6, and 6' only
such that |M;| < b|M]| 1<i<k

Proof:

1. Direct corollary of Theorem 6.3.

2. Mesh M, is generated using f|\||\|7307[l77307 and mesh M;;; is generated using spacing function

fNNpo,Qa,PO. By Lemma 5.16: fNNP072a7p0 < 2fNN7307a77’0' By Theorem 5.14: NNjy,,
clfNNp072a7p0 < QleNNPO a,Py < 2¢1coNNp7,. By Theorem 5.7, for some constant Z: elpy,
Zelpy,.

<
<

3. It follows from Theorem 6.11.

a

8 Run-time complexity and efficient variations

The function-based coarsening algorithm generates one mesh of the coarsening sequence using the
following two main computational steps: (1) computing the new coarsening function at the set of
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candidate nodes, and (2) computing an MIS of the conflict graph over the candidate nodes with
respect to the coarsening function.

The first step can be done in O(nlogn) using the additive Voronoi diagram (see for example the
algorithm by Fortune [10]), where n is the size of the candidate node set over which the coarsening
is performed. Note that the resulting mesh size, n;, may be much smaller than n, depending on the
choice of the candidate node set and the coarsening function. The second step can be expensive,
since the conflict graph can be as large as O(n?).

The coarsening functions fy, fo, ..., fr suggested in previous sections are optimal for coarsening,
(see for example Lemma 5.17). However, this optimality carries over to any sequence of coarsening
functions g1, g2, . . ., g such that a19; < f; < aqg;.

This section suggests such a sequence of coarsening functions that approximates the spacing
functions, and results in a more efficient algorithm. These functions are based on the balanced
quad-tree data structure. We describe, at a high level, these functions and how to use them so that
the complexity of generating the mesh at level ¢ becomes O(n;), plus some pre-processing cost. A
more detailed description can be found in Talmor [20].

Definition 8.1 (Balanced Quad-Tree [4]) A quad-tree is a balanced quad-tree if no quad-tree
box b neighbors a box whose side length is smaller than half the side length of b.

A spacing function g7 can be associated with a balanced quad-tree T, such that values g7 achieves
over a quad-tree box are similar to the side length of the box. For example, letting P stand for the
quad-tree vertices, the function NNp is one such function.

Furthermore, given a general spacing function g over a square domain, a balanced quad-tree T’
can be constructed such that its spacing function ¢r approximates g, i.e., there exist two constants
a1 and ag such that a1qr < g < azgr. The algorithm would therefore proceed by first converting the
input mesh M to a quad-tree (rather than a spacing function) at a pre-processing cost of O(nglog ng).

Coarsening a quad-tree function: To coarsen a quad-tree function ¢r, its associated balanced
quad-tree is coarsened. The coarsening method tries to replace four siblings that are all leaf boxes
by their parent box. This is possible only if the four siblings do not have a small neighbor, hence
coarsening proceeds from smaller leaf boxes to larger. If the box b; has a smaller neighbor that could
not be coarsened, do not coarsen b;. Otherwise, replace box b; and its other three siblings by their
parent box. The new balanced quad-tree is composed of all the new coarsened boxes and the boxes
that could not be coarsened. Note that if the boxes of T" were sorted by size, it takes linear time
to sort the boxes of the new tree: the boxes can be kept in a linked list of buckets, and if a box is
replaced by a larger box, it is simply moved to the next bucket. The only non-linear cost is that of
the creation and sorting of the initial quad-tree. This cost is O(nglogng).

Generating the coarsening sequence meshes: To generate the coarsening sequence meshes,
the corresponding sequence of coarsening quad-trees is used. It is intuitively clear that even if a
coarsened quad-tree box contains many nodes of the candidate node set, there is no need to consider
them all while generating the mesh coarsening at the current level. It suffices to consider a subset
of the candidate points that includes a constant number of points at each quad-tree box. The extra
processing necessary can be easily amortized into the generation of the initial quad-tree, ¢r,, by
associating a constant number of points with each quad-tree box. Using the pruned candidate point-
set, the conflict graph is now linear in size.
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Figure 6: crack plate mesh

9 Experiments

This paper introduced a coarsening strategy guaranteed to generate a bounded aspect-ratio coarsen-
ing sequence. The bounds however were theoretical in nature, and were merely shown to be some
constant that depends on the quality of the original mesh without explicitly stating the size of this
constant. The goal of this section is to demonstrate, using a simple experiment, that our approach
produces coarsening sequences with good aspect-ratio in practice. The quality of our coarsening
sequence is also compared with the quality of the topological-base MIS coarsening sequences intro-
duced in 5.1. More experimental results, covering a larger variety of mesh types and sizes, can be
found in Talmor [20].

The mesh being coarsened is the “crack plate” mesh, which was generated by Omar Ghattas and
Xiaogang Li of Carnegie Mellon University. The physical problem modeled by the mesh is a plate
with a horizontal crack running from the middle of the left edge to the center of the plate [11]. The
mesh itself is plotted in Figure 6. This is a simple, medium-sized (about 10000 nodes) high quality
mesh that is extremely graded, i.e., it contains elements with vastly different edge lengths.

We implemented both a variant of the function-based approach, and an MIS-based coarsening
algorithm. Figure 7 displays the resulting coarsening sequences. The top row shows the function-
based coarsening, the bottom row the MIS coarsening. The MIS reduces the size quickly, but as a
result the smallest angle quality degrades by the second level of coarsening. The small angles typically
form near the center, in the transition from the denser to the less dense areas. The function-based
approach also offers a (smaller) geometric size reduction, but with a much better angle control.
This example was chosen to demonstrate the inherent trade-off between mesh quality and mesh size
reduction.
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Figure 7: Coarsening sequences produced by the function-based approach and the MIS-based ap-
proach.

function-based MIS-based
level | number of nodes | smallest angle | number of nodes | smallest angle
0 10183 37.01 10183 37.01
1 3635 15.07 3028 8.13
2 2379 17.1 726 3.97
3 1300 14.03 175 3.22
4 466 16.7 42 3.46
5 80 17.35 12 2.29

10 Conclusions and future work

In this paper, we have presented a new approach to mesh coarsening that generates a bounded aspect-
ratio coarsening sequence that is optimal in both depth and width. To the best of our knowledge,
this is the first provably good algorithm for unstructured mesh coarsening.

The complexity of our algorithm is asymptotically linear in the output size, plus a pre-processing
cost that is amortized over the length of the coarsening sequence. However, we note that some steps
in our algorithm are still too complicated and therefore they may lead to high constant factors in
running time and make the algorithm hard to implement.

Recently, we have been working on a much simpler O(nlogn) variant of our function-based
coarsening approach. We have not yet obtained a full proof that this new variant provides the same
theoretical guarantees, though we have obtained quality bound on the simpler case of threshold
coarsening, where only the smallest features are repeatedly coarsened. Nonetheless, the algorithm
has been implemented and preliminary experiments have shown that it is efficient in practice while
generating high quality coarsening sequences. Details of these experiments and the algorithm can
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be found in Talmor [20]. Future work includes a companion paper on practical mesh coarsening
algorithms.
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