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Abstract

We propose a class of graphs that would occur naturally in finite-
element problems, and we prove a bound on separators for this class
of graphs. For three-dimensional graphs, our separator bound is
O(N?/3). We also propose a simple randomized algorithm to find
this separator in O(N) time. Such an algorithm would be used as a
preprocessing step for the domain decomposition method of efficiently
solving a finite-element problem on a parallel computer.

This paper generalizes “local graphs” of Vavasis [1990] to the case
of graphs with varying densities of nodes. It also generalizes aspects
of Miller and Thurston’s [1990] “stable graphs.”

1 Separators and domain partitioning

Motivation for this work is Poisson’s equation. Let €2 be an open connected
region of IR®. Suppose one is given a real-valued map f on Q, and is
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interested in finding a map u : @ — IR such that

Vu = fon{, and
u = 0 on 9.

Two common techniques for this problem are finite differences and finite
elements. These techniques grow out of different analyses, but the end
result is the same. In particular, a discrete set of nodes is inserted into
and a sparse system of linear equations is solved in which there is one node
point and one equation for each node interior to . Moreover, the sparsity
pattern of the system reflects interconnections of the nodes. Let the nodes
and their interconnections be represented as an undirected graph G.

Two numerical techniques for solving this system are domain decomposi-
tion and nested dissection. Domain decomposition divides the nodes among
processors of a parallel computer. An iterative method is formulated that
allows each processor to operate independently. See Bramble, Pasciak and
Schatz [1986], and Chan and Resasco [1987], and Bjgrstad and Widlund
[1986]. Nested dissection, due to George [1973], George and Liu [1978] and
Lipton, Rose and Tarjan [1979], is a node ordering for sparse Gaussian
elimination.

For either technique it is necessary to first partition the region into
subdomains. This is the goal of the paper at hand. The partitioning is
accomplished by partitioning the nodes into p + 1 disjoint subsets, say
Gi1,...,Gp, G, Sets Gy,...,G, are the subdomains, and set G. is the
boundary or separator. It is required that no edge connect G; to G; if
1 <1 <j < p; all paths between distinct subdomains must go through the
boundary.

For the purpose of efficiency in a domain decomposition algorithm, it is
important for the number of nodes in each set G; to be roughly equal, and
it is also important for the size of G.., to be as small as possible. In general,
such a decomposition may not be possible; see the counterexamples in
Vavasis [1990] or Miller and Thurston [1990]. Accordingly, it is necessary
to restrict attention to classes of graphs that occur in practice in finite
element computations. We propose the following definition.

Definition 1 Let G be an undirected graph and let = be an embedding of
its nodes in IRY. Then we say that T is an embedding of density o if the



Figure 1: An example of a graph considered by Berger and Bokhari.

following inequality holds for all vertices v in G. Let u be the closest node to
v. Let w be the farthest node from v that is connected to v by an edge. Then

Ir(w) = =(@)] _
HOEEOI

In general, G is a density graph if there exist a 7 and a > 0 such that
7 18 an embedding of density a

Here and elsewhere in the paper, the norms are Euclidean norms. The idea
of this definition is that a node can be connected only to nodes in its im-
mediate neighborhood. This type of graph arises often in finite differences
and finite elements; see for example Figure 1 based on Berger and Bokhari
[1987] or Figure 2 generated by Chew’s [1989] mesh generator. The figures
depict graphs embedded in IR?>. We make further remarks about this defi-
nition in the next section. The importance of this definition is as follows.
We are able to show that any N-node density graph G has a partition into
G1,G,, G such that G has at most cN(@-1/4 nodes and such that G, and
G, are no more than a constant fraction of the original domain. Here, ¢ is
a constant that depends on a and d in Definition 1. This result will take
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Figure 2: A graph generated by Chew’s mesh generator

care of the p = 2 case, and partitions into larger numbers of subdomains
can be accomplished recursively.

This paper allows d to be arbitrary, although the most interesting cases
for numerical analysis are d = 2 and d = 3, in which case the separator is
bounded by O(N'/?) and O(N?/3) respectively.

2 Comparison to other classes of graphs

The point of Definition 1 is that no node has an edge connecting it to a
node very distant from its own neighborhood. We make the following trivial
observation: if G has any edges, then the parameter o in the definition
must be at least 1. In addition, one can easily show (see Vavasis [1990])
that any N-node graph is a density graph if we allow a as large as ¢cN!/d.
Accordingly, the interesting case is when « is bounded independently of N.

Such behavior is expected from triangulations generated by automatic
mesh generators. For example, Chew [1989] has a two-dimensional mesh
generator in which all triangles have angles no less than 30° and no more
than 120°. One can easily prove that such a graph satisfies the two-



dimensional analog of Definition 1 provided that assumptions are made
about the shape of the boundary of the domain (see below). Similarly, a
finite-differences mesh with mesh refinement will also satisfy such a condi-
tion provided that no more than one level of refinement is done per cell (as
in Figure 1).

Definition 1 is a strict generalization of “local graphs” defined by Vavasis
[1990]. In particular, that paper assumed that there was an upper bound on
the ratio of longest edge in the whole graph to the smallest node separation
in the graph. This means that such a definition could not handle graphs
like the two figures in which the density of the elements varies from one
region of the domain to the other. Like our main theorem, Vavasis had an
O(N?/3) bound on the separator.

Definition 1 is a partial generalization of the Miller and Thurston’s class
of “stable” graphs. A stable graph must have edges corresponding to the
edges of a triangulation, and there must be a lower bound on the aspect
ratio of each tetrahedron in the triangulation. “Aspect ratio” refers ratio
of the inscribed sphere diameter to the circumscribing sphere diameter of
any tetrahedron in the triangulation. Our class of density graphs do not
have to be triangulations.

Moreover, there are certain kinds of triangulations that fit the density
definition but violate the aspect ratio definition. For example, the tetrahe-
dron formed by four coplanar points arranged in a square has aspect ratio
of zero but would not violate the density-graph condition.

Density graphs are not a generalization of stable graphs. There are
examples of stable graphs that are not density graphs because the aspect-
ratio condition does not require “external boundary” nodes to be well-
separated. The concept of external boundary nodes is well defined in the
case of a triangulation but does not have a meaning for density graphs of
this paper.

Figure 3 shows an example of a stable graph in two dimensions, that, for
the embedding depicted, would not be a density graph for a < 20 because
vertices ¢ and y are very close together. The fact that external boundary
nodes of stable graphs can be close apparently requires an extra term in
the estimated size of the separator. Miller and Thurston are able to prove
a bound on the separator size of the form T\ + T, where T} is O(N?%/3)
(the same bound in the present paper) and T; depends linearly on the
the number of boundary nodes. Accordingly, the bound on the separator
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Figure 3; A stable graph with two nearby nodes.

size in this paper is better, but this is because our definition exclides a
troublesome case for Miller and Thurston’s results.

3 A function g based on the graph G.
The main theorem of this paper is as follows.

Theorem 1 Let G be an N-node density graph embedded in IR? with pa-
rameter . Then in randomized O(N) time and also in randomized NC one
can find a partition (G1, Gz, G.) of G such that G, and G, contain at most
(d + 1)N/(d + 2) nodes and such that G.. contains at most caN(d-V/d 4
nodes, where ¢ depends on d, and ¢ depends on a and d.

For the proof of the theorem we will construct a real-valued function g
on IR? based on the graph. We will find a separator for the function, and
deduce the existence of a graph separator. This technique of constructing
a function to model the node density is taken from Miller and Thurston,
although our specific construction is different. The proof of the theorem is
spread over three sections.



We start with a graph G with N nodes as in the theorem. We define
functions f and g as follows. Assume the nodes of G are numbered 1,..., V.
Let (i) be the point in IR? where node i is embedded. Let p; be the distance
from node 7 to its most distant graph neighbor. For the ith node in G we
define a function f; as follows:

e 8 Sl = Bt

0 otherwise.

Notice that
f,-d dV = vy
Hd

where vy is the volume of the d-dimensional unit sphere. Here and in the
rest of the paper, integrations over volumes in IR? are denoted with dV/,
and integrations over d — 1-dimensional surfaces in IR? are denoted by dA.
Next, define f and g pointwise as follows:

] = (i fe(w)d)lfd.
and
o) = (i fs(x)“‘l)w_”—

We notice immediately that
o fFidV = vaN (1)

because this integral is equal to the sum of the integrals of the f9.

We would like to establish an O(N') upper bound on the integral of g¢.
This is the purpose of the upcoming series of lemmas. We remark that this
proof would be easier if we were willing to accept poorer bounds in terms of
. This first group of lemmas establishes some basic properties concerning
powers of sums and sums of powers.

Lemma 1 Let ay,...,a, be nonnegative numbers, and suppose p > 1. Then
n P n n p-1
(Sa) <p|Sa (z‘, )
1=1 =1 Jj=i



Proof. Define the function

Bt (i;x,-)’p.

w-r(E)

Let al*) be the vector in IR™ given by:

We notice that

a® = (0,...,0,aiaig,.. . an).

Then
#a,...,a,) = ¢(al)) #(ar+D)
= [¢(a{ )) - é(a(""‘))]
= Z/ 3x co0,0,t,ai41,...,0,)dE
= pi (t+ Z aJ) dt
J=i+1
< Pias" (a£+ Zn: aj)
i=1 J=it+l
< Za. (iaj) .
[ |

Lemma 2 Let...,m_y,mg,m1,my,... be a doubly infinite sequence of non-
negative numbers such that each m; is bounded above by 6 and such that at
most a finite number of m;’s are nonzero. Let d > 2 be an integer. Then

- 4/(d-1) -
( Z mkz—k(d—l)) Scdglf(d—l} Z mk2_kd
k=—co k=—co

where cq i3 a positive number depending on d.
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Proof. Since at most a finite number of the m; are nonzero, then we can
apply the preceding lemma because the above sums are actually finite.
Applying the lemma, we see that

o~

o0 d/(d-1) PR - 1/(d-1)
(Z mkz—k(d—l)) < o T me2ke-n. (Z ij-J(d-l))

k=-—o00c =
1/(d-1)
9. g—f(d—l})

d - k(d-1) -
S =5 10 PR A PP
=—00 1=
—k(d= d-1)
d & ; g . 2-k(d-1\
e g TN B N
S 71 k_Z k2 (1 -1
=-0co
g cdglf{d—l) i mkz—k{d—l] '2—’:
k=-co
(d-1) — —kd
S Cda Z mk2 .
k=-—o0

|
Lemma 3 Let ¢(t) be a convez real-valued function defined on the nonneg-

atwve numbers such that ¢$(0) = 0, and let ay,...,a, be a sequence of non-
negative numbers. Then

;fﬁ(ﬂi) <¢ (2::1 a-‘) :

Proof. For the n = 2 case, we observe by definition of convexity that

ay

$(ay + az) + —2—3(0) > ¢(ar).

ay + as a; + aq
The second term on the left drops out by assumption. Similarly,

az
a; + a,

d(ay + az) > ¢(az).

Adding these inequalities gives the n = 2 result. The general case is now
proved by induction. W}



Lemma 4 Let ay,...,a, be nonnegative numbers, and d > 2. Then

n 1/d n 1/(d-1)
(B) =)
i=1

i=1

Proof. Let ¢(t) be the function ¢ s t9/(4-1), Then ¢ is a convex function
on the nonnegative numbers. We do the following calculation using the

previous lemma.
n 1/d n 1/d
(Te) = (Totat)
=1

i=1

< bl

n J 1; (d"l)
E : -1
a; .
[i:l ]

We now come to the main result for this section. This result immediately
leads to a bound on the integral of g4 over IR?. In this result we use the
preceding lemmas.

IA

Lemma 5 For all z € IR, the following inequalities hold:
f(2)* < g(z)? < ga®= f(z)?
where ¢ is a constant depending on d.

Proof. The first inequality follows immediately from the definitions of f
and ¢ and Lemma 4.

For the second inequality we focus on a particular point z € IRY. If
f(z) =0 then g(z) = 0 as well, so the inequality follows. Otherwise, define
for all integers k:

Me=1i € {1,...4n} : 27F € filz) < 275,
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Notice that the M’s are pairwise disjoint, and their union is the set of
indices ¢ such that f;(z) # 0.

Let m; denote the cardinality of M;. We claim that m; < c/ja? where
cj is a constant.

To prove this, we rely on the density graph condition. Observe that
7(:) for ¢ € M, must lie within distance 2% of z by definition of f;. On
the other hand, the longest edge adjacent to x(¢) is of length at least 2%-1,
also by definition of f;. Surround each point ¢ for ¢ € M with a ball of
radius 2¥-2 /a. These balls must be disjoint for the following reason. The
points 7(z) for 1 € My must be distance at least 2¥~!/a from one another
by definition of a density graph. Accordingly, there are m; disjoint balls
of radius at least 2¥-2/a around these m; points. All of these balls lie in
a sphere of radius 2% 4 25-2/qa, that is, a sphere of radius 1.25 - 2* (since
a > 1) since the centers of the balls are within 2.

The volume of each of the m; smaller balls is 2(*-29y;/a4, and the
volume of the enclosing sphere is at most 1.25%,- 2%¥4. This gives an upper
bound on my because the balls are disjoint. In particular, m; is bounded
by the quotient of these quantities, i.e.

1.2590k4
= 2(-2)d]od

< c:;ad

Mk

Now we observe that

v 4/(d-1)
gy = (Z X f;(w)"“)

k=—co 1EM,

- 4/(d-1)
S ( E mk(2—k+l )d—-l)

k=—co

& df(d-1)
S 2d( Z mk(2_k)d_1)

k=—o00

with m; bounded by ¢ja?. Now we can apply Lemma 2 with the choice
8 = cja’ to deduce that

1 20
g’(-I')d Scd2d(cgad)1f(d—l} Z mk2_kd.

k=-00
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This summation is a lower bound on f(z)?, because for each : € M,
fi(z)? > 2%, This concludes the proof of the lemma. 1

Therefore, g4 is no more than a constant multiple of f¢ where the
constant is ¢;a?(4-1), By (1) we have a bound of the form

J.9%dV < DN, (2)

where ¢ depends on d.

4 Construction of a continuous separator

In this section we find a sphere S such that
[ g da = o(NE-014) (3)
s

and such that at most 3N nodes are inside S and at most SN are outside,
where § < 1 depends on d.

This sphere can be constructed using a theorem from Miller and Thurston.
In particular, they have the following result.

Theorem 2 Let T be a set of N nodes embedded in IR?, and let g : IR — IR
be a nonnegative-valued measurable function with compact support. Suppose

that
/ g?dV =h. (4)
Rd

Then there ezists a sphere S such that at most BN nodes of T are strictly
inside S, at most BN are strictly outside, and

/Sgd" dA < gghld-1/4, (5)

where B = (d + 1)/(d + 2) and ¢4 is a positive constant depending on d.

The proof of their theorem uses conformal mappings and the notion of
the “centerpoint” of a set of points (see below). It concludes with the use
of the Holder inequality.

In this section we propose two potentially useful variants to this this
result. The first variant is simpler because the proof technique requires
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only counting (plus the Holder inequality), although the constant factor 3
is much worse (exponentially close to 1).

The second variant is notable because it attains a better constant value
(8 = d/(d+1)) and because it is very reminiscent of the Lipton and Tarjan’s
[1979] planar separator theorem, one of the first general-purpose results on
separators. The separator, however, has a more complicated shape than a
sphere.

First, we prove the result with 8 = 1—2-9-1 using a counting argument.
Let G denote the set of N points in IR? at which nodes of G are embedded.
We first construct a sequence of numbers b, ..., by such that the set:

Fl Gn{(xla a$d)=$1Sbl,---,$dS5d}
has at least N/2¢ points, as does the set
FZ Gn{(xls 3 d):xlzblv-'vxdzbd}-

In order to construct these two sets, rigid motions of IR? are permitted.

The numbers by, ..., by are constructed inductively; suppose by, ..., b;_;
have been constructed so that G N A and G N B each have at least N/2t
points where

A= {(:.:1,...,3:4)::1:1 S bl,...,x;_l S b,‘-]]‘

and
B = {{z1y000sTd) s Ti 2 BiyoroyBicg 2 bii )

(Note: for the inductive base case, we can take b; to be the median z,
coordinate among points in G. Accordingly, we can assume i > 2 in the
follomug ) Then we take the median value of z; coordinates among points
in GN (AU B). Let this median value be b;. Let L and U denote the
halfspaces {z; < b;} and {z; > b;} respectively. Then one of the two
following statements must be true:

1. There are at least N/2' points in G N AN L and at least N/2 in
GNnBNU.

2. There are at least N/2° points in G N AN U and at least N/2 in
GNnBNL.
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In particular, suppose both statements were false, e.g., suppose that G
AN L and GN BN L each had fewer than N/2¢ points. This means that
GN(AUB)NL has fewer than N/2~! points, which contradicts the choice
of b; as the median. Other ways of negating both of the two statements
also lead to contradictions.

Thus, either statement 1 or 2 holds. If statement 1 holds, this exactly
proves the inductive statement. If statement 2 holds, then we reflect the
embedding by transforming coordinate z; of all nodes to 2b; — z;. After this
reflection, statement 2 also proves the inductive statement.

Therefore, the induction argument shows that the sequence by, ..., by
exists. Next, let ( be the median distance of points in G N (F} U F;) from
the point b = (by,...,bs). Using a similar reflection argument, we can

conclude that there are at least N/29+! points in each the two sets
=GN{(z1,...,2a) : 21 < byy...yzq < by, flz = bl|2 < ¢}

and
Gy =GN {(z1,...,%d) : 21> b1,...,za > by ||z — bl > ¢}

See Figure 4 for an illustration of the boundaries of these two sets in two
dimensions. We claim that it is possible to surround G; with two concentric
spheres S; and S, of radii r; < r; such that

1. Set G is in the interior of Sj.
2. Set G, is in the exterior of S,.
3. The ratio ry/r, depends only on d.

The two spheres are illustrated in Figure 4. The center ¢ of the two
spheres may be chosen to be the point

(b1 = C/d, ..., ba—(/d).

Then one can compute that setting r; = ((1 — 1/d) and r, = ((1 + 1/d)
satisfies all the conditions.

Finally, we construct the sphere to satisfy (5). The previous construc-
tion shows that the ratio r/r; is a positive constant 74 < 1. Let S, denote
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Figure 4: The construction from the counting argument in two dimensions.

(the surface of) the sphere of radius r centered at ¢. Then we consider the
expected value of
/ gd—l dA
S

where 7 is chosen uniformly at random between r; and r,. Let a be this
average value, which is exactly equal to

: f * Frddr
ry Sr

Ta—Ty

a =

The double integral above can be interpreted as a volume integral of gi!
over the region P € IR® contained between S; and S, so we have

e ah fgd‘ldV.
P

Ta.—r

Now we apply the Holder inequality. The Holder inequality says that for
nonnegative functions ¢ and ¢ suitably integrable on a measurable set P
and for positive real numbers p, ¢ such that 1/p + 1/¢ = 1, the following

relation holds: iin 1/q
Lees(fo) (L)

15



See, for example, Royden [1968]. We apply this function to our problem
with P as above, p = d/(d — 1), ¢ = d, ¢ = g% and » = 1 (constant
function) on P. Then we conclude that

1 (d-1)/d 1/d
&< (/ gddv) .(f1dv) .
G0 T | P P

The first parenthesized integral is bounded by A as in (4). The second
parenthesized integral is the volume of P. The volume of P is vy(rd—r¢). An
upper bound on the dth root of this volume is v;! . Combining everything
gives

L &1 hld-1/d,
reg —T
The fraction in the previous expression is equal to a constant depending
only on d.
This shows that the expected value of

A g%t dA (6)

is bounded by ¢’h(4-1/4 if r is chosen uniformly at random from the interval
[T‘I, T'z] .

This is not exactly what is needed to show the existence of an efficient
probabilistic algorithm; instead, we should show that the probability that
an unacceptably large separator is chosen is small. We claim that

Prob ( / G TdA > 2RV ¢ [rl,rg]) <1/2.
Sr

In particular, since the expected (average) value of (6) is at most ¢/h(d-1)/d
and the integral is never smaller than 0, then no more than 1/2 of the
probability distribution could lie beyond 2¢’h(d-1)/4,

Therefore, if we choose k values of r lying in [r1,72) at random, then
the probability all the integrals of the form (6) will have value more than
2¢h@-1/4 js at most 27, which can be made arbitrarily small. Finally,
recall that h was defined to be the integral of g¢ in IR?, which we proved
last section was ca(?/(@-VU N with a constant depending on d.

Thus, the algorithm to construct a sphere S satisfying (5) with at most
(1=27%"1)N nodes of G inside or outside of S is as follows. First, the point
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(b1,...,b4) and the radius ( are computed using the inductive procedure
described above. This requires d+1 median-finding computations (see Aho,
Hopcroft and Ullman [1974] for median-finding algorithms). Each median
operation requires O(N) steps. From this data the two radii r; and r, are
computed, and then a random number r is selected uniformly at random
from the interval [ri,r;]. The sphere S, could be tested directly to see
whether it satisfies (5), but it is easier to use the procedure described in
the next section to compute a node separator. The node separator can be
tested to see if it is too large.

We now turn to the second argument to establish a variant of Theorem
2. This approach will yield a better constant at the expense of a more com-
plicated separator shape. This approach, when viewed abstractly, is very
reminiscent of Lipton and Tarjan’s proof of the planar separator theorem.
This approach is nonconstructive in that we do not have algorithms for
every step.

First, we need to define the centerpoint of a finite set of nodes.

Definition 2 Given a set Q C IR? of N nodes, a centerpoint of Q is a
point ¢ € IR? such that for any halfspace H not containing c, there are at

most ﬁ—l—N points in QN H.

Efficient algorithms for computing centerpoints are described in Miller
and Teng [1990]. Assume that we have a centerpoint ¢ € IR? of the nodes
of G embedded in IR?.

Let C(r) be the sphere of radius r around ¢. Define a function p of r to
be the surface integral

p(r) =/ g4l dA.
o(r)

Now, pick r; and r; as follows. Let r; be the maximum radius such that
p(ry) < nhld-D/d (7)

and such that at most dV/(d+1) nodes are strictly interior to C(r,). Here,
1 is a constant that depends on d. The value for 7 is given below.

We note that this r; exists for the following reason. We can identify
a particular r* such that there are at most dN/(d + 1) nodes on strictly
inside C(ry) if and only if r < r*. Next, notice that p(r) is a continuous
function except possibly in the case that the centerpoint ¢ coincides with
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an embedded node of G. (In this exceptional case we drop the term in the
formula for g corresponding to this anomalous node; this does not affect
the final separator bounds). Since p is continuous on [0,7*] and p(0) = 0,
we conclude that r; exists.

Similarly, let r; be the minimum radius such that p(r;) < nh(4-1/d and
such that at most dN/(d + 1) nodes are embedded strictly outside C(r,).

We now have some cases.

Case 1, ry > r3. In this case, there are at least N/(d 4+ 1) nodes on or
outside C(r;) and at least N/(d + 1) on or inside C(ry). Therefore, sphere
C(r1) (as well as C(r;)) satisfies the theorem.

If we are not in Case 1, then IR? is partitioned into three regions 4, B, C,
namely, the inside of C(r,), the space between C(r;) and C(r;), and the
outside of C(r;). Formally,

A = {zelR: |z —c|| <},
B {zeR?: ||z —c|| € [r1,ma]},
£ = {:rEIRd:“x—cH >1"2}.

Because of the choices of 7, and r,, we know that at least N/(d + 1) nodes
are in BUC and at least N/(d 4+ 1) are in AU B.

Case 2. At most N/(d + 1) nodes are in B. Then AU C has at least
dN/(d+1), so at least one of 4 or C has at least N/(d+1) (provided d > 2).
Say, for example, that C has at least N/(d + 1). We already know A U B
has at least N/(d + 1). Therefore, C(r;) is a valid separator.

Case 8. B has between N/(d+1) and dN/(d+1) nodes. In this case our
separator is C(r;) U C(r;), and our two subdomains are B and AU C.

Case {. B has more than dN/(d + 1) nodes. This is the long case. To
simplify the notation for this case we assume that ¢ = 0, i.e., the center-
points of the nodes is at the origin.

First note that by choice of ry,r;, the integral of g?-! on C(r) for any
r € [r1,7) is at least nh(@-1/4, We now compute an upper bound on
(rg —ry1)/r;. Observe that

IV

(d=1)/d, 1/d a g\ e
h vy Ty 9 dv - vol(B)

> f g tdv
B
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v

C [ gtavr
j':l C(r}g
> (ry —ry)phd-1/d,

Clearing the factor A(?~1/4 and assuming 5 = 2v}/* we conclude that r, —
r1 < 1r2/2, ie., ry < 2ry. In the above chain of inequalities we used facts
derived earlier plus the Holder inequality.

Let U be the unit sphere in IR?, that is, the set of vectors of unit length.
For a nonzero vector a, let a* be the hyperplane through the origin normal
to a. Finally, let rU denote the vectors of length r.

Suppose a chosen uniformly at random from U; then we have the fol-
lowing chain of equations about the expected value of the integral of g?-1
on a* N B (note that a* N B is the intersection of a hyperplane through the
origin with the volume between two spheres centered at the origin). In this
chain, sq denotes the surface area of U, and 7 denotes the expected value.

T = E (_/ g(z)?! dA)
z€alnB
1 d-1 ’
= — dAd
Sd ]GEU \/J:EalﬁB g(x) Aoa

= o s 90 o

= / f f 9(z)*' dadA' dr
S84 Jry JaeU Jz€ainerU

= L rd‘Z/ / g(rw)?'dadA’ dr (8)
Sd Jry a€lU JwealnU

- A 2rd‘2] [ g(rw)* ' dadA’ dr (9)
Sd Jry wel JagwinlU

The interchange of a and w between (8) and (9) is explained in an appendix
to this section. Notice that the integrand g(rw)?—! does not depend on the
innermost variable of integration in (9). This means that we can replace
that integration with the volume of w* N U, which is s4_;.
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In the above chain of inequalities we used the Holder inequality, the bound
on the integral of g? on IR?, the fact that B is contained in a ball of radius
r2, and the fact that r, < 2r;.

Thus, if a is chosen at random, then with high probability the bound
of the integral on a* N B is at most a constant times A(4-1)/d, Accordingly,
assume that a has been chosen with this property.

Since c is a centerpoint, at most (d — 1)N/d of the nodes are on either
side of at. Let the two sides of this hyperplane be denoted by E and F;
they form a partition of IR? that is “orthogonal” to the partition given by
A,B,C.

Now, we take cases. The first case is that BN E has fewer than N/(d+1)
nodes. Then one of our subdomains is BN F and the other subdomain is
the complement of BN F. Notice that since B has at least dN/(d+ 1) nodes
and BN E has fewer than N/(d + 1), it must be the case that BN F has at
least (d — 1)N/(d + 1), i.e., at least N/(d + 1). Moreover, the complement
of BN F contains E, which also has at least N/(d + 1). Thus, we have a
partition satisfying the bound. The boundary of BN F is made up of pieces
of C(ry), C(rs), and a* N B. This means that the integral of ¢g?-! on the
boundary is bounded by a constant multiplied by h(4-1)/4,

The second case is that BN E has between N/(d + 1) and dN/(d + 1)
nodes. Then our two subdomains are BN E and IR? — (B N E). Clearly
this partition has all the desired properties.
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The final case is that B N E has more than dN/(d + 1) nodes. This is
impossible because at most dN/(d + 1) nodes can be on either side of a*.

Appendix: Interchanging order of integrations.

In this appendix we explain the interchange of integrals between (8) and (9).
We remark that the same interchange of integrals is required to establish
the Miller-Thurston theorem and is used implicitly in that paper.

Let E be the following set:

E = {(a,w) € R x R : ||a|| = ||w|| = 1; (a,w) = 0}.

Here, (-, -) denotes inner product. Thus, E is a subset of U x U. For the rest
of this appendix we denote the standard embedding of the d-dimensional
sphere in IR? by 59 rather than U.

Observe that the two inner integrals in both (8) and (9) are both
parametrizations of F; in other words

E= ({a}x(e*nsh) = U ((w* N 5% x {w}).

acSd weSd

Thus, the sets of integration are the same; all that remains is to compare
the volume elements. Note that E has a natural volume element arising
from its embedding in IR?**?. Instead of connecting the volume elements
in (8) and (9) to each other, we compare them both to the natural volume
element on E.

Analyzing the volume elements requires some differential geometry. Let
71 defined on E be the projection onto the first d + 1 coordinates. Define
72 as the projection onto the last d + 1 coordinates. Observe that the
image of m; is §%. Moreover, for any a € S¢, 77(a) is a copy of S94-!
embedded in IR*!. Under these circumstances, we say that (E,m) is a
bundle whose base B is S? (i.e., B = §¢ = m1(E)) and whose fibers are
isometric to S9-1. We denote the fiber of a particular a € B by Fib(a), i.e.,
Fib(a) = 77'(a) = a* N S9. Note that a small neighborhood of a point in
E is homeomorphic to the neighborhood of a point in 5 x $4-1, so (E, ;)
is a “local product.”

The integration in (8) corresponds to integrating on a “fiber-by-fiber”
basis. If E were trivial bundle, i.e., E were diffeomorphic to S¢ x S9-1 then
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we could convert the fiber integration to an integration over E simply by
exhibiting the diffeomorphism as a function in terms of coordinates, and
then finding the determinant of its Jacobian. Since E is nontrivial, however,
a representation in terms of coordinates does not exist.

Instead, we produce a volume element by examining the tangent spaces.
For a manifold M, let T,(M) denote the tangent space of M at point z € M.
The tangent space has formal definition in differential geometry. Since all of
our manifolds come with a natural embedding in IR" for some n, we can use
the intuitive definition that T,(M) for M embedded in IR" is the subspace
of vectors in IR" tangent to M at z. If our manifold is given by constraints
(as is E, for example), then the tangent space at point is the subspace
of vectors orthogonal to the gradient of each constraint. By writing out
these gradients, we can in fact deduce immediately that T(,.)(E) is the
2d — 1-dimensional subspace of IR?¥*? that is a direct sum of three mutually
orthogonal vector spaces:

T(a,w)(E) =T1o6T;0T;

where

i = {(0,y):(y,a) = (y,w) =0}
T; {(x,O):(x,a)=($,w)=0}
T; = span((w,—a)).

In general, if (E, ) is a bundle with base B, then there is a short exact
sequence of tangent spaces arising from the natural injection and projection
of tangent spaces at a point (a,w) € E:

0 — Tu(Fib(a)) — T(a,u)(E) — Tu(B) — 0.

This short exact sequence gives rise to a linear isomorphism (not uniquely
defined) given by

g : Tu(Fib(a)) x Ta(B) = T(auw)(E).

The determinant of this isomorphism is uniquely defined (although the
isomorphism itself is not). This determinant is plays the role of the de-
terminant of the Jacobian in converting from integration over the fibers to
integration over E. '
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For our manifolds, we can write out an explicit representation of the
isomorphism. In particular,

Tu(Fib(a)) = Tu(a* N 5%) = {y € R*" : (y,a) = (y,w) = 0}
and for w € Fib(a),

To(5%) = {z € R™':(z,a) =0}
= {z e R**': (z,a) = (z,w) = 0} & span(w).

There is a natural map ¢’ from T,(Fib(a)) to T} above, and a map ¢” from
Ta(5) to Ty ® Ts. These maps respect the structure of the exact sequence.
Combining these maps gives g. In particular, given (z,y) in the domain of
g, we would decompose y as a sum y’ + y” where y’ lies in w' and y” = cw
for some scalar ¢, and then g(z,y) = (0,y") + (z,0) + ¢(w,—a). Since all
these decompositions are orthogonal, it is easy to compute the determinant
of g. It turns out that the determinant is /2 independent of a or w. This
is because everything is isometrically mapped by g, except unit vector w is
mapped to (w, —a), a vector of length /2.

Thus, we see that the volume change in going from an integral over
the fibers as in (8) to an integral over E is just a multiplication by /2.
But now we observe that F has a second bundle structure, namely, the
structure given by (E, ;). Everything is symmetric, so integrating over E
compared to the fibers in this bundle structure also introduces a factor of
V2. This second bundle structure corresponds to the integral in (9). We
have therefore proved that for an arbitrary integrable function f defined on

E,
\/ifaESd -/weFib(a} Hlasw)= /(a.w)eE fayw)

\/Eluesd /aEFib{w) o) = f{a,w)eE f(a,w).

Therefore, the two integrals on the left hand sides above are equal.

and

5 Finding a node separator

In the last section we described three methods to find a surface such that
no more than 8V nodes are on either side of the surface, where 3 depends
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on d and is less than 1, and such that the integral of g?~! on the surface
is no more than a constant multiple of the integral of ¢g¢ in IR?. For the
function g constructed in Section 3, this separating surface S will satisfy

/ gd_l dA < cgaN(@-1/d
S

where ¢4 is a (new) constant depending on d.

In two of those methods, the separating set was a sphere; for this section
we assume that we are in the sphere case.

Let r be the radius and c the center of the sphere S that satisfies (3).
From this sphere we intend to find a set G. of nodes such that G;,G;, G~
is a partition of G satisfying Theorem 1.

First, we give the rule for membership in G.. Suppose sphere S crosses
through an edge (7, ) of the graph, such that that =(¢) is inside S and 7(j)
outside; let = be the intersection of the segment (7 (¢),n(j)) with S. If 7(2)
is closer to z then we put 7 in G., else we put j in G.. Also, if a node by
coincidence is embedded exactly on S, then the node is put in G.. The
remaining nodes are put into either G; or G, according to the rule: nodes
embedded inside S not in G. are put into G;, and nodes outside S not in
G. are put into G,. It is clear that there is no edge from a node of G, to
a node of G5.

Also, by construction, neither G; nor G, has more than SN nodes. We
now turn to the problem of establishing a bound on the size of G..

We first establish the following claim: if a node 7 is selected to be in G,
then ||7(:) — ¢|| < 3r. One possibility is that ¢ is interior to S, in which case
the distance between 7(z) and c is no more than r. The other possibility is
that it is adjacent to a vertex i’ embedded interior to S; since ¢ was selected
for G.. rather than ¢, this implies that the distance from 7(7) to cis at most
3r.

We next put an upper bound on the number of nodes of G. such that
pi > r (recall that p; is the distance from vertex n(z) to its most distant
graph neighbor). Suppose there are m such nodes; let M be the set of these
nodes. Let ¢ be such a node. Then we know that 7(z) is within distance 3r
of c. On the other hand, there is a ball of radius p;/(2«) around = (z) that is
disjoint from all other such balls for : € M because of the density condition.
Therefore, a similar property is true of the m balls of radius r/(2a) centered
at 7(¢) for i € M since we are assuming that r < p;. All these balls lie in
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a sphere of radius 3r + r/(2a). Therefore, a volume argument the same as
the argument used in Section 3 shows that

m < (6a + 1),

Thus, there are at most a constant number of nodes of G. that satisfy
pi 2 7.

Now we turn to the case of nodes of G. that satisfy p; < r. Call this
set W, and choose : € W. We want to put a constant lower bound on

Af:‘—l dA. (10)

Recall that the function f; is 1/p; inside a ball of radius p; centered at
m(i) and O elsewhere. We claim that S passes at a distance no more than
pi/2 from 7 (i); this follows from the inclusion of 7 in G.. We consider the
“patch” of S that is contained in the ball {z : ||z — 7(i)|| < pi}. We can
show that because the radius of S is greater than p; and the distance of the
patch to the ball’s center is no more than p;/2, we can get a lower bound
of v4_1(v/7pi/4)?~" on the area of this patch.

Since f#!is 1/p?~! everywhere on this patch, we conclude that integral
(10) is at least vy_;(1/7/4)%1, which we will call 4 for simplicity.

This is true for every : € W. Therefore, we get an upper bound on the
size of G.. as follows:

G| ST+ T,

where
Tl = (60: + l)d

g ()

Here, T} accounts for nodes that have p; > r and T, accounts for nodes
that have p; < r. Now we derive an upper bound on T as follows.

1
T = [=3 fitaa
’ S’szf

and

iEW
5/5 Zf"“dA
id—l
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We discussed the integral on the last line at the beginning of the section.
This quantity has (c4/v4)aN4-1)/4 as an upper bound.

Thus, the number of nodes in G.. returned by this construction is at
most a constant plus an c;aN(4-1)/4 term, which concludes the proof of the
main theorem.

6 Practical issues

Let us call the algorithm derived in this paper Weak-Split; it produces
a partition in which the ratio of the size of the larger of Gy, G, to the
smaller is at most d + 1 + o(1). In practice, one often wants a split in
which G; and G, have no more than 1/2 the nodes, i.e., a ratio of 1 4 o(1).
There is a standard technique originally due to Lipton and Tarjan [1979]
that derives an algorithm Strong-Split using Weak-Split as a subroutine.
Strong-Split yields an even split at the expense of a greater running time
(by a constant factor) and a larger constant in the bound on the size of the
separator. Vavasis [1990] discusses this technique.

Another practical issue is a splitting into more than one subdomain.
If the number of domains desired is a power of 2, this accomplished by
applying Strong-Split recursively to get domains of the desired size. This
approach can be generalized for a number of domains not a power of 2.

7 Partitioning a domain without a mesh

A problem of interest is, given a domain @ C IR? (without reference to
node points) partition this domain. We assume that we have a function g
defined on (2 that specifies the density of nodes once a division into elements
is performed. (In particular, g(z) is equal to 1/k, where h is approximately
the diameter of the element that will contain point z € Q.)

This problem arises in the following context. In some cases one wishes
to apply domain decomposition in which the mesh is tailored to the sub-
domain boundaries (see, for example, Bramble, Pasciak and Schatz). This
is possible only if the subdomain boundaries are selected before the mesh
is laid out.

Our methods apply to this problem of handling a continuous density
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function; in fact, we have reduced the discrete density problem to the con-
tinuous problem, solved the continuous problem, and the pulled the con-
tinuous solution back to the discrete regime. In Section 4 we would replace
counting arguments concerning nodes by arguments that instead consider
the integral of g¢ over volumes.

The only difficulty for the continuous case is the need to be able to
integrate powers of the density function g over various volumes and surfaces.
If g is specified in a way that these calculations are tractable, then all our
techniques go through.

8 Conclusions and open questions

It would be of interest to prove the existence of a simple algorithm to achieve
a 50-50 split. As mentioned in Section 6, a 50-50 split can be achieved by
applying Lipton and Tarjan’s technique to our algorithm, but only at the
expense of a large constant in the separator bound. It is also of interest to
remove the randomness from the algorithm at hand without making it too
much more complicated.

Our approach seems to have the best possible dependence on a. Vava-
sis’s earlier work proves a lower bound of a/N?/3 in the three-dimensional
case, and this bound probably extends to other dimensions.

Finally, it is of interest to come up with a class of graphs embedded in
three dimensions with bounded separator sizes characterized by topological
properties instead of geometric properties. Lipton and Tarjan’s work on
planar separators was based entirely on combinatorial topology.

We remark that Miller, Teng and Vavasis have come up with a class
of graphs that includes both density graphs and planar graphs as special
cases. This work is in progress.
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