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Abstract

We propose a class of graphs called k-overlap graphs. Special cases of k-overlap graphs include
planar graphs, k-nearest neighbor graphs, and earlier classes of graphs associated with finite element
methods. We prove a separator bound of O(k}/4N(4=1/4) for k-overlap graphs embedded in d
dimensions. This result unifies several earlier separator results including Lipton and Tarjan’s 1979
result for planar graphs. All our arguments are based on geometric properties of embeddings. Our
separator bounds come with randomized linear-time and randomized NC algorithms. Moreover,
our bounds are the best possible up to the leading term.

1 Introduction

Graph partitioning is a fundamental problem in Computer Science that has many important applica-
tions including Numerical Analysis (Lipton, Rose and Tarjan;[LRT79]), VLSI design (Ullman;[Uli84])
and even Turing machine theory (Paterson;[Pat72]).

Recently several groups of authors (Vavasis;[Vav90], Miller and Thurston;[MT90b], Miller and
Vavasis:{MV91]) have proposed classes of graphs that can be embedded in d dimensions and that have
O(N@=1V/4)) separators. “O(N9-1/?) separators” means that for an N-node graph in the class, there
exists a subset of nodes of size O(N(4=1)/4) whose removal disconnects the graphs into two roughly
equally-sized components. See below for the formal definition. For the applications mentioned in the
last paragraph, d = 2 and d = 3 are the interesting cases. in which case the bounds are O(N'?) and
O(N?/3) respectively.

All of these earlier classes of graphs have the disadvantage that, when specialized to two dimen-
sions, thev apparently do not contain all planar graphs. This is a serious drawback because the eariiest
and best-known separator result is Lipton and Tarjan’s. [LT79], theorem that all planar graphs have
O(N”?‘. separators. Moreover, these classes contained only graphs with bounded degree.

In this report we propose a new class of graphs, overlap graphs, with the following properties:

1. In two dimensions. planar graphs are special cases of overlap graphs.



2. In d dimensions for d > 2. any finite subgraph of the infinite d-dimensional grid graph is an
overlap graph.

3. The overlap graphs in d-dimensions have O(N(4-1)/4) separators.

To our knowledge, this is the first time that a class of graphs has been proposed with these three very
natural properties. In addition. as we argue below, overlap graphs include Miller and Vavasis’s density
graphs as a special case. The proof that planar graphs are special cases of overlap graphs relies on
recent deep theorems by Andreev and Thurston [And70a, And70b, Thu88] characterizing all planar
graphs in a novel geometric fashion.

Our proof techniques are novel and has the potential of being applied to other problems. Qur
bounds for density graphs are better than Miller and Vavasis’s bounds and in fact achieve matching
lower bounds except for low-order terms. In order to achieve tight bounds. we use arguments that
take advantage of slight differences between the various p-norms when applied to high-dimensional
vectors, a technique that appears to be new and is interesting on its own.

Finally, we will argue that a generalization of overlap graphs, called k-overlap graphs. include
k-nearest-neighbor graphs as a special case and our bound is also optimal in terms of k.

2 Definitions

The notion of a separator introduced in the last section has been in well-known since 1979. The
following definition formalizes this idea and introduces the notation that will be used for the remainder
of the paper.

Definition 2.1 (Separators) A subset of vertices C of a graph G with n vertices is an f(n)-
separator that §-splits if the vertices of G — C can be partitioned into two sets A and B such
that there are no edges from A to B, |A|, |B| < én, and |C| < f(n), where [ is a function and
b <l

Separator results for famiiies of graphs closed under the subgraph operation immediately lead to
divide-and-conquer recursive aigorithms for a variety of applications. In general, the efficiency of such
algorithms depends on a § bounded away from 1 and f(n) a slowly-growing function.

Two of the most well-known families of graphs which have small separators are trees and planar
graphs. It is known that a tree has a single vertex separator that 2/3-splits. Lipton and Tarjan
[LT79] proved that any planar graph has a \/8n-separators that 2/3-splits. They also give a linear
time algorithm for finding such a separator. Many interesting extensions of this work have been
made [Dji82, Mil86, Gaz86, GM87] and separator theorem had also been obtained also for graphs
with bounded genus [GHT82. HM86]. Very recently, Alon, Seymour and Thomas [AST90] proved
the following interesting separator theorem: all graphs with no minor isomorphic to the h-clique
have an haﬁ\/ﬁ—separator. Many applications of separator theorems have been given for VLSI layout
[Lei83a, Lei83b], finite element method ‘and numerical analysis [LRT79, PR83].

The development of computational geometry and numerical analysis cails for deeper understand-
ing of separator properties for graphs embedded in fixed dimensional space. especially in 2-space and
3—space. Although, the planar separator theorem is applicable to many interesting families of graphs
embedded in 2-space, we shail show that there are some natural graphs in 2-space, e.g., k-nearest
neighborhood graphs, which zre neither planar. nor with bounded genus, nor with bounded minor. In
general. none of the above separator theorems are useful for graphs in 3-space.
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Example 2.2 Let G be graph formed by a 2 X \/n X \/n grids in 3-space (see Figure 1). Clearly, G
has a 2,/n-separator. However, G is a graph with genus Q(y/n). It also has a minor isomorphic to
Vn-clique. .

Figure 2 shows an 8-nearest neighborhood graph which has an O(\/n)-separator. But it has genus
Q(+/n) and a minor isomorphic to the \/n—cligue.

Figure 1: A 3-dimensional graph with large genus and large minor but small separator

Figure 2: An example of 8-nearest neighborhood graph in 2-space

The more recent papers mentioned last section on d-dimensional separators attempt to use geo-
metric information in the existence proofs and separators, as opposed to the combinatorial approaches
mentioned in the last few paragraphs. This paper also takes the geometric point of view. However, it
introduces many new techniques.

The family of graphs is defined based on a notion of a neighborhood system, which induces a
special case of an overlap graph.

Definition 2.3 (Neighborhood System) Let P = {pi,...,pn} be points inIR?. A k-neighborhood
system for P is a set, {By,...,By}, of closed balls such that (1) B; is centered at p; and (2) For
each i the interior of B; contain at most k points from P.

In the full paper we will discuss more general neighborhood systems.

The intersection graph induced by this neighborhood system is the undirected graph with one
node for each ball, and an edge when two balls intersect.

We now define the main class of graphs under consideration, a-overlap graphs. For this definition,
we introduce the following notation. If B is a ball of radius r in IR®. then « - B denotes the ball with
the same center as B but radius ar.

Definition 2.4 (Overlap Graph) Let @ > 0 and let {B,...,Bn} be a k-neighborhood system for
P = {p1,...,pn}. The (a,k)-overlap graph for the k-neighborhood system {Bi....,Bg} is the
undirected graph G = (V, E) with V = {1,....n} and

E={(/))(Bi"(a-B;j)#0) and ((a- B;)N B: =0)}.



For simplicity, we call a (1,k)-overlap graph a k-intersection graph. In the case that o = 1 and
k = 1, and no two balls in the neighborhood system have a common point in their interior. we have
the family of graphs known as sphere-packings; this interesting class of graphs will be discussed later.
Note that given a set P of n points in IR%, we can uniquely define for each point p € P the largest
sphere centered at p whose interior contains at most k points of P (provided n > k). These balls
immediately lead to an instance of a k-overlap graph, which we call the k-overlap graph of the points.
The following is the main theorem for our report.

Theorem 2.5 (Main) Let G be an (a,k)-overlap graph for some fized d. Then G has an O(a -
k1/d.n(d=1)/d 4 g(a,k,d))-separator that $3L-splits. Further, such a separator that d41d< _splits can be
computed in random constant time, using linear number of processors, for any 1/at M < e < 1.

The function ¢(a,k,d) depends exponentially on d but is independent of n. Since the interesting
cases are when d = 2 or d = 3 and when n is large, this term should be considered low order.

The remainder of the paper is organized as follows. Section 3 presents applications of overlap
graphs including a a geometric proof of the planar separator theorem. Matching lower bound on the
size of separator for overlap graphs is also given. Section 4 presents some important geometric lemmas
which are used in the proof of the main separator theorem in Section 5. Section 6 extends the main
result to non-Euclidean space. Section 7 lists some open questions.

3 Applications of Overlap Graphs

In this section, we show that the class of overlap graphs inciudes many natural classes of graphs as
a special case. In particular, it contains the set of all planar graphs, density graphs, and k-nearest
neighborhood graphs.

3.1 A Geometric Proof of the Planar Separator Theorem

Let R be a region in the plane or on the 2-sphere. A circle packing in R is a collection of closed disks
Di,...,D, contained in R as having disjoint interiors. The nerve of a circle packing is the embedded
1-complex whose vertices are the centers of the disks and whose edges are the geodesic segments
joining the centers of the tangent disks and passing through the point of tangency.

Theorem 3.1 (Andreev and Thurston) For each trianguiated planar graph G there is a sphere
packing on the plane whose nerve is isomorphic to GG.

Therefore, every planar graph is subgraph of a 1-overlap graph in 2-space.

Corollary 3.2 Every planar graph has an O(./n)-separator.

3.2 Separator for k-nearest Neighborhood Graphs

Let P = {p1,...,pn} be a set of n points in IR4. For each p; = P and k € N, let Ni(p;) be the set of
k-nearest neighbors of p; in P (ties are broken arbitrarily).

Definition 3.3 (The k-nearest Neighborhood Graph) 4 k-nearest neighborhood graph of P =
{P1y....pn} in IR?, denoted by Gpi(V,E), is a graph with V" = {1,...,n}, and

E = {(i,7)|pi € Ni(p;) or p; € Ni(pi)}.



Immediately from the the definitions,

Lemma 3.4 For any set of n points P in IR“, the k-nearest neighborhood graph of P is a subgraph
of the k-overlap graph defined by P.

Corollary 3.5 All k-nearest neighborhood graphs have an O (k”dnd%l) -separator.

We have shown that the about separator bound is tight using the following example. Let P be the
set of all points of the m X m X - -+ x m regular grid in IR? and let G be the kth nearest neighborhood

graph for the points P. Using the methods described in Leighton [Lei83a] we get a lower bound of
QkY/4md-1),

3.3 Separator for Density Graphs '

Definition 3.6 (Density Graphs) Let G be an undirected grapa and let © be an embedding of its
nodes in IR%. Then we say that 7 is an embedding of density a if the following inequality holds for
all vertices v in G. Let u be the closest node to v. Let w be the farthest node from v that is connected

to v by an edge. Then
|l7(w) = w()]] .

s o
|lw(u) = = (v)]|
In general, G is a density graph if there ezist a # and a > 0 such that = is an embedding of
density a.

It has been proven by Miller and Vavasis [MV91] that all density graphs has an O (ad(d‘l}n%l)-
separator. Immediately from the definition,

Lemma 3.7 Each a-density graphs is a subgraph of (a,1)-overlap graph.
Corollary 3.8 Let G be a density graph in IR®. Then G has an O (a . n%)-se;mmior.

Hence, our result greatly improves the one of Miller and Vavasis in the term of a and our bound
is optimal in terms of a. This answer an open problem in [MV91] in the affirmative.

4 Some Geometric Lemmas

In this section, we state a set of basic geometric lemmas. Their proofs can be found in Appdenix A.

Define the kissing number 74 be the maximum number of nonoverlapping unit balls in IR? that
can be arranged so that they all touch a central unit ball [CS88]. For each positive real §, let Aq(6) be
the maximum number of points that can be arranged on a unit sphere, such that the distance between
each pair of points is at least é.

Lemma 4.1 (Point Coverage Lemma) Let By,....B, be n ciosed balls with centers py,...,pn,
respectively, in IR, If for all 1 < i < n. |(int B;) N {p1,...,Pn}| < k, then for allp € IRY,
{i:pe B;i}| < 7qk.

The following lemma can be proven similarly to that of Lemma 4.1.



Lemma 4.2 (Ball Coverage Lemma) Let By,...,B, be n closed balls with centers py,....p,, re-
spectively, in IR%. If for all1 < i < m, |int B; N {p1,...,pn}| < k, then for all ball B € IR? (say with
center p and radius 1),

{i: BiN B # 0 and p; € R* — 2- B}| < Aq(1/2)k.

Proofs to the following two lemmas are omitted and will be given in the full version of the paper.

Lemma 4.3 Let aq,...,a, be nonnegative numbers, and suppose p > 1. Then

(ga‘_)" <p g“f (g‘ aj) p-1

Lemma 4.4 Let...,m_y, Mg, M1, Ma,... be a doubly infinite sequence of nonnegative numbers such
that each m; is bounded above by 8 and such that at most a finite number of m;’s are nonzero. Let
d > 2 be an integer. Then

- d/(d-1) N
(Z ka—k(d—l]) Scdalf(d—l} Z mkg—kd

k==00 k==co

where cq is a positive number depending on d.

5 Geometric constructions of the Main Theorem
By applying Theorem 2.5 with the choice that a = 1, we obtain,

Theorem 5.1 Let P = {py,...,pn} be a set of n points in IR? and G be their k-overlap graph P.
Then G has an O(kY4n*3")-separator.

For simplicity we shall focus on the proof of Theorem 5.1. Observe that these graphs may still
have unbounded degree and are interesting on their own. Also, we shall show that these results are
best possible in term of n, a, and k.

The basic idea to prove the Main Theorem is to first construct a real-valued function f based on
the structure of the given graph G; then to show that there is a (d — 1)-sphere S in IR? splits the
vertices of G not on S into two sets, the interior and exterior of §, each of size at most (‘L_—"—;}n, such
that the cost of S, denoted as Costs(S5), is bounded from above by O (aklidni&l), where

Costy(5) = [ @) )i

Such a sphere S is called a continuous separator of G based on f; then to deduce a vertex separator
of the underlining graph from the continuous one, such that the size of the vertex separator is linearly
bounded by the cost of the continuous separator.

Notice, however, in order to deduce a vertex separator from the continuous counterpart. the
continuous function f must be faithful in the sense that the cost of a continuous separator models
faithfully the size of a vertex separator of the underlining graph. In other words. the continuous
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function f encodes faithfully some combinatorical properties related to separators of of the underlining
graph.

The above basic idea is taken from Miller and Thurston [MT90b], however, our specific construc-
tion is quite different and more sophisticated, and it contains many noval ideas. Our construction of
the real-valued function is derived from the one used by Miller and Vavasis [MV91] for density graphs.
but we shall show that our construction is more ‘faithful’ to the structure of the underlining graphs.
Because of this, our results can be applied to much larger class of graphs, as well as when applied to
the density graphs, it gives the best possible dependence on the density, which improving the resuit
of Miller and Vavasis.

5.1 Computing a Continuous Separator

Let f(z) be a real valued nongative function defined on IR? such that f* is integrable for all k¥ =
1,2.3..... Such an f is called a cost function. The total cost of the system is

Total-Cost(f) = / e PO @0)? < o0

Similarly, for all (d — 1)-sphere 5, the cost of 5 is

Costs(8) = [ _(F())"}(dw)*?

vE

A (d—1)-sphere S is a é-splitting sphere of a set P of n distinct points in IR® if S splits the points
of P not on S into two sets, the interior and exterior of S, each of size at most én.

Theorem 5.2 (Miller and Thurston) If f is a cost function on IR® and P a set of n distinct

points in IR then there is a (%%)-splitting sphere S of P such that

Cost;(S) = O ((Total~Cost(f))“T")

Further, using a result of Miller and Teng [MT90a] for approximating center points in fixed
dimension, it can be shown that

- i d Al z] - d d+14+ -
Lemma 5.3 If f is a cost function on IR? and P a set of n distinct points in IR® then a (S5 -
splitting sphere S of P of cost

i
Costy(8) = O ((Total-Cost(f))F")
can be computed in random constant time, using O(n) processors, where n—l}ﬁ <e<l.

5.2 A Cost Function for k-overlap Graphs

We now construct a cost function f for k-overlap graphs such that Total-Cosi(f) = O(k/(d=Vn). We
shall show that our construction can be generalized for (a,k)—overlap graphs (see Appendix C).

Let P ={p1,.-..pn} be a set of n points in IR® and G be the k-overlap graph defined by P. Tke
cost we shall define is closely related to the structure and the construction of a k-overlap graph.



Recall that a k-overlap graph is defined by the geometrical relations of a neighborhood system
By,...,B,, where B; is a ball centered at p; and contains no more than & members of P in its interior.
To define the cost function for G, we first define n functions, fi,..., fn, where the function f; is defined
based on B;, as follows: let r; be the radius of B; and let v; = 2ry,

o= {3 Gz =

Intuitively, f; sets up a cost on each (d — 1)-sphere S such that the closer S is to p;, the larger p;
contributes to the cost of S. We say a sphere S cuts an edge (,7) of G if § and seg(p;,p;), the linear
segment between p; and p; have a common point, denoted as Is(pi,p;)-

Notice that if S cuts an edge (,) of G, then by the definition of k-overlap graph, either Is(p;,p;) €
B; or Is(pi,p;) € B;. This implies, as we shall see in Subsection 5.3, that there is a constant ¢ such
that either [, o(fi(v))¥(dv)*™! > cor [ es(fi(v))* M (dv)?~! > e

We say a cost function 7 is faithful if for all (d — 1)-sphere §, for all @ C {1,...,n},

CF(w)) (dp)d-1 (v))41 (dv)* 1)
[ Foy oyt 2 S () o)t

i€Q Tves
For each (d — 1)-sphere. let
M(S) = {i|there exists p;, such that S cuts (p;,p;) € G and Is(pi,p;) € B;},

We can conclude from the above discussion that if a cost function f is faithful, then |M(S)| <
Costs(S). We shall see in Subsection 5.3 that M(S) is a separator for G if 5 is a continuous one.
Thus, the cost function shouid defined to be the minimum function that is faithful. Let us start with
some notations.

Let ay,...,a, be n nonnegative numbers. Define the L;," normofay,...,a,,denoted as Lp(a1,...,an),
to be

n 1/p
Lo(@yy..-,8n) = (Z |a|p) ,  wherep > 0

i=1

The following lemma states the relationship between different norms.
Lemma 5.4 L, < Lp;.

The cost function! of the k-overlap graph G is then defined to be the L | norm of fi,.... fs,
i.e.,

n 1/(d-1)
flzr=La-a(fryeoei fn) = (Z(ﬁ(m))d'l)
i=1
Now, to prove Theorem 3.1, it is sufficient to prove
Lemma 5.5 For any set P =f n points in IR, if fi,.... fa and f are defined as above, then

Total — Cost(f) = O(kY/(4=Vp),

!Notice that in the constructicz of Miller and Vavasis for density graph, the cost function is defined to be the L;
norm of the functions defined over cach vertices.



Proof: Let V; be the volume of a unit ball in IR®. Clearly, [,¢re(fi(z))*(dz)? = Va.
Consequently, letting

' n 1/d
9(@) = Lafryeeer fu) = (Zus-(z»“) ,

i=1

we have
[ (a(a))(dey’ = Van
zelR

Therefore, Lemma 5.5 follows immediately from the followig lemma whose proof is given in Ap-
pendix B.

Lemma 5.8 For all z € TR?, (g(z))* < (f(::.))d < ¢g2%(6%74k)1/4-1) . (g(2))d.
Consequently,

Lemma 5.7 There ezists a (%}-spiitting sphere S of P with Costy(S) = O (Gfk”dngﬂ_‘), where
E = Zd_l(TJ)UdVd.

5.3 A Vertex Separator From A Continuous One

To complete the proof the Theorem 2.5 and 5.1, we shall construct a vertex separator C of G from a
continuous separator S obtained from Lemma C.3. We then show that |C| = O(Costy(S5)).

The vertices in C are those points ¢ € P such that its ball, B, intersects §. If the edge (p,q) € E
is such that p is interior to S and q is exterior then either B, or B, must intersect S and thus either
por qis in C. Therefore, C (j—‘%)—sp]jts the points interior to S from those exterior to 5, excluding
those points in C. The following lemma bounds the size of |C| (the proof is given in Appendix D).

Lemma 5.8

47

7

d-1
1
IC| € 24(1/2)k + T4k + ( ) 7 Costy(S5).
-1

Notice that Costs(S) = O (klf‘in'd‘;_‘) and k < n implies k < kY4n3". It follows that |Cy| =
0 (k‘/dn éil) This complete the proof of Theorem 3.1.

6 Non-Euclidean Neighborhood Systems

In this section, we shall show that our separator theorems for the overiap graphs of Euclidean neighbor-
hood system can be generalized to neighborhoods determined by any norm. Thus. a neighborhood
system for a norm ||v|| is a collection of ball B; = {p | |lp—p::| < mi}.

Observe, that any norm determines a unique symmetric closed convex body, i.e., the unit ball
centered at the origin. A body B about the origin is symmetric if p € B implies that —p € B. It is
also true that any symmetric convex body B determines a unique norm. namely. that norm with unit

ball B.



A more general neighborhood system can be obtained from translation and dilations of any closed
convex body. Due to space constraints we only discuss this more general case. In a body that is not
necessarily symmetric, the first issue becomes that of defining the center of the body.

Let T be a bounded convex body in IR®. Let E’ be the largest ellipsoid that is contained in T
and E the smallest one that contains I'. It is proven by Lowner and John [Lov86] that E’ and E
are concentric. Moreover, E arises from E’ by enlargering by a factor at most d. (E’, E) is called a
Lowner-John pair and the center Or of both E’ and E is Lowner-John center.

Theorem 6.1 For each convez body T in IRS, if G is an (a, k)-overlap graph of in S(T'), then G has
an O(a-d- kY. nld-0/4 4 g(a,k,d))-separator that 33 -splits.

7 Open Questions .

1. What is the computational complexity for deciding whether a graph G is k—embeddable or
(a, k)-embeddable?

2. Is there a polynomial time algorithm for computing the disk packing of a planar graph.
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A Proof of the Ball Coverage Lemma
Proof: (Lemma 4.1): We first prove the following lemma:

Lemma A.1 The mazimum number of points that can be arranged on a unit sphere whose pairwise
distance is at least 1, is bounded above by 74.

Proof: Suppose the lemma is false, i.e., there are ¢ > 74 points p;,...,p; on a unit sphere with center
o, such that

min{|lpi —pjl[: 1 <i<j <t} 21

Let p} be points on the ray op; such that ||o — pl|| = 2.

Clearly, ||p; — Pjll = 2llpi - p;ll 2 2.

Let S; be the unit sphere centered at pj. Because ||p} — pj|| > 2, int S; Nint §; = @ for all
1<i<j<t,and forall Sy,...,5; touch the central unit sphere, a contradiction. a

We now prove Lemma 4.1.
Proof: We first prove the lemma in the case when k = 1, i.e., no ball contains the center of other
balls.

Suppose Lemma 4.1 is false in this case, i.e., there is a p € R? such that there are t > 74 balls,
without loss of generality, B;,..., B contain p.

Without loss of generality, assume p is on the boundary of all balls By,..., B;. For otherwise, we
can replace B; by a ball C; centered at p; with radius ||p; — p||- The assumption of the Lemma is still
satisfied because C; C B; which implies

lint C: 0 {1, - pa}| < fint Bi O {pr,...,a}| < .

Let d = min{||p — p;|| : 0 < i < t}. By proper linear transformation, we can assume d = 1. Let
S, be the sphere centered at p with radius d = 1.

Let p! be the intersection of the ray pp; with the sphere S,. Let B’; be the ball centered at p;
with radius d.

We observe, for all 4, int B! N {p},....pL} = {pi}.

Suppose this is not true, i.e., there exists i and j € {1....,t} such that p; € int B;. It follows that
|lp} — p|| < d. This implies p; € int B; as well.

If |[p = pill = |lp = p;ll, then

[p; = pill :
|lpi = ;| o= llp = pill I

Thus p; € int B; and p; € int B; which contradicts with the assumption that p; € int B;.
Without loss of generality, we assume ||p — pi|| > ||p — p;l|-

Let ¢ be a point on the ray pp; such that ||p— ¢|| = :\p — p;||. We have
|12}, 25| .
¢ - pill = m———llp = p:l < llp = pill-
= pill = 11, = ;

By the triangle inequality,
pi = q:i+1llg = psll 2 pi = pill-
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Thus
llpi — 2ll = llpi — gll + |lg = pll > llpi — gl + Hlg = P5ll 2 lIpi — psll-

This implies that p; € int B;, a contradiction. Therefore for all 7, int B; N {p},...,pPn} = {pi}-
This implies that if Lemma 4.1 is false for the case k = 1, then there are ¢t > 74 points on the unit
sphere, whose pairwise distance is no less than 1. This contradicts with the Lemma A.l. Hence,
Lemma 4.1 holds when & = 1. "

Suppose that Lemma 4.1 is false for some k > 1, i.e., there are ¢t > 74k closed balls, without loss
of generality, B,,...,B; contain a point p € RS

Define a subset Q of {p1,...,Pn} by the following procedure.

In the following procedure, initially, P = {p1,...,p:} and Q@ = 0.

1. while P#0

(a) Let g € P with the largest ||q — p||;

(b) @=QU{q};
(c) P =P —int B,, (where B, stands for the closed ball centered at g);

Because that no ball contains more than k points from {p1,...,p¢} in its interior, we have

Q1> [l 2 ma+1.

We now observe that for all ¢ € Q, int B, N Q = {q}.

Let Q = {q1,...,Gm} such that for all i < j, ¢; is put @ in the above procedure before g;,
we have, for all j > i, g¢; € int B,. Further, for all i < j, ¢i ¢ int By,. This is so, because
llgi = g;11 > llgi = pll > llg; — .

Consequently, if there are more than 74k balls covered p, then there are more than 74 balls that
cover p and no ball cover the center of other ball in its interior.

This contradicts with Lemma 4.1 when & = 1. Therefore. Lemma 4.1. O

B Proof of Lemma 5.6

Proof: The first inequality follows immediately from the definitions of f and g and Lemma 5.4.
For the second inequality, we focus on a particular point p € IR?. Notices that if g(p) = 0, then,
f(p) = 0 as well. The inequality follows.
Now, assume g(p) > 0.
Define
M = {i edliuan}ie™ € filp) < 2-l+1}

forall[: —o0 <1 < .

Because that U_<i<oo M1 = {1 fi(p) # 0} and M’s are pairwise disjoint. each indices 7 : fi(p) #
0 occurs in exactly one of M;’s.

Let m; = |M;|. We claim my; < 6%rak.

We now proof the claim.

For each i € M;. by the definition of M; and f;. -1 < ~. <2 recall 4; is twice of the radius of
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Let B be a ball centered at p with radius 2! + 2/=1. Since ||p — pii| < =i, it follows B; C B.
Notice that for all ¢ € M, int B; contains no more than k points from {p; : j € M;}. By Lemma
4.1, no point from B is covered by more than 74k balls from {B; : j € M;}. Therefore,

rak - vol(B) > > vol(B;)
JEM,

Let Vy(r) be the volume of a ball in IRy of radius r. We have for all j € M;, vol(B;) > Vy4(2!-2).
Consequently,

rak - Vy(2' + 271 > | My|Va(2'72),

which implies |M;| < 6374k, thus the claim.
Now, we have

(f(p))*

- d/(d-1)
( > > f;(p)‘d'”)

l=—oo 1€M;

- d/(d-1)
z m;(Q_H-l)d_l
I=—n0
- d/(d—1)
2d ( Z mf(g—i)d—l)

==00

IA

I

where m; < 6%74k.
Setting § = 697,k and applying Lemma 4.4, we obtain

oo
J(p)* < ca2¥(B%rak) /@D 32 iz

[==00

This summation is a lower bound on g(p)? because for each i € M. f;(p)* > 24, This concludes
the proof of the lemma. a

C A Cost Function for (¢, k)—-overlap Graphs

Let P = {p1,...,pn} be a set of n points in IR? and G be the (o, k)—overiap graph defined by P. Let
r; be the radius of B;. Let v; = 2ar;. We define a function f; as

; _J 1/ ifz€e(2a) B ie., ||z —pil <~
filz) = { 0/ otherwise] I 1

The cost function of the (a,k)-overlap graph G is then defined to be

f(x} = pr—l](fla--- v fn)
The following are two lemmas which can be proved similarly to Lemma 5.6 and 5.7. respectively.

Lemma C.1 (g(x))?¢ < (fiz))? € es2%(6% k)31 . (g(z))<.
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Lemma C.2
[ (f@)(da)? < Gaok*n
zeIR?
Consequently,

Lemma C.3 There ezists a (d+2)-spiitt:'ng sphere S of P with Costs(5) =0 (fak”dn%).

D Proof of Lemma 5.11

Proof: We write C as the union of three subsets C = Cy U C3 U C3, where

C; = {ieC:pie R®—(2-8)}
Cs = {i€C:p;€(2-5)v > radius(S5)}
G = C~0=Cs

It simply follows from Lemma 4.2. that |Ca| < A4(1/2)k. Similarly, |Cs| < Aa(1/2)k + rak.
We now bound the size of ;. First notice that

Costy(S) = f Z filv)iN(dv)d1 > 3 / fi(©))*(dv)*1.
i€C)

By the definition of Cy, for each i € Cq, S has a common point with B;. Further, the radius(S) >

S ] 7o\,
;. This implies that the area of SN (2 - B;) is at least ( 4 7,-) Ty
Therefore,

() (doy > Area(an(2-B) (L)
[ (o) (@)t 2 rea(dn (2 ,n(;) >

AV
ey
15
\""\-\-—.‘/
(=9
—
B
n:“
]

Consequeﬁtly,

d-1
Costy(5)2 3 [ (o) (@n)*" 2 |Gl (‘ﬁ) Vict

1€Cy

Thus, |Cy] £ (f’-‘i.@) ! 72—Cost;(S). Detailed proof will be given in the full paper. i



