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ABSTRACT

In this paper, we consider dynamic parallel evalu-
ation of computation trees!, and give systematic meth-
ods via the closure properties of certain classes of
unary functions for the construction of processor effi-
cient polylogarithmic parallel algorithms for dynamic
evaluation of computation trees. We present optimal
parallel algorithms for many computation tree prob-
lems which are important in algebraic parallel com-
putation, numerical parallel computation and paral-
lel code generation on Exclusive Read and Exclusive
Write PRAMs. We define the dynamic tree com-
plexity (random as well as deterministic) and present
many new techniques for prudent evaluation, dynamic
processor scheduling and load balancing,

1 Introduction

Computation tree evaluation plays an important roles in many
computational problems, such as tree isomorphism testing,
dynamic expression evaluation [16], optimal arithmetic code
parallel generation [10], parallel message decoding (28], con-
nected component finding [14], graph planarity testing [15].
In [16], Miller and Reif gave a parallel algorithm for tree
contraction which takes O(logn) times and uses O(n) proces-
sors deterministically and use only O(n/ log n) processors ran-
domly on Concurrent Read and Concurrent Write (CRCW)
model parallel computational system. This is done by apply-
ing two operations: RAKE and COMPRESS simultaneously
on a tree, and each phase reduces the tree size by a constant

factor. By using new load balancing and isolation techniques,
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'A computation tree is a 4-tuple {P,0 P, F, T} where T is a tree whose
leaves are labeled with a value in 0, whose internal nodes are labeled with
operators in 0P and whose edges are labeled with unary functions in 7.

Gazit, Miller and Teng [12] presented an optimal parallel algo-
rithm to do tree contraction in O(log n) time and O(n/ logn)
processors on EREW model parallel system randomly as well
as deterministically. However, the generic parallel tree con-
traction algorithm can be applied to more general problems
only if the RAKE and COMPRESS operations can be sup-
ported uniformly. For example, what is the parallel complex-
ity of min-max-plus-times-division tree? We will give answers
to this problems and many other problems in this paper.

1.1 The Problem

Let D be a set of constants (finite or infinite), called domain.
Let OP be a finite set of operators on D. Let ¥ be a family
of unary functions over domain D. We define a tree as used

in this paper to be a rooted, ordered tree with pointers from
children to parent.

Definition 1.1 (Simple computation tree) A simple com-
putation tree is a 8-tuple {D, 0P, T} where T is a tree whose
leaves are labeled with a value in D, whose internal nodes are
labeled with operators in O P.

We generalize the concept of simple computation tree
by assigning a unary function from some given set to each
edge of tree. We will show this extension provides an elegant
way to establish systematic scheme for the parallel tree-based
computation.

Definition 1.2 (Computation tree) A computation ireeis
a 4-tuple {D,O0P,F,T} where T is atree whose leaves are la-
beled with a value in D, whose internal nodes are labeled with
operators in O P and whose edges are labeled with functions
tn . The leaves of a tree is called the inputs of the tree. The
size of T is the number of nodes.

Definition 1.3 (Value of node) The value of a node in a
general computation tree (denoted by vl(v)) is defined induc-
tively:

o If uis a leaf, then vl(v) equals to its label.



e If vis an internal node, labeled by ® and with children
Wy, ..., w, then:

vl(v) = O(fi (vl(wr)), s fi(2d(wr)))

Where f1,..., fx are the unary functions
(wy,v),. .., (wk,v) respectively.

for edges

Definition 1.4 (Computation tree evaluation) By com-
putation tree evaluation, we mean for any given computation
tree, compute the value of all its nodes.

Example 1.1 (Arithmetic tree) An arithmetic tree is a
computalion tree with domain the set R of all real numbers
(or any field) and over operator set
OP = {+,—,X,+}. This is a tree form representation of
arithmetic ezpression. The family of edge functions is the set
of linear fraction functions, e.g:

a*xxr+b

}-z{c*x—]-d

| a,b,¢,d € D}

1.2 Parallel Complexities of Some Compu-
tation Trees

o Arithmetic Tree: Any arithmetic tree of size n
can be evaluated in O(logn) time, using O(n/logn)
processors on EREW PRAM. This was proved by Miller
and Reif in [16].

o Min-max-plus-times-tree: min-max-plus-times-tree
is a computation tree over domain R, the set of real
number, and operator set {min,maz,+ x}. We will
show that any min-max-plus-times-tree of size ncan be
evaluated in O(logn) time, using O(n/logn) proces-
Sors.

¢ min-max-plus-times-division-tree: We will show
that any min-max-plus-times-division-tree over domain
R* of size n can be evaluated in O(logn) time, us-
ing O(n/logn) processors. While any min-max-plus-
times-division-tree over domain R can be evaluated in
O(log® n) time, using O(n) processors.

Remark: We use the uniform cost criterion in this paper.

1.3 Some Widely Used Techniques for Fast
Parallel Algorithm Designing

The primitive methods to develop fast parallel algorithms are
forwarding, doubling and load balancing. Forwarding and
doubling are techniques for reasonable partial computation.
These techniques extend the eager evaluation idea in dataflow
models (27| and have been used in some previous papers for
tree contraction [16], list ranking (7], message decoding [28],
arithmetic evaluation (17, [31], circuit computation [18], logic

program querying [29] and CFLs’ parallel recognition [5], [21],
(19], [11]. For the formal definition of forwarding, general tree
forwarding, doubling, see [18].

1.4 TUnary Functions and Closure Proper-
ties

The role of unary functions and their closure properties in
parallel computation was first studied in [18], where Miller
and Teng studied the closure properties and uniformity of
unary functions over a given domain D and operator set O P,
which is suffice to support fast parallel circuit evaluation.
Tree is a special kind of circuit in which each node has at
most one parent. This property gives tree its own features
for its dynamic parallel evaluation and algorithm generation.

Computation tree is decided by its tree structure, do-
main, operator set and its unary function class. It is clear
that the existence of fast parallel algorithm for computation
tree dynamic parallel evaluation, (even the parallel algorithm
itself) depends on those four parameters heavily. By a fast
parallel algorithm we mean an algorithm that takes logarithm
time and uses only a polynomial number of processors. The
goal of this paper is to study the necessary and sufficient con-
ditions that the parameters should satisfy for the existence of
fast parallel tree evaluation algorithm and and show how to
generate the algorithm systematicly. The following are two
important closure properties for bounded degree tree evalua-
tion.

Definition 1.5 (Composition Closure Property) Let 7
be a family of unary functions over domain D. ¥ is closed
under composition if ¥ fi,fs € F, 3 f € F, such that V
z € D: f(z) = f2(fi(z)) denoted by fr0 fi = f.

Definition 1.8 (Forwarding Closure Property) Let 7 be
a family of unary functions over domain D, O P be an opera-
tors set over D, ¥ s closed under forwarding over OP if for
allay,....q €D, Q€ OP,fe ¥, foralli:1<i<I;

f{e{al’ ey @1, Ty Gy eeny t’l;)) =

Definition 1.7 (Projective property) A family of
unary functions is closed under projection over operator set
OP if forall ® € OP, for all ay,...,a €D, foralli:1<
<[

G(all"'lal‘ﬂlsznai-}l) ...,G;) € ?

Proposition 1.1 If a family of unary functions ¥ is closed
under composition, and projectively closed over OP, then ¥
is closed under forwarding over O P. Moreover, if ¥ contains
the identical function, then ¥ is closed under forwarding over
OP iff ¥ 1s projectively closed over O P.

, - - .
Definition 1.8 (Minimumly closed) A family of
unary functions ¥ s minimumly closed over operator set O P,
tff 7 is closed under composition and forwarding over O P and



no proper subset of ¥ has those properties.

Claim 1.1 A family of unary functions ¥, which is elosed
under composition and tree forwarding, is minimum iff vV f €
¥, there is an O P-tree with one leaf labeled as variable which
generates f.

For simple computation tree with operator set O P, the
family of unary functions which is minimumly closed over
OP plays an important role in its parallel computation. So

it is important theoretically as well as practically to find a :
systematic method for generating the minimumly closed set
of unary functions over a given operator set. We will present

a powerful method for automatic construction of minimumly
closed family of unary functions over a large class of operator
set in section 3.

Example 1.2 Let 7 be the class of linear fraction over R,
then ¥ s minimumly closed u:lider composition and forward-
ing over {+,—, x,+}. |

[PROOT| Let f,(z) = 22tk f,(z) = 2azth

crz+d caz+da?

e 7 is closed under composition  since for all ay, by, ¢y,

dl:ahbhc‘l:dz € D,
Cl'.a.'l‘."l'bg

fro fi(z) = fa(fi(z)) = i L T F

Where a3z = a a9 + bser, by = aghy, + bad,
e3 = ayey + ¢1dy, dg = byey + dyds.

o 7 is closed under forwarding over {+, —, X, +} since ¥ is
closed under composition and fy.(z) = z+a, f_.(z) =
a—z, fuuz) =z a, friz) =alz € F.

e 7 is minimumly closed over {+,—, x,+} since for all
a,b,c,de D:

be — ad
¢z +cd

a:c+b_g
czt+d ¢

The closure properties of linear fraction is given in [16].
We use it here for the sake of illustration.

1.5 The Main Theorem

In this paper, we study the dynamic tree complexity un-
der parallel manipulations and give a systematic method for
computation tree parallel evaluation. We show that the ex-
istence of a family of uniform unary functions which is uni-
formly closed under composition and forwarding are sufficient
conditions for computation tree fast parallel evaluation on
Exclusive Read and Exclusive Write model system. We also
study the dynamic random parallel tree complexity and some
techniques for load balancing and dynamic processor schedul-
ing. The following is the main theorem of this paner.

Theorem 1.1 (The first main theorem) Let T be a tree
over domain D and operator set O P with edge function set ¥.

Ifi7A 2 F such that 7, is closed under composition, forward-
ing over OP and the mazimum time and processor resources
required to compute composition and forwarding are bounded
by T(n) and P(n) respectively, then T can be evaluated in
O(T(n)#*log n) time, using O(P(n)*n/logn) processors deter-
ministically on any EREW shared memory machine. Where
n ts the tree size of T. B

The main theorem provide a powerful tool for proving_a-.
given tree evaluation problem lies in NC, the class of prob-
lem can be solved in polylogarithmic time using polynomial
number of processors.

Corollary 1.1 (Simple tree computation) Let T be a
simple computation tree over domain D and operator set OP.
If there i3 a family of unary functions which is closed under
composition, [orwarding over OP and the mazimum time,
processors required to computer composition and forwarding
are bounded by T(n) and P(n) respectively, then T can be
evaluated in O(T(n) * logn) time, using O(P(n) * n/ logn)
processors.

1.6 Major Results Of This Paper

o There is a systematic method via the closure properties
of certain classes of unary functions for construction
processor efficient polylogarithmic parallel algorithms
for dynamic evaluation of computation trees.

¢ Reduction Lemma: If a family of unary functions
# is minimumly closed under composition and tree for-
warding over operator set O Py, and all functions L(z) €
% are monotonic, then ¥ = {min[a,maz(L(z),b)] |
L(z) € #,a,b € D} is minimumly closed under com-
position, tree forwarding over OP; U {min, maz}.

e Unformly Additively Bounded Theorem: For any
computation tree, if its edge functions is uniformly ad-
ditively bounded, the time and processors count used
to compute composition and forwarding operation on
any functions f,g with size s,t is bounded by Ti(s+1),
P(s +t) and Ti(s), P(s) respectively, then T can be
computed in O(Ti(n)+log n) time, use O(maz(P(n),n))
processors in EREW model.

¢ Dynamic tree complexity is much smaller than static
tree complexity in general case.

o Asanapplication of the above general theorem, we show
that min-max-plus-times-division tree over R can be
evaluated in O(log® n) time using O(n) processors, while
min-max-plus-times-division t@ver Rt can be eval-
uated in O(logn) time using O(n/log n) processors de-
terministically (or using randomization with a smaller
constant) in EREW parallel random access model.



. 2 Theoretical Foundation for Tree-
Based Parallel Algorithm Devel-
opment

In this section, we will give a parallel algorithm for tree com-
putation and prove our main theorem. The algorithm pre-
sented in this section serves as the template for the systematic
design of many tree based parallel algorithms.

2.1 Tree Contraction

Tree contraction is a bottom-up procedure to manipulate a
tree and reduce it to its root. Miller and Reif [16] presented an
algorithm? which takes O(logn) time, uses O(n) processors
deterministically and O(n/ logn) processors randomly. Tree
contraction is done by applying two abstracted operations:
RAKE and COMPRESS in a pipeline way, where RAKE re-
moves all the leaves of the tree and COMPRESS reduces each
chaining by doubling. (pointer jumping). The following is a
tree contraction algorithm given in [16].

ALGORITHM Tree Contraction
begin
while tree is not a single point do
In parallel for all node v in tree do
RAKE: if v is a leaf then delete v.
COMPRESS: if v has only one child

forward its child to its father
end

Theorem 2.1 (Tree contraction) Tree contraction can be

done in O(logn) time using O(n/log n) processors on EREW
PRAM deterministically.

2.2 Operations for Computation Tree Eval-
uation

We now define some operations which will be applied to a
computation tree to compute the values of all its nodes.

¢ Clean edge:
For all leaves v, let f be the edge function associated
with the edge from v to its father father(v):

Compute f(vi(v)), label v by f(vl(v)) and (v, father(v))
by an identical function.

2This algorithm was improved by Gazit, Miller and Teng [12], by us-
ing new load balancing techniques called SUPERRAKE, new list rank-
ing algorithm [2], [7] and implementation techniques called ISOLATED
COMPRESS on exclusive read and exclusive write model PRAMSs, us-
ing O(log n) times and O(n/log n) processors deterministically as well as
randomly. Two local compress procedures were given for different ap-
plications (see appendix), we will discuss their applications later in this
paper. We will count the logn reduction of processor count in all our
theorems without further discussion.

e Make leaf:
For all nodes v in the tree whose children are leaves, do
vl(v) « O(vl(vy),...,vi(vk))
Where vy,...,v; are the children of v and © is the op-
erator of v.
delete edge (v;,v) and make v be a leaf.

e Tree forwarding:
for all nodes v with ! children in which all but <th chil-
dren are are leaves. do
ﬁ.ﬂd f €7 f(I) = fﬂ(e(uls ey Uio, T, ...,u;))
Where u,,...,u; is the value of its children and f; is
the edge function associated with edges (v, father(v)),
(¢; means the 1th children), ® is the operator label of
v.

For all 5 # ¢ delete edge (v, ¢;)

delete edge (father(v),v).

insert edge (father(v),¢;).

label (father(v),¢;) by f.

o Isolation:
isolate all the chain in the tree.

o Local compress
Use LOCAL-COMPRESS|I] or LOCAL-COMPRESS|[II]
(see appendix) to compress the isolated chain locally.
The choice of the above two procedure is up to the uni-
formity of the edge function which will be discussed
later and the local compress is supported by composi-
tion closure property.

2.3 The General Algorithm

With the four operations defined in last subsection, the tree
computation algerithm can be specified as following:

ALGORITHM tree computation
input computation tree T;
output The values of all nodes in T;
begin
repeat .
clean edge; make leaf; tree forwarding;
clean edge; make leaf;
isolation; generate local compress process;
until the tree is reduced to its root;
run dynamic expansion procedure given in [16]
end.

Lemma 2.1 At the end of the algorithm, the value associated
with each node 1s the value of the node.

[PROOT] It is straightforward consequence of the definition
of composition, and tree forwarding properties, that
clean edge, make leaf and tree forwarding support the RAKE

operation. Thus this lemma is a consequence of the main
theorem in [16] and [12]. O



-

Claim 2.1 Tree computation can be done in O(T(n) * logn)
time, use O(P(n) * n/logn) processors in any EREW model
parallel system.

[PROOF] Since clean edge, make leaf, tree forwarding sim-
ulate the generic operation RAKE in T(n) time, use P(n)
processors, and jsolation and local compress are defined in
the same way as those in [12]. Clearly this lemma (So is the
first main theorem) is a consequence of the major theorems
in [16] and [12]. a

2.4 General Methods

Methods for the design of processor-efficient and time-
efficient parallel algorithms.

e Input a given problem 7 (on data D).
|
s Find the domain D of the :problem and a set of operators

O P over the domain.

e Transform the problem P into a computation tree prob-
lem T over the domain D and the operators set OP.

o Construct a set of unary functions ¥ which satisfies the
composition closure, combination closure, forwarding
closure, and doubling closure properties.

e Construct a data structure to support the composition,
combination, doubling, forwarding operations over the
set of unary functions. Moreover, the data structure
must be powerful enough to compute the unary func-
tions fast in parallel.

¢ Prove that using the above data structure, the com-
position, combination, doubling, forwarding operations
over the unary functions and the evaluation of the unary
functions can be done fast in parallel with reasonable
hardware complexity.

e Transform the tree T into a computation tree with
unary function in order to reduce the tree complexity
of the problem. (optional).

o Prove that the above two transforming procedure can
be done fast in parallel without reasonable hardware
complexity.

e Show the uniformity of the unary function during the
parallel tree evaluation. If the size unary functions are
not constant, show the uniformly additively bounded
properties of the function class (for definition, see sec-
tion 5). If the unary function class are uniformly addi-
tively bounded, then apply the prudent evaluation tech-
nique (see section 5) and the dynamic processor schedul-
ing technique (see section 5) to balance the working
load of each processor. Therefore, reduce the processor

count.

e Apply the general tree evaluation algorithm presented
in this section to constructure the high level coding and
using our main theorem to show the complexity.

3 Reduction Lemma

In this section, we give a useful lemma for edge function con-
struction, proof of closure properties and proof of minimality
for many function class.

We have to solve two problems when a simple computa-
tion tree over domain D and operator set O P is given. First,
we have to construct a set of unary functions over D and
then prove it is (minimumly) closed over O P. Of course, we
also have to study the uniformity of the class of functions we
constructed.

It would be nice if we have a general theory and system-
atic method for edge function construction, closure property
proof and minimality proof. We observe that many function
classes over operator sets (denoted by OP) containing min
and max operators have an elegant form: min{a, maz|[L(z),b]}.
Where L(z) is a unary function closed under composition
and forwarding over O P-{min, maz}. Hence, we can study
the properties of two smaller operator sets {min, maz} and
0P — {min,maz} and the properties of unary function class
{L(z)}. This is the motivation behind our reduction lemma.
Let us see an example first. Another example will be given
in section 6.

Example 3.1 (Min-max-plus-times-tree) Min-maz-plus-
times tree is a computation tree over domain R, the set of real
number, and operator set {min,maz,+, X}.

Based on the theory above, we have the following lemma.
We will use reduction lemma to prove this lemma at end of
next subsection.

Lemma 3.1 The unary function class ¥ =
{min{a, maz[L(z),b]} | a,b € R,L(z) is a linear fraction}
ts minimumly closed under composition and forwarding over
{min,maz, +, x}.

The construction and proof in this subsection are on do-
main D C R, a subset of real numbers. This can be extended
to other rings or fields by their algebraic relation.

Lemma 3.2 (Duality lemma) For all unary functions L(z),
Jor all a,b € D, there exist ¢,d € D such that:

(1) min{a,maz[L(z),b]} = maz{c,min|L(z),a|}

(2) maz{a,min|L(z),b|} = min{d, maz[L(z),a|}

[PROOT| The lemma follows by the distributivity of min
over maz and maz over min. O



Claim 3.1 For all unary functions L(z) over D, for all a,b €
D:

o If L(z) 1s monotonic increasing over D, then:
L(maz|a,b]) = maz|L(a), L(b)]
L(mainla,b]) = min[L(a), L(b)]

e If L(z) is monotonic decreasing over D, then:
L(maz|a,b]) = min|L(a), L(b)]
L(min|a,b|) = maz|L(a), L(b)]

Lemma 3.3 If a family of unary functions 7, is closed un-
der tree forwarding over operator set OP,, and all functions
L(z) € 7, are monotonic, then ¥ = {min[a, maz(L(z),b)] |
L(z) € #,a,b € D} s closed under tree forwarding over
O P, U {maz,min}.

[PROOF] For all L(z) € 7, for all a,b,¢,dy,...,d; € D, for
all@ e 0Py

¢ Since 7 is closed under tree forwarding over O Py, there
exists Lo (z) € 7 such that, L.(z) = L(®(d1, ..., T, ...d})),
hence:

min{a, maz(L(z @ c),b|} = min{a, maz|L.(z),b]}

o If L(z) is monotonic increasing over D, then:

min{a, maz[L(maz(c, z)),b]} =
min{a,maz[L(z), maz(L(c),b)|} € 7
By duality lemma, we have:
min{e,maz[L(min(c,z)),b]} € 7

o If L(z) is monotonic decreasing over D, then:

min{a, maz(L(min(c, z)),b]} =
min{a,maz(L(z),maz(L(c),b)|} € 7
By duality lemma, we have:
min{a, maz|L(maz(c, z)),b|} € ¥
a

Lemma 3.4 If a family of unary functions F, is closed under

composition, and all functions L(z) € 7, are monotonic, then
F = {minla,maz(L(z),b)] | L(z) € F,a,b € D} is closed

under composition.
[PROOF)| For all L(z), L'(z) € #, for all a, b,a', ' € D, since
7 is closed under composition, there exists L"(z) = Lo L'(z).
e If L(z) is monotonic increasing, then:
min{ae, maz[L(min{a', maz[L'(z),¥']})]}

= min{ae, maz[L(maz{b}, min[L'(z), a'|}),b]}

= min{a, maz[L(min[L'(z),d']), b,]}

= maz{by, min[L(min|L'(z), d']),a]}

Il

maz{by, min[L(L'(z)), a,]}
min{a;, maz|L"(z),b|} € F

Il

e If L(z) is monotonic decreasing, the by duality lemma,
we have:

min{a, maz[L(min{a', maz|L'(z),t')})|} € 7
O

Lemma 8.5 (Reduction Lemma) If a family of unary fune-
tions ¥, ts minimumly closed under composition and tree for-
warding over operator set O Py, and all functions L(z) € #
are monotonic, then ¥ = {min|a,maz(L(z),b)| | L(z) €
Fi,a,b € D} 1s minimumly closed under composition and tree
forwarding over O Py U {min,maxz}.

[PROOF] Follow the above two lemmas, it is suffice to prove
¥ is minimum. For all L(z) € #,a,b € D, since # is mini-
mum, there exists a computation tree Ty over O P, generates
L(z). Clearly, the tree in figure 2 generates
min{a, maz|(L(z), b]}. O

in

Figure 2: Tree for min{a,maz|L(z),b]}

Claim 3.2 The unary function class F=
{min{a, maz[L(z),b]} | a,b € R, L(z) is a linear function}
is minimumly closed under composition and forwarding over
{min, maz,+, x}.

[PROOF] Since #; = {cz +d | ¢,d € R}, the set of linear
functions are minimumly closed under composition {4, x}.
Moreover, every function in 7, is monotonic. Thus, as a con-
sequence of reduction lemma, ¥ is minimumly closed under
composition and forwarding over {min,maz,+, x}. O

Corollary 3.1 Min-maz-plus-times tree can be computed in
O(logn) deterministic parallel time and using O(n/ log n) pro-
CESsSOrs,

Reduction lemma is beautiful in the sense that we can
reduce the construction, closure properties proof and mini-
mality proof of a given operator set which contains min, maz



4 ©@-tree, min-max-@P-tree

Definition 4.1 (®-tree) Let T an arbitrary computation tree
over domain integer Z and operator set {®} which is defined
as following: @ : Z x Z — Z and for alla,be Z:

a=2"b
otherwise

a+1
maz(a,b)

B(a,b) = {

This computation tree is very important in code automatic
generation and optimization. (see (23] and [10]). In fact, it
is easy to convert a expression tree to @-tree by assign its
left leaves the value 1 and right leaves the value 0, and label
all internal nodes &, which is a computation tree for label
function defined in [23]. An O(logn) algorithm was given
in [10] where their computation rule is complicated. Here
we give an elegant proof of the existence of O(logn) parallel
algorithm for @-tree computation.

Let 7 = {faq|a€ ZU {4—00},:: € Z} be the following
set of unary functions: Where fla,) is defined as follows:

foal®) = { ¢

Claim 4.1 7 s minimumly close
forwarding over @.

under composition and

[PROOF| For all f = fa0,9 = flare:

o 7 is closed under composition, since:

g(c) z<a
(gof)(z) = gle+1) a<z<c+1
g9(z) T>e+1
f(aficl) s a"---l
i (a,e') c=a -1
- (cooeisl) 8 Se<<e+1
Jr{a‘c] ezc+1

e ¥ is minimumly closed over & since for alla € Z,
fa,a = ®(a,z) and for all a,c € D, ¢ > a:

ffaﬁ}(I) = (f(c.c} o f[c-l.c—l} 0...0 f{a+1.a+1} o f(a,a})(z)

Therefore, all functions in 7 can be generated by an ®-tree.

Corollary 4.1 (Complexity of @-tree) Any®-tree of size
n (thus the label function) can be computed in time O(logn),
using O(n/logn) processors.

Since for all @ € Z, maz(a,z) = f(~c0,0), We get the
following corollary for free.

Corollary 4.2 (Complexity of max-@-tree) Any maz-®-
tree of size n can be evaluated in O(logn) time, with O(n/ logn)
processors.

It is clear that ¥ = {f,) | a € ZU {~00},c € 2}
is monotonic, thus as a consequence of reduction lemma, we
have the following lemma and corollary.

Lemma 4.1 The unary function class {min{a,maz[L(z),b|} |
a,b € Z,L(z) € F} is minimumly closed under composition
and forwarding over {min, maz, ®}.

Corollary 4.3 (Complexity of min-max-@-tree) Any
min-maz-®-tree of size n can be computed in O(logn) time,
with O(n/logn) processors.

5 Prudent Evaluation and Dynamic
Processor Scheduling

In this section, we will show that for many tree computa-
tion problems, processor count can be reduced by a factor of
min(n,p(n)) through load balancing, an important technique
to develop cheap but fast parallel algorithms. This is, in fact,
a partition problem as well as a scheduling problem [13]. How
can we make full use the hardware in parallel system? The
one of the first important issues of parallel processing, had
unfortunately been proved as a NP — hard problem for the
general case. Many heuristic methods were proposed for va-
riety problems and for some special structured systems. We
will, in this section, prove that if the family of the edge func-
tions for a computation tree is uniformly additively bounded,
then the processor count can be reduced to O(maz(P(n),n))
through load balancing and new scheduling technique,

Definition 5.1 (Uniformly additively bounded) A fam-
ily of unary functions ¥ is uniformly additively bounded if we
can assign size to each function in ¥ and:

(1) The time to compose two function f,g € F of size m,n
respectively ts Ti(m+n) and use P(m+n) processors. More-
over, go f has size at most m + n. _
(2) For all ay,...,a; € D, ® € OP, we can find a func-
tion f € ¥ in Ti(m) time, use P(m) processors. Such that:
f(z) = ©(ay,...,8i-1, T, @41, ...,a;) And f has size at most [.

Theorem 5.1 (The second main theorem) For any
computation tree, if its edge functions is uniformly additively
bounded, the time and processors count used to compute com-
position and forwarding operation on any functions f,g with
size s,t 1s bounded by Ti(s +t), P(s+t) and Ti(s), P(s) re-
spectively, then T can be computed in O(T1i(n) * logn) time,
use O(maz(P(n),n)) processors in EREW model.

[PROOF] Since, the size of unary function on each edge is

constant® at beginning, we can assign maz(P(n),n)/n pro-

3In order to have a reduction of log n on processor count, we will use
SUPERRAKE technique in [12]. SUPERRAKE and the removal of the

" nodes not in Va2 will reduce the size of tree by factor log n. However the size

of unary functions associated with the edges in the tree might increase and
not be constant. Fortunately, the uniformly additively bounded property
tell us that the summation of the sizes of all the unary functions in the tree
will not increase. Hence, we can use prefix sums to assign the processors
to the node according to the size of unary function associated with the
edge form the node to its father. The rest argument is same as in the
following proof. ~
[
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», cessors to each node. We have the following two cases:

1. The size of all the functions in ¥ is less than certain
constant. It is clear that the theorem holds, since in
this case Ti(n), P(n) are constant.

2

The size functions in ¥ is not constant. Since, at begin-
ning, we have n nodes and we assign maz(P(n),n)/n
processors to each node. For forwarding operation on
v, we use the processor associated with v to compute,
and assign its leaf children’s processors to v. We use
LOCAL-COMPRESS[II| to support  local compress.
Since rank of nodes in chain with length m can be
computed in O(logm) time with O(m) processors, this
can be done by using one processors associated with
each node in the chain. The advantages of LOCAL-
COMPRESS|IT] over LOCAL-COMPRESS]]] is that no
useless chain is produced after each application of com-
press. Any two consecutive nodes u,v are combined by
using the processors associated with those two nodes
and then we assign all the processors of u,v to the re-
sulted node. Following the instruction of this scheduling
method and the uniformly additively bounded property
of the edge function, it is easy to prove by induction that
at any time, the number of processors associated with
any node v is not less than the size of function associ-
ated with edge (v, father(v)). That ends the prove of
the theorem., 0

6 Min-max-plus-times-division Tree

Min-max-plus-times-division tree play an important role in
algebraic computation. The algorithm presented in this sec-

tion can be easily extended to any field in which any pair -

of elements are comparable. As you can see, that min-max-
plus-times-division tree contains all the general algebraic op-
erators, Minus is removed since it can be easily implemented
by times and plus without increasing the magnitude of tree
size. The introducing of min, max makes the arithmetic tree
more general, but on the other hand, makes the computation
more complicated. Is it possible to use rake and compress
operations to evaluate the min-max-plus-times-division tree?
We will give a positive answer using the closure properties of
edge functions.

6.1 Min-max-plus-times-division Tree on R*

In this subsection, we restrict the domain of min-max-plus-
times-division tree to R*, the positive real number set. This
restriction make the min-max-plus-times-division tree com-
putation surprisingly easier than the general min-max-plus-
times-division tree computation. Since the operator set con-
tains {min, maz}, therefore, we can use the deduction lemma
to made the following conjecture and to prove the following

lemma.

Lemma 6.1 (Unary functions class) The family of unary
functions F for min-maz-plus-times-division tree over R 1s
defined as following:

¥ = {min{a,maz[LF(z),b]} | a,b € RT}

Where LF(z) is a linear fraction over R™ defined as LF(z) =

(ez+d)/(ex+ f), and ¢, d,e, f,€ R*.

Lemma 8.2 ¥ s minimumly closed under composition and
forwarding over {min,maz,+, X, +}.

[PROOTF] The family of linear fractions is minimumly closed
under composition and forwarding over {+, x,+} over do-
main R* can be proved in the similar way as in claim 4.3.
Every linear fractions is monotonic since all the constants
occur in the function are positive. Therefore, by applying
reduction lemma, we have ¥ is minimumly closed under com-
position and forwarding over {min,maz, +, x, +}. O

Because all the functions in ¥ is finitely represented and
the composition, forwarding operations can be computed in
constant time sequentially. The following theorem is a di-
rected consequence of the previous lemma and the first main
theorem.

Theorem 8.1 A min-maz-plus-times-division tree over R*
can be computed in O(log n) time using O(n/ log n) processors
deterministically on EREW PRAMs.

6.2 Unary Functions of Min-max-plus-times-
division Tree

We will extend the domain of min-max-plus-times-division
tree from Rt to R. However, since linear fractions are not
monotonic over R, the set of real number, we can not apply
reduction lemma directly, We start with a short discussion
of linear fractions.

Let Lf(z) = az + b/cz + d be a linear fraction. It is
not hard to see that Lf has a simple pole at z = —d/¢: In
the case that ¢ = 0 we say that Lf has a pole at infinity.
It is one-one if and only if ad — be # 0 and in this case the
derivative is either always positive or always negative. We
shall call a partial function f monotone increasing with
respect to its pole p for all points £ and y for which [ is
defined if f(z) < f(y) theneitherz <y <p,p <z <Ly, or
y < p £ z. In a similar way we define monotone decreasing
and monotone with respect to a pole. In general a pole is
simply a point where the function is undefined, possibly co.
Note that the linear fractions are monotone with respect to
their poles. We next show that the monotone property is
preserved under composition. The proof will appear in the
final paper.

{ar



Lemma 8.3 If f and g are monotone with respect to poles
p and q, respectively, then f o g is monotone with respect
to p', where p' is any point between maz{z|g(z) < p} and
min{z|g(z) > p}.

We will prove that the following class of unary functions
are large enough to evaluate the min-max-plus-times-division

trees. We will assume that a tree that requires a division

by zero to evaluate a subtree need not be evaluated, we can '
return undefined. Thus, functions from the following class

will contain intervals for which they are not defined, called
U-intervals. We will also need to maintain points where
the function is continuous but not necessarily differentiable,
called breakpoints. We will denote these two types of closed
intervals by I;, and let z < I; denote the fact that z is less

than all elements in I;.

Definition 8.1 (Unary functjons class) Let F denote the
class of functions of the form

Fg(x)( ) < I]_
=) Faulz) z>1
Jwsn,da ForFat10) F.(z) i 8 e L bCign

Which satisfy the following conditions:

1. The I; form a disjoint ordered set of closed intervals of.
two types: intervals where f is undefined, U-intervals,
and single point intervals which are breakpoints of f.

2. Fach F; either agrees with Lf on its interval or it is a
constant function.

3. The function f is monotone with respect to its pole p.

Note that the functions in 7 consist of a sequence of line
segments or curve segments (of a linear fraction). Between
each of these segments is an U-interval or a breakpoint. The
size of a function in ¥ is the number of U-interval and break-
points in it. In Figure 3 we give an example of such a function.

}"?

1‘“-]&-:»-[
I

Figure 3: An Example of a Possible Unary Function for a
Min-max-plus-times-division tree.

6.3 Closure Properties and Uniformly Ad-
ditively Bounded Property

Claim 6.1 ¥ is closed under composition and projection over
{min,maz, +, x,+}.

[PROOF) Let

f= FEF BT P Fogupl an‘? G = QLAL,.. 1 F Fh 0

be two functions in 7. We must show that ¥ is closed under
composition, f o g € ¥ with some pole.

For the sake of succinctness and ease of understanding,
we give the following informal argument. Since the functions
f and g, where defined, are a sequence of horizontal line seg-
ments or segments of a fixed linear fraction, the composition
h = fog must be, where defined, a collection of horizontal line
segments and segments of the fixed linear fraction Lf o Lf'.
To see this, observe that the composition of a linear function
and constant is a constant, independent of the order. While,
the composition of two linear fractions is a linear fraction.
We must still describe the U-intervals and the breakpoints,
and show that the composition is monotone with respect to
its pole.

We start by computing the intervals for h. Clearly the
intervals of g will be intervals of h. But the z in {z|g(z) €
I;;1 < 1 < n} will also be in the interval of h. Note that if
the preimage of a breakpoint p of f by g, i.e., g_;(p), is an
interval then the breakpoint p will be contained in either an
U-interval or a breakpoint of g. Thus breakpoints of h are
singletons and not proper intervals. We have shown that A
satisfies the first two condition of the class.

By the last lemma h is monotone with respect to some
point g. Note that in general this point may not be the pole
of Lfo Lf'. This is possible when the pole of h is not a ”real”
pole but just a point where A is undefined. Thus, the class of
function is closed under composition.

To see that the class is closed under projection. We ob-
serve that following function are in the class where @ is any
element € R: min(z,a), max(z,a), z+a, z-¢, and a/z. O

We count the number of U-intervals of h, the size of A,
in terms of the number of intervals of f and g. As we have
observed above, each interval of g contributes at most one
interval to h. We must determine the contribution from the
intervals of f. Let I be some interval of f. It follows that
I will generate a new interval for k only when some defined
interval J of g is maped onto I by g. Since g is basically one-
to-one there can be at most one such interval J. Using the
fact that g is monotone on J we see that I generates at most
one U-interval for h. Therefore, the size of go f is no more
than the summation of the size of g and f. Note that the only
projection to generate U-intervals is division. Since we need
only one breakpoint between every pair of U-intervals we need
only maintain two times the number of divisions intervals
for each part of the subtree which we are working. In this
representation we note that we can evaluate the function the®
O(logn) time @?}
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Claim 6.2 For all f € F, size(f) = n, then for all z €
R, f(z) can be computed in O(logn) times using using O(1)
processors.

[PROOF] Use binary search, in O(log_n] time, we can de-
termine the interval containing £ and then evaluate f(z) in
constant time. O

We use this claim to determine the composition of two
such functions:

Claim 8.3 For all f,g € F with size m,n respectively, g o
[ can be computed in O(log(m + n)) time, use O(m + n)
processors.

[PROOF| The idea is that assign one processor to each in-
terval of g and f. By reordering the intervals of g via cyclic
shift starting at the pole of g we see that their images under g
will be ordered intervals which we can determine in O(logn)
time by the last Claim. Now, we simply need to merge the
intervals of f with the image intervals of g. This can be done
in O(log(n + m)) time using n + m processors. Using this
information we can determine the intervals of h. We next de-
cide whether each defined interval of h is a constant segment
or linear fraction segment. This can be done in constant time,
use O(n + m) processors. m|

Claim 8.4 Forallc € R, f,g € 7, size(f)=m, size(g)=n,
© € {min,maz, +, X, +}:

1. Let ho(z) = f(®(e,z)), then sizefhy) < m + 1.

2. Let hy = go f, then: size(h,) < m+n.

Theorem 6.2 A min-maz-plus-times-division tree of size n
over R can be computed in O(log® n) time using O(n) proces-
sors deterministically in EREW model.

Actually, for simple min-max-plus-times-division-tree,
there is tighter bound on the maximum size of the unary func-
tion during the computation time. Observe that the projec-
tion of any non division node does not generate an U-interval.
While a division node generates only one U-interval. There-
fore, the maximum size of the functions used during the eval-
uation of min-max-plus-times-division-tree is bounded by the
two times the number of division-nodes. Hence, we have the
following theorem.

Theorem 6.3 Any min-maz-plus-times-division tree over R,

which has n nodes and d division-nodes, can be computed in
O((log n)(log d)) time using O((n log d)/logn) processors.

7 Dynamic Tree Complexity

We can view a computation tree as a dataflow graph [9], and

compute the values of all nodes in a bottom-up manner (ea- .

ger evaluation) as the execution of conventional data flow

program. It is clear that the processor count to compute this
dataflow graph equals to the number of the leaves in the tree
and the computation time is proportional to the height of
the tree. So, in the worst case, we use O(n) processors, but
compute the tree in O(n) times. The simple data flow idea
does not help anything! The reason is that the complexity of
simple dataflow computation depend only on the static com-
plexity of the dataflow graph. (Here, the computational tree)
E.g the time complexity of a tree, from the dataflow point of
view, is its height and the hardware complexity of a tree is
the number of its leaves.

In this paper, we consider the complexity of computa-
tion tree dynamicly and study the relationship between the
dynamic complexity of a tree and some special family of unary
functions. We can define, for sufficient reasons, that the dy-
namic height of a computation tree is the time complexity
to compute the tree, and we have shown in the main theo-
rem, that the dynamic height of a tree can be much smaller
than its static height. Therefore, for any problem which can
be reduced to a tree computational problem, the following
complexities are important.

e The complexity to reduce the problem to a tree prob-
lem. We call it tree uniformity of the problem. This
contains the complexity for the selection of the opera-
tor set and the construction of the tree.

e The complexity of the tree. This is the static complexity
of the tree. The height of the is defined to be the length
of the longest path between a leaf to root, the size of
the tree is the number of its nodes.

e The complexity to specify the family of edge functions
over the domain of the problem and the operator set
of the tree. We call it edge function uniformity of the
problem.

¢ The complexity for computing composition, forwarding,
of the edge functions.

e The complexity to contract the tree. The time to com-
pute the tree is the dynamic height of the tree and the
number of the processors used is defined as the dynamic
size of the tree. We charge the time and the number
of processors to compute the operations over the edge
functions as constant.

8 Conclusion and Open Problems

In this paper, we present a systematic method for tree based

parallel algorithm generation and prove some nontrivial suffi-

cient condition for the existence of fast parallel algorithm for

tree computation. This provides a powerful tool for designing

parallel algorithms for many problems. (see part 2 of (18] for*

survey). Based on our tree computii(.ﬁl%n algorithm and main
Sl
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theorem, we give the definition of dynamic height of compu-
tation tree and study the dynamic complexity of computation
tree. This shows, in some sense, our idea has its advantages
over that of dataflow model,

Several problems are still interisting both for parallel
computing theory and for practical application in parallel
processing. We list some of them.

1. What is the necessary condition for a computation tree
to be computed in poly-logarithm time, using only poly-
nomial number of processors?

2. Is it possible for us to embed the idea in this paper
in some parallel code generator, which will in turn to
generate better parallel code from some sequential pro-
gramming language like Fortran systematicly?

3. What is the systematic way to find the family of unary
functions which is minim’:m]y closed over a given oper-
ator set?

Appendix. Two Procedures for
LSCAL-COMPRESS

PROCEDURE LOCAL-COMPRESS]I]
In Parallel For all node v is a chain do
(1) if v has token R, do
if v also has G token, delete its tokens
else do nothing
(2) if v has no token and its father has token R
then label v by token R;
point to its grandfather
(3) if v has no token
then point to its grandfather

PROCEDURE LOCAL-COMPRESS[II]
begin
(1) isolate chains in the tree
(2) compute the rank of node in the chain
(3) In Parallel
combine the nodes with rank 2{ — 1 and 27
assign the rank to the generated node by 1
end

Claim A.1* By using LOCAL—COMPRESS[I] or LOCAL-
COMPRESS|[II], tree contraction algorithm can be imple-
mented on EREW PRAMSs without increasing the time count
and processor count.

Claim A.2% LOCAL-COMPRESS|[II] at most two times as
slow as LOCAL-COMPRESS|[I|. However, no useless chain
is produced during the application of tree contraction algo-
rithm. We call it prudent compress.

‘see LOCAL COMPRESS lemma in [12]
®see claim 4.1 in [12]
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