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Abstract

In this paper we study the Local Memory P-RAM. This model allows unit cost com-
munication but assumes that the shared memory is divided into modules. This model
is motivated by a consideration of potential optical computers. We show that funda-
mental problems such as list-ranking and parallel tree contraction can be implemented
on this model in O(logn) time using n/ log n processors. To solve the list-ranking prob-
lem we introduce a general asynchronous technique which has relevance to a number
of problems.

1 Introduction

We consider a model of parallel computation that is especially suited to pointer based com-
putation. We motivate this model by showing that basic problems, like list-ranking and
parallel tree contraction, can be performed in O(logn) time using only n/logn processors.
We also show that any step on this model can be simulated in unit time on this model by a
machine with an optical communication architecture. Thus we contend that the basic prob-
lem of list-ranking can be performed on a feasible machine in O(logn) time, using n/logn
processors. At the present time fixed connection machines such as the Connection Machine
require O(log? n) time. We call our abstract machine the Local Memory PRAM.

The two most important models for polylogarithmic parallel algorithms have been the
P-RAM and the fixed connection architecture such as the hypercube and the butterfly. The
P-RAM model is usually thought of an abstract machine while the fixed connection machine
is viewed as buildable or feasible.

Devising parallel algorithms for the P-RAM model is very convenient. One does not have
to get involved in how read/write requests are actually performed on the P-RAM. Thus one
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Figure 1: A Machine Based on Optically Communicating Processors

is able to concentrate on the intrinsic parallelism in the problem. There is a cost for ignoring
how messages are finally routed between processors: For all known simulations it takes
a factor of logn steps per step of the P-RAM to simulate the step on a fixed connection
architecture. Many researcher contend that the only feasible parallel machine is a fixed
connection architecture of bounded degree [UW87,KU86,Ran87]. We argue that feasible
models of computation can be constructed that are of unbounded degree based on optical
devices.

We present a possible physical parallel computer that uses unbounded fanout. We give
a diagram of the device in Figure 1. The machine consists of a collection of processors and
a collection of memory modules. Each processor and each memory module has one optical
receptor and one optical transmitter. Each transmitter can be focused on a receptor in unit
time. We assume that no two beams interfere unless they are focused on the same receptor.
We shall assume that each processor is itself a RAM. Each memory module also has a direct
connection back to one of the processors, so that it can be thought of both as global memory
and as the memory for one of the processors.

The main assumptions we make about our model are:

1. Photons or light beams do not interact.
2. Light travel between two points in unit time.
3. Photons can be redirected in unit time.

The first assumption if not correct is at least close enough given the quality of the other
assumptions. The second assumption is similarly implicit in the RAM model and the VLSI
work of Thompson [Tho80]. The third assumption is the most critical one since the time to
redirect the beam may be very large compared to the other constants involved in an actual
device.
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Two methods used today to redirect light are both quite slow. The first method consists
of a rotating mirror. The second method involves acoustically vibrating a crystal which
is placed in the path of the light beam. The devices are called acousto-optic cells, see
[SJRV87,Bel86]. For both methods the refocusing times are in microseconds.

However, we see no intrinsic reason why the redirection time can not be in nanoseconds
for a few thousand different directions. Reif has suggested a method for redirection of light
based on holography and coherent systems, which will redirect beams at the speed of light
rates [Rei]. Reif and Johnson at the Center for Optical-Electron Systems are preparing
experiments on these new ideas. If such a device, as proposed by Reif, can be built, our
optical computer will be a real possibility. The purpose of these comments is to indicate
that it may be possible to build devices with the property that arbitrarily large number of
processors may communicate in unit time delay.

The difficulty in proposing a model as feasible is that it seems to require from us an
in depth study of the present knowledge of both physics and engineering. We do not have
the knowledge in either field to make such a judgement. We do not believe this is always
necessary. Accepted models such as the RAM are not feasible in the sense that they cannot
be simulated in real time by a device that satisfies all the known physical laws [CR73]. A
models importance lies in the fact that many important algorithms may be easily understood
in the model. Thus we contend that first, our model is as feasible as the RAM and the
fixed connection architecture, and second, our model allows us to introduce important new
algorithmic ideas.

We define a formal model for a machine that consists of a collection of optically commu-
nicating RAMs below:

Definition 1.1 A Local Memory P-RAM is a collection of RAMs which share a common
message passing architecture. This architecture satisfies the following rules:

o At any time a processor can send at most one message. Its destination is another
processor.

o The message will succeed in reaching the processor if it is the only message with that
processor as it destination at that time step.

o All messages succeed or fail (and thus are discarded) in unit time.

To insure that every processor knows when its message succeeds we assume that the Local
Memory P-RAM is run in two phases. In the first phase, read/write messages are sent, and
in the second, values are returned to successful readers and acknowledgements are returned
to successful writers. Note that since each processor successfully sends and receives at most
one message from the first phase, all the messages of the second phase succeed.

It should be clear that a Local Memory P-RAM with m processors can simulate, in real
time, an EREW P-RAM using P processors and n memory locations for m = max{P,n}.
On the other hand, a P processor EREW P-RAM can simulate in real time any P processor
Local Memory P-RAM. Thus the important and new cases are when the memory is large.



A model similar to our Local Memory P-RAM was introduced by Mehlhorn and Vishkin
[MV84] and further studied by Upfal and Wigderson [UW87]. The main difference between
our work and theirs is a difference in motivation. They were primarily interested in the
simulation of P-RAMs by fixed connection machines, and introduced a local memory model
as an intermediate step in the simulation. They consider the problem of how to simulate a
P-RAM on a local memory machine. Our primary interest is however, designing algorithms
directly for a Local Memory P-RAM. We are interested in algorithms that are superior to
the algorithms that arise directly from simulation.

2 Results

In this paper we study the power of the Local Memory P-RAM when the problem size is
much larger than the number of processors. For larger inputs we assume that the input is
distributed evenly amongst the local memories of the processors. We show that for some
important problems, such as list-ranking and expression evaluation, it is possible to construct
optimal randomized algorithms. These results match the best P-RAM algorithms and show
that having local memory does not incur a substantial penalty.

A contribution of this paper is to introduce a general framework for a type of parallel
algorithm. The framework is to view the problem as a communication problem - ie. a
certain set of messages must get through in order for the computation to succeed. When
ever a message gets through, a relatively simple local computation is done. We identify two
particular communication schemes which cover a number of different problems. The division
of a problem into a communication and a computation problem is significant. If certain
communication schemes are robust enough to be widely used, then it will be possible to just
plug routines in to the schemes to get algorithms. One interesting aspect of the schemes
that we introduce is that they are asynchonous. It will be important to develop algorithms

for machines that are not as fully synchronized as the P-RAM and this is a step in that
direction.

3 Time Sharing

It is very desirable for parallel machines to efficiently simulate a larger machine of the same
type. We refer to this as time sharing or time slicing. If we have a machine of size N then
we would like to be able to simulate a single step of a machine of size I{N in O(K) time.
Most of the P-RAM models have the property that this can be done by straightforward
algorithms.

The time sharing problem is to simulate one step of the larger machine on the smaller
machine. For the local memory model, we consider the natural mapping of processors and
memories:

pi = Ply/K)  ™Mi = M{i/K)-



For a step of the large machine, we can construct a bipartite graph between p,,...,py and
mi,...,my. For each successful memory access by a processor p; to m’, we put in an edge
Pli/k} to myj/k). This gives us a bipartite graph with maximum degree K which can be edge
colored with K colors. The coloring can be used to assign time slots to the memory requests
to avoid contention. This however, is not a real solution, since it is not possible to compute
the coloring quickly. The best general solution that we know of takes K? steps to simulate
a single step of the larger machine.

Theorem 3.1 One step of a local memory machine of KN can be simulated by K? steps
on a machine of size N. ‘ |

It is natural to ask whether or not this is the best possible simulation algorithm. We
can show that it is best possible for a natural class of simulation algorithms. Suppose that
we have fixed the mapping of processors and memories. The issue to deal with is how much
computation are we allowed in order to decide which messages to send out. We can show an
Q(K?) lowerbound if a processor makes it decision on when to send out its messages based
only on the addresses of its messages. We refer to this as a local algorithm.

Theorem 3.2 The simulation of one step of a local memory machine of size KN by a
machine of size N requires K? steps when a local algorithm is used. |

4 Algorithms

In this section we present algorithms for the local memory model. Our algorithms are loosely
synchronized message based algorithms. In the problems that we examine, each processor
has a number of tasks that must be completed, although the order of tasks is not specified.
Each task requires accessing one or two memory locations. We view this process as taking
place on a graph with edges between processors and memory modules. There is an edge from
a processor to a memory module if the processor must communicate with the module. When
a processor succeeds in communicating with the module, the appropriate computation can
be made and the communication graph can be updated.

The most difficult part of the problem is to design an a.lgorlthm to allow the appropriate
messages to get through. Once we have the message sending algorithm, we can just plug in
relatively simple routines to do the computation. There are two separate message manipu-
lation algorithms that we need. The first algorithm is for the case that a computation can
be done when a message gets through from a processor to a memory. If a message is sent
from p, to m,, then the edge p, — m; can be deleted from the graph. The second algorithm
is for the case where sending messages from p, to m; and from p, to m, allows the edges
pa — my and p, — m. to be replaced by the edge p, — m.. In both of the cases the goal is
to remove all of the edges from the graph.

We describe our algorithms for the case where each processor has log n messages to send,
and each memory module will receive logn messages. The algorithms work just as well when



the number of messages to send is greater. We concentrate on logn message per processor,
since this corresponds to the most interesting case for studying optimal algorithms for such
problems as list-ranking. This makes it easy to compare this work with other work done on
optimal parallel algorithms.

4.1 Edge Removal Algorithm

The following algorithm sends messages from processors to memories. A computation can
take place when a message gets through. The algorithm operates in two stages. The first
stage sends the majority of the messages using a randomness to control when messages are
sent. Not all messages will get through on the first stage, so a cleanup stage is used to take
care of the remainder of the edges.

Message Stage The main algorithm relies on sending messages randomly. In a phase, each
processor randomly chooses a message and then sends the message with a certain probability.
The goal is to do this in a manner that insures a reasonable number of messages get through
at each phase. To achieve our O(logn) time goal we need to get cn/logn messages through
each phase, for some constant c. o

To motivate our algorithm, consider the case where each processor has exactly K messages
left to send and each memory has exactly K messages still to receive. Suppose each processor
sends a message at random. A message gets through to a memory if it is the only message
sent to that memory in the phase. It is easy to show that the probability that a given
memory gets a message is at least (1 — %)K'l > % Unfortunately, there is a tendency
for the number of messages at processors and memories to become unbalanced, so that the
analysis breaks down. It is tempting to run the simple randomized algorithm even in the
more general unbalanced case. This however fails because certain memories can become
saturated with requests. If a memory that still must receive many requests is adjacent to
processors with few messages left, the memory will receive several requests per phase, and
not be able to answer any of them.

The basic problem with the randomized algorithm arises when a processor gets to many
messages through. Our solution is to control the rates that messages are sent out. This
is done by viewing the situation as being roughly balanced. We will refer to the set of
unsent messages of a processor, and the set of unreceived message of a memory as a queue.
In the k-th round of our algorithm, we shall act as if all queues have size between 2% and
2k-1, Messages are sent for a2F phases in the k-th round. We show that each queue has a
reasonably high probability of being reduce to fewer than 2*~! items by the round. A phase
consists of each processor choosing a message and randomly sending it out. We do this in
a manner so that if a message is in a queue of size at most 2% it has probability 51;,- of being
sent out. If a processor does not succeed in sending out enough messages it quits sending
messages and waits for the cleanup phase.

The cede for the k-th round of the algorithm is given. The messages to be sent are stored
in an array A. The variable MazMessage gives the maximum message in the queue. The



Round;
for i:=1 to a2* do
j '= RandomlInteger(1,2F);
if j < MazMessage then
send A[j];
Alj] := A[MazMessage];
MazMessage := MazMessage — 1;
if MazMessage > 2F-! then halt;

unsent messages occupy the first MazMessage locations of A.

The full algorithm is to have rounds for k running from loglogn down to 1. We will
now show that the expected number of messages left after the algorithm is done is bounded
by cn/logn. The following lemmas show that there is a good chance that a queue will be
reduced during a round. A queue is said to be oversized if it contains more than 2* items at
the start of round k. Since a processor stops attempting to send messages when it becomes
oversized, we can view the memory queues as never being adjacent to oversized processor
queues. A processor can be adjacent to an oversized memory queue. When this occurs, the
processors ability to successfully send messages degrades. However, we can get by by making
a fairly pessimistic assumption about what happens to a processor queue when it is adjacent
to an oversized memory queue. This allows us only to have to worry about the case where
a processor is not adjacent to oversized memory queues. The following lemmas show that
things work well when queues are balanced.

Lemma 4.1 Suppose M is a memory with at most 2% items in its queuve. The probability
that M becomes oversized in round k is at most e~P12* for some constant B, independent

of k. |

Lemma 4.2 Suppose P is a processor with at most 2% items in its queue and P is not
adjacent to any oversized memories. The probability that P becomes oversized in round k is
at most e=%2?" for some constant f, independent of k. |

Theorem 4.3 The ezpected number of elements remaining after the algorithm is done is at
most cn/ logn for some constant c.

Proof: If some message is not sent, then the message is in a processor’s queue that became
oversize at some point in time. We distinguish between two cases on how the queue became
oversized - depending on whether or not it was adjacent to an oversized memory queue. If
the processor’s queue was not adjacent to an oversized memory queue, we bill the message
to the round that the queue became oversized. If the processor queue was adjacent to an
oversized memory queue, then we bill the item to the round which the processor first became
adjacent to an oversized memory queue. The expected amount billed to round & is at most

n/ logn2*e~?% 4 n/logn2%*e~A?",
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The first term arises from processor queues not adjacent to oversize memory queues and
the second arises form processor queues adjacent to oversize memory queues. The expected
number of messages left is therefore at most:

n/logn > (2"e'ﬂ’2h + 22,‘8_&2") = cn/ logn.

1<k<log logn

Cleanup Stage At the start of the cleanup stage, there may be as many as cn/logn
messages that have not been resolved. The first step is to distribute the message sources
equally amongst the processors. This is done by first computing a parallel prefix sum and
then redistributing the source messages. Once the sources have been redistributed, the
second step is to send all of the messages. Both the redistribution and the message sending
take clogn phases. To avoid message collisions, in a phase, all messages with a given pair
of local source and destinations are sent. In the redistribution step, the local sources range
from 1 to logn, while the local destinations range from 1 to ¢, and in the message step, the
sources range from 1 to ¢ and destinations range from 1 to log n.

Applications The message routing algorithm removes all edges from the graph in O(logn)
expected time. If we have an algorithm that uses this reduction algorithm and takes O(1)
processing time per edge removal, then it is also an O(logn) algorithm. We give two appli-
cations of this algorithm, reversing the links in a list and machine simulation in the local
memory model.

When working with linked lists it is very often taken for granted that they are doubly
linked. This is usually justified, since in models such as sequential or parallel RAMs, reversing
links is trivial. The natural parallel algorithm for reversing the links is to have each processor
reverse the links of the cells associated with the processor. However, this algorithm runs into
conteation problems when implemented on a local memory P-RAM. This example motivated
our consideration of the general edge removal process, since each processor must get message
through for each edge. When processor P, succeeds in getting a message through to M, the
message tells one of the cells in M, to point to a cell in M,. The pointer can be set by P;.

The second example is for the simulation of one local memory machine by a smaller local
memory machine. Qur simulation is for simulating a machine M; of size N by a machine
M3 of size N/K where K > logn. The mapping of processors and memories that the
memory and processor 7 in /M, is simulated by memory and processor [i//] in M,. In the
simulation, each processor of M, simulates the reads and writes of several processors. This
can be done by sending messages to the processors holding the correct memory modules. It
Is necessary to simulate the collisions that occur in a round M,. This is not that difficult;
just a detail to watch out for.



4.2 Vertex Removal Algorithm

The second scheme that we consider reduces the graph by splicing out vertices. If P, sends
a message to M, and P, sends a message to M., then the edges P, — M, and P, — M. are
removed and an edge P, — M. is added. A message from P, to M, has a next message from
Py to some memory. If the message gets through, then the next message is triggered and
sent off. For technical reasons, we do not want sequences of messages removed in the same
phase. We take care of this special case within the algorithm.

The algorithm is similar to the previous algorithm, except that two messages must get
through successfully for a computation to be made. The innermost step is to have some
processors send messages at random. The messages that make it through trigger the sending
of a second set of messages. The key to the randomization is again to choose the appropriate
rate of sending out messages. The algorithm is run until the number of elements is reduced
to cn/ logn and then a cleanup phase is run.

The analysis is similar to the previous theorem, although the details are more compli-
cated. Some care is necessary in dealing with conditional probabilities arising form the
two message phases in the proof of the lemma. The theorem is proved by considering the
expected number of oversized queues. The analysis takes into account the interaction of
oversized queues between rounds.

Lemma 4.4 Suppose Q is a queue (processor or memory) with at most 2% items at the start
of round k. If Q is not adjacent to any oversized queues, the probablility that that Q becomes
oversized in round k is at most e=P2" for some constant 8 independent of k. |

Theorem 4.5 The ezpected number elements remaining after the algorithm is done is at
most cn/ logn for some constant c. |

Applications The main application of this reduction algorithm is for an optimal random-
ized list-ranking algorithm on the local memory model. The list ranking problem is: given
a linked list in memory, compute the distance that each cell is from the end of the list.
The problem is a fundamental data structure problem, and has many applications. The list
ranking problem has been studied extensively with the goal of getting n/logn processor,
O(logn) time P-RAM algorithms [Wyl79,CV86]. We show that these bounds can be met on
the local memory model for a randomized algorithm.

If we have n processors available, then it is easy to solve the list-ranking problem by
a path doubling approach in O(logn) time. The idea that has been used to get optimal
algorithms for list-ranking is to splice items out of the list until it is reduced to n/logn
algorithm, then apply the basic algorithm, and then reconstruct the list. The splice out
phase is precisely what is accomplished by our vertex elimination algorithm. Each processor
initially has logn list cells. When a pair of messages P, — M;, P, — M, get through, one
of the list cells assigned to processor P, can be spliced out of the list. The algorithm insures
that adjacent list cells are not spliced out in the same phase. After the problem is reduced
to size cn/logn, it can be solved on n/logn processors. The problem is then solved by
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rebuilding the list by essentially running the splice out algorithm in reverse. An interesting
feature of our list-ranking algorithm is. that it does not rely on list being doubly linked. The
other known efficient list-ranking algorithms all require that the list is doubly linked.
There are many problems that are reducible to list-ranking, so that they can also be
solved optimally on the local memory model. In particular, tree contraction can be reduced
to list-ranking so it can be solved in O(logn) time with n/logn processors in this model

[MR85,GMTS6).

5 Conclusions

In this paper we have investigated algorithms for the local memory P-RAM. The model was
motivated by a consideration of potential optical computers, where unit cost communication
is possible, but there is a bottleneck in accessing memory modules. OQur main result is the
introduction of a general approach for algorithms on this type of machine. As a corollary,
we give an optimal randomized algorithm for list-ranking. The list-ranking algorithm has
the interesting features that it relies on relatively weak synchronization and that it does not
require that the list is first doubly linked.
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