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Introduction

Many physical phenomena in science and engineering can be modeled by partial differential equa-
tions (PDEs). When these equations are complex or are posed on irregularly shaped domains,
they usually do not admit closed-form solutions. A numerical approximation of the solution is thus
necessary. Computational science and engineering has emerged as an activity that applies the tools
of numerical analysis, computer science, and applied mathematics to creating computer models of
natural and man-made systems, with the goal of gaining a better understanding of the chemical,
electrical, fluid mechanical, magnetic, solid mechanical, or thermal phenomena exhibited by these
systems. '

The most popular methods for numerically approximating the solution of linear or nonlinear
PDEs replace the continuous system by a finite number of weakly coupled linear or nonlinear
algebraic equations. This process of discretization associates an equation (or set of equations) and
an unknown (or set of unknowns) with each of a finite number of points in the problem domain.
The accuracy of the numerical approximation improves as the number of points increases. However,
the complexity of solving the algebraic system is typically superlinear in the number of points, and
more time is spent solving the system than is spent modeling and interpreting the results as this
number increases. Some problems are intractable on current sequential computers, and scientists
and engineers have become interested in using parallel computers to attack them. PDE problems
for which high performance computing is required include global climate change, aerospace vehicle
design, cardiovascular blood flow, combustion, weather forecasting, air pollution, and earthquake-
induced ground motion.

Figure 1: A structured discretization of a rectangle partitioned for sixteen processors.

Coupling among unknowns results from physical adjacency of points; hence, when points are
laid down in a uniform fashion, the structure can be exploited to yield efficient parallel solvers. The
domain is divided into similarly shaped subdomains, which are allocated to separate processors.
Processors communicate in a regular fashion at subdomain boundaries. Figure 1 shows a simple
structured PDE mesh divided into sixteen subdomains.

On the other hand, many problems are defined on irregularly shaped domains, and resist regular
discretization. Others exhibit phenomena that occur on widely differing spatial or temporal scales.
In this case, uniform distribution of points is inefficient, because the spacing of points must reflect
the areas that require the finest resolution. The excess points in other areas lead to unnecessary
computational effort.

Consider the unstructured mesh in Figure 2, which depicts a cross-section through the Kanto
Basin, a layered valley within which the city of Tokyo sits. The problem is to predict the surface
ground motion due to a strong earthquake. The discretization is finer in the top layers of the valley,
reflecting the much smaller wavelength of seismic waves in the softer upper soil, and becomes coarser
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Figure 2: Unstructured discretization of Los Angeles Basin

with increasing depth, as the soil becomes stiffer and the corresponding wavelength increases. A
structured discretization of the same problem would employ a uniform distribution of points, the
density being dictated by the uppermost layer. Although the data structures, storage requirements,
and parallelization of structured meshes are considerably simplified, the resulting several-orders-of-
magnitude increase in number of unknowns is unacceptable. Other multiscale phenomena include
turbulence modeling, plasticity, transonic aerodynamics, multi-phase flow through porous media,
and crack propagation. Unstructured discretization of these problems can result in greater efficiency;
unfortunately, it is difficult to map an unstructured mesh to a parallel computer.

Most parallel PDE solvers in the literature are of limited scope. Because of the difficulties, few
parallel PDE solvers use truly unstructured meshes. Furthermore, most parallel PDE solvers are
built to solve a specific problem (e.g. Navier-Stokes equations). Our philosophy is that if parallel
computers are to contribute to scientific progress, it is necessary to build general-purpose tools that
allow researchers in engineering and science to model the complexities of real domains.

This article describes Archimedes, an automated system for solving partial differential equations
on geometrically complex domains using distributed memory supercomputers. The tasks of such
a system are manifold. First, Archimedes discretizes the domain being modeled by generating an
unstructured mesh that fills the region. Then, the domain is partitioned into separate subdomains,
which are placed onto individual processors. Communication is routed between these processors. Fi-
nally, code is generated to solve a PDE in parallel. We discuss how we have automated each of these
tasks, and describe our efforts to bring state-of-the-art computing to state-of-the-art engineering.

While the methodology employed by Archimedes is applicable to other unstructured discretiza-
tion methods such as the finite volume method or collocation, we focus on the finite element method
(FEM) because of its generality and widespread use.

Finite Element Methods

This section describes the structure of the equations that result upon application of finite element
methods. Readers wishing a proper treatment of FEM should consult standard texts such as Becker,
Carey, and Oden [2] for an introduction, and Strang and Fix [22] for mathematical analysis.

Consider a heat conduction problem posed on the two-dimensional domain of Figure 3, a metal
plate. The problem is to find the steady state temperature u(z,y) of the plate, given that the plate
is exposed to specified heat sources. The physical behavior of this system is modeled by a partial
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Figure 3: A metal plate with holes. Figure 4: Finite element mesh.

differential equation!. We replace this continuous problem with a discrete approximation. Finite
element methods achieve this goal by partitioning the domain into convex polygons or polyhedra,
called finite elements. Elements are typically triangles or rectangles in two dimensions, and tetrahe-
dra or rectangular blocks in three dimensions. With each element we associate points, called nodes,
at which temperatures are sought. The simplest element is the linear triangle, which possesses three
nodes, one at each corner. A finite element mesh is a collection of elements (and nodes) covering a
domain. Figure 4 shows a mesh of linear triangles covering the metal plate.

By considering the effects of the differential equation over each element, we construct an ap-
proximate system of linear equations of the form

Ku=f (1)

where u = [uy,uz2,... ,u,]T denotes the temperatures at each of the n mesh nodes, the force vector
f denotes the heat sources at each mesh node, and the n x n stiffness matrir? K describes the
interactions among the nodes due to heat conduction. Once we have solved for u, we can interpolate
between the nodal values to produce an approximate continuous solution i(z,y), which is piecewise
linear on the mesh.

The structure of K is illustrated in Figure 5, which shows a simple mesh composed of nine
elements and nine nodes. Kj;; is nonzero only if there is at least one element which contains both
nodes ¢ and j. Hence, K4 is nonzero, K37 is zero, and Kj; is nonzero for any i. This implies that for
large meshes, K is very sparse. The stiffness matrix K is computed by summing the effects of the
differential equation over each individual element. Hence, K,4 receives contributions from elements
a and b, and Kes from elements f and g. The structure of f is similar; for example, fg receives
contributions from f and g.

1The heat equation is —V - [k(z,y)Vu(z,y)] = f(z,y), subject to boundary conditions, where f(z,y) represents
internal heat sources, and k(z,y) is the thermal conductivity of the material. ‘
2The terminology for K and f comes from solid mechanics, and has become widespread.
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Figure 5: A finite element mesh and its associated stiffness matrix K and finite element graph G.
X’s indicate nonzero matrix entries.

Given a finite element mesh, the associated finite element graph G is defined such that its vertices
are the nodes of the mesh, and there is an edge between any two vertices which belong to a common
element (see Figure 5). G is isomorphic to K, in the sense that K., =0if (u,v) €G.

Solving the linear equation (1) accounts for most of the computation and interprocessor com-
munication in solving the PDE. The linear system may be solved either by a direct method such as
Gaussian elimination [12] or by an iterative method such as conjugate gradients [9]. In this article,
we shall consider only iterative methods, which are much easier to parallelize than direct methods.
Specifically, we shall discuss how to perform in parallel the sparse matrix-vector product in the
inner loop of most iterative solvers. We will use the finite element graph G to help us parallelize
this operation.
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Figure 6: Refinement of the original mesh.



If the approximate solution @ is not as close to the exact solution as desired, a better solution
can be found by refining the mesh and repeating the solution process. A mesh is refined by dividing
" some or all of its elements into a larger number of smaller elements, as in Figure 6. As the mesh is
refined, the approximate continuous solution @ approaches the exact solution u. Numerical analysts
have developed a priori error estimates which show that the discretization error ||u — | is reduced
as the size of the largest edge is reduced. However, as we have explained, a constant element
density is not always desirable. Hence, there are also a posteriori error estimates which estimate
the discretization error on each element after solving the problem, thereby providing a guide to
refinement. Figure 6 was generated from a posteriori error estimates based on a stress simulation
on the plate in Figure 4.

Beyond this example, finite element methods and our techniques can be extended to three-
dimensional, time-dependent, higher-order, and nonlinear problems.

Parallel Finite Element Systems

Archimedes

At Carnegie Mellon we have built Archimedes, an automated system for solving partial differential
equations over complex domains using distributed memory supercomputers. Archimedes is intended
to allow researchers in engineering and science to solve real physical problems on unstructured
meshes. ‘

Figure 7 diagrams the structure of Archimedes. A user provides two things: a description of
the geometry of the problem domain, and an algorithm for performing finite element calculations
which solve some physical problem.

The problem geometry is the shape of the domain that will be modeled. In modelling earthquake
ground motion, this would be the shape of a valley and the surrounding rock. In flight vehicle
aerodynamics, this would be the shape of the surface of the vehicle and surrounding air. Archimedes
generates a mesh that fills the region of interest.

If we wish to use a parallel machine to perform the finite element simulation, Archimedes must
partition the domain into subdomains, one per processor. More specifically, it partitions the finite
element mesh into separate pieces. Each piece should be approximately the same size, ensuring
a good load balance. Each piece should have a relatively small boundary, minimizing the parallel
communication.

Next, we want a one-to-one mapping of subdomains to processors. Depending on the parallel
architecture, we may also need to route communication channels between processors, and perhaps
even schedule the order in which communication is done. Archimedes uses placement and routing
heuristics to perform these tasks.

Along with the problem geometry, the user writes an algorithm for constructing and solving the
finite element system for a specific problem. For instance, to solve our heat conduction problem, a
user would write an algorithm to compute K and f, and solve for u. The algorithm is written in a
C-like syntax with built-in primitive operations tailored for finite element methods. This algorithm
is machine-independent, and can be written without knowledge of the parallel machine’s underlying
communication mechanisms. Archimedes compiles the algorithm into code for a specific machine.
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Figure 7: Structure of Archimedes.

If the algorithm is designed to generate a posteriori error estimates, this output can be fed back
into the mesh generator for the purposes of mesh refinement, and the entire process is repeated.

Other Systems

There are several other systems designed for parallel PDE solving. We describe only a few selected
systems in order to compare the differences in approach.

//ELLPACK [13] (pronounced “Parallel Ellpack”) is a complete system for the solution of elliptic
PDEs, including nonlinear and time-dependent problems. // ELLPACK has a high-level language
interface and offers a variety of discretization methods and linear solution modules. It includes
an extensive graphical user interface for specifying problem geometry, decomposing the region into
subdomains, and analyzing solutions. Archimedes has followed a path similar to // ELLPACK, but
with emphasis on working with unstructured meshes.



A different approach is taken by Saltz and his co-workers in the PARTI compiler [23]. This is a
parallelizing Fortran D compiler with runtime support for computation on unstructured meshes. A
programmer specifies the structure of an unstructured mesh implicitly as an ordinary Fortran loop
which makes indirect array references. '

The central PARTI primitives are inspector/executor pairs. The inspector loop examines (at
runtime) the data references which will be made by a processor, and computes which data needs to
be fetched from or stored on other processors. The ezecutor loop uses this information to perform the
actual computation. To minimize communication, PARTI includes a runtime partitioner which, like
Archimedes’ partitioner, distributes arrays across the processors. PARTI currently uses a spectral
partitioning algorithm due to Pothen, Simon, and Liou [20].

Parallelizing Sparse Matrix-Vector Products

Choosing a Data Distribution

As previously mentioned, we consider only iterative methods of solving the linear system Ku = f.
Most iterative methods have as their central primitive the problem of computing the product of a
large sparse matrix K and a vector Xx. For example, the iterative step of the conjugate gradient
method consists of several vector operations and a single sparse matrix-vector multiplication. Note
that over the course of an iterative method the nonzero structure of the sparse matrix K remains
fixed (isomorphic to the finite element graph G), even though the values of the nonzero entries of
K may change over time (for instance, in nonlinear problems).

To compute y = Kx on a set of processors, we must consider the data distribution by which
vectors are stored. Suppose that each element of the mesh is assigned to one processor, and each
mesh node resides on one or more processors, depending on what elements contain that node. The
vectors x and y are stored in a distributed fashion according to this mapping. If a node i resides
on several processors, the values z; and y; are replicated on those processors. The matrix K is
distributed so that K;; resides on any processor on which nodes ¢ and j both reside.

The multiplication y = Kx is performed in two steps. First, each processor computes a local
matrix-vector product over the subgraph of G that resides on that processor. Second, processors
that share mesh nodes communicate and combine their nodal y values into correct global values for
each node.

We find a data distribution by embedding the finite element graph G into a graph H, which
represents the underlying interconnection network of the target machine. (The vertices of H are the
set of processors, and the edges of H are the set of communication wires connecting the Processors.)
For our purposes, an embedding of a graph G into a graph H consists of a mapping from the vertices
of G to the vertices of H, together with a mapping from each edge of G to a path (possibly of zero
length) in H between the images of its endpoints. Each vertex of G is mapped to one or more
vertices of A, and typically, many vertices of G are mapped to each vertex of H.

There are three primary measures of the efficiency of an embedding. One is its load, which is the
maximum number of edges of G mapped to any single vertex of H. (To compute a sparse-matrix
vector product, each processor does an amount of work roughly equal to the number of edges it is
assigned.) The goal of keeping load low is to balance the parallel work among processors. The other
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two measures are its dilation, which is the maximum over all edges in G of the lengths of their images_
in H, and its congestion, which is the maximum over all edges in H of the total number of edges in
G whose corresponding paths contain that edge. The goal of keeping dilation and congestion low
is to minimize the total time required for communication.

The relative importance of dilation and congestion for a particular machine will depend on its
communication mechanism and method of routing. For instance, when store-and-forward routing
is used, it is crucial to minimize the number of “hops” that a message takes, and the reduction of
dilation is a primary concern. On the other hand, if the machine in question uses circuit-switched
routing then the length of the routing paths is not nearly as important as the number of paths that

share a single edge at the most severe bottleneck, so congestion becomes more important.

Finding an Embedding

It is not easy to find an efficient embedding of a finite element graph G to a graph H. To simplify
the problem, we break it into several stages.

First, we partition the mesh by cutting it into one piece for each processor. In an ideal partition,
the pieces will be equal in size (to balance the load), and will have small boundaries (to minimize
the amount of information which must be communicated between processors).

We define the quotient graph G’ derived from G and the partition. G'is a graph with a su-
pervertex for each piece of the partition, and an edge between two supervertices if they need to
communicate with each other (because they share mesh nodes).

Second, we place the quotient graph G’ on the target machine H. This placement is a one-to-one
mapping of supervertices to processors. Finally, we route G’ by finding a mapping of edges in G’ to
paths in H. ‘

It is not necessary (nor necessarily optimal) to break the embedding problem into these stages.
Better partitioning might be possible with knowledge of the target machine, and better placement
might be possible if routing is considered simultaneously. However, finding an optimal embedding is
difficult, and some simplifying assumptions are necessary. More importantly, we separate partition-
ing from placement and routing because partitioning is machine-independent, whereas placement
and routing depend upon the communication mechanisms of the target machine.

Partitioning

Archimedes’ partitioner is based on an algorithm due to Miller, Teng, Thurston, and Vavasis [19],
which finds provably good separators for a large class of geometrically defined graphs. A separator
is a small set of vertices or edges whose removal divides the graph into roughly equal pieces.
Unlike most partitioners, which use only the combinatorial structure of the finite element graph,
the Miller et al. algorithm exploits the geometric structure of the mesh as well. One of the main
advantages of constructing Archimedes as a unified system is that the geometric information—
the node coordinates and the node/element relationships—is readily available at all stages of the
computation, including the partitioning and placement steps.



Archimedes also uses the geometry of the mesh to make the partitioner itself more efficient, by a
technique called geometric sampling. The idea is to first choose a random sample of the input nodes,
then solve the partitioning problem over the sample. Thus the problem size is reduced, while the
underlying geometric structure of the mesh ensures the quality of the result. Geometric sampling
allows us to do most of the work on sets of only a few hundred or a few thousand points, even if
the mesh itself has millions of nodes.

The Miller et al. algorithm runs in randomized linear time. For an n-node mesh of bounded
aspect ratio in d dimensions, it produces (with high probability) a separator of size O(n!-1/4)
This is the best possible guarantee, in a worst-case asymptotic sense. In practice, our program
generates much better partitions than the theoretical worst-case bounds predict. The partitions are
competitive with more expensive methods such as spectral bisection [20], which does not exploit

the mesh geometry.

The partitioning algorithm divides the mesh into two pieces. We use the algorithm recursively
to get as many pieces as processors. Figure 8 illustrates our metal plate partitioned into sixty-four
pieces. Figure 9 illustrates the corresponding quotient graph G'.
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Figure 8: Partitioned metal plate for Figure 9: Sixty-four node quotient graph G’ for
sixty-four processor machine. partitioned metal plate.

Outline of the Partitioning Algorithm
The partitioning algorithm is described in greater detail by Miller et al. [19] and Gilbert et al. [8].

Archimedes’ partitioner, which we present here, divides the elements among the processors; formally,
it finds an edge separator for the geometric dual of G. -

Algorithm (Partition a Mesh in R%)
Input: Mesh G in RY, with ® the set of elements of G.

9



1. Choose a random sample S of constant size from the vertices of G;

2. Map S conformally onto the surface of the d + 1-dimensional unit sphere, in such
a way that every (d-dimensional) hyperplane through the origin partitions S ap-
proximately evenly;

3. Choose hyperplanes ra.ndofnly until one is found which intersects relatively few
edges of G. The intersection of this hyperplane with the unit sphere is a greal
circle;

4. Map this great circle back to IR? to obtain a d-dimensional circle that partitions G
(as well as @) approximately evenly;

5. Partition @ into two subsets, ®; and ®,. Each element is placed into ®, or @3,
depending on whether its center is mapped to the interior or the exterior of the
circle in R?. From @, and ¥, form the subgraphs Gi and G; of G. (If a vertex
or edge is part of both an element in ®; and an element in ®,, then that vertex or
edge is in both subgraphs); '

6. Partition G, and G recursively.

The main computation is in Steps 2 and 3. Step 2 computes a map that “spreads” the input
points (in R?) onto the unit sphere in IR%*! in such a way that every great circle divides the points
approximately evenly. The key to this is a center point computation. Step 3 then finds a separator
by choosing a great circle that not only separates the graph evenly, but also intersects only a small
. number of edges.

Center Points

The mapping in Step 2 from IR? to the unit sphere in R has three parts. First, the input points
are projected stereographically onto the d + 1-sphere. Second, a special point called a center point
is found for the projected points. Third, the sphere is mapped conformally onto itself in a way that
moves the center point to the origin.

A center point for a set of n input points in IR%"! is a point ¢ such that every d-dimensional
hyperplane through c has at most d/(d + 1) - n points on each side. A center point exists for every
set of input points, and can be found by linear programming. However, this method is much too

slow to be practical; thus Archimedes uses a heuristic due to Miller and Teng (and analyzed by
Clarkson et al. [6]) that finds extremely good approximate center points in linear time.

Geometric sampling comes into play in that the center point is based not on the entire input
set, but only on a small randomly chosen subset S. The subset size depends on the dimension but
not the size of the input mesh. In theory, the subset size is proportional to dlog d; in practice, we
use several hundred points in two dimensions and about a thousand points in three dimensions.

Splitting Circles

In theory, a randomly chosen great circle on the unit d+ 1-sphere will divide the conformally mapped
points about evenly while cutting only O(n'~1/9) edges. In practice, not every great circle is a good
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circle. We therefore generate a number of great circles, searching for one that gives a balanced
partition with few edges cut.

Our original method used circles chosen uniformly at random. Recently, however, Gremban [10]
has suggested using moments of inertia of the conformally mapped points to bias the random choice.
The idea is to take advantage of the fact that the mapped points are not uniformly distributed on
the unit d + 1 sphere. A circle in a (hyper)plane perpendicular to the principal axis of the moment
of inertia of these points is likely to cut fewer edges than a different circle. Preliminary results
indicate that this biased distribution can save a factor of 5 or 10 in the number of random circles
examined.

Geometric sampling makes this step more efficient in two ways. First, we can filter candidate
circles against the sample S and quickly reject those that do not split evenly enough. Second, with
Gremban’s inertial method, we can compute the moments of inertia based only on .

Placement and Routing

The result of pa.rtitionihg is the quotient graph G’, which describes the communication pattern of
the matrix-vector multiplication. G’ should be embedded into the parallel architecture H such that
the communication time is minimized. The notion of a good embedding thus depends on the target
machine.

We consider two communication models. With message passing, all routing decisions are made by
the message passing system, and these decisions are hidden from the application. We also consider
a connection-based model called the ConSet model. The set of interprocessor connections we need is
broken up into a small number of phases, only one of which is active at a time. A phase consists of a
subset of connections which can simultaneously be held active by the available hardware resources;
the application controls which phase is instantiated at any given time. All connections belonging
to the active phase are themselves active. For a detailed discussion see Feldmann, Stricker, and

Warfel [7].

The advantage of message passing is that no explicit routing need be done. The advantage of the
ConSet model is that, because the structure of G’ is known in advance, a communication compiler
can choose routes and schedule communication so as to minimize network congestion.

We discuss below our target machines, the iWarp and the Connection Machine CM-5, and how
to embed G’ into them. Our heuristics are inspired by algorithms from VLSI gate array layout [17).

The iWarp system

" Qur first target machine is the iWarp [4]. The iWarp is a distributed memory parallel computer
whose processors are connected by a two-dimensional torus. The iWarp component is a VLSI chip
that contains a processing agent and a communication agent. At the heart of the communication
agent is a limited set of communication resources called queues. These queues can be dynamically
chained together to form pathways, which are point-to-point connections formed between pairs
of processors using wormhole routing. Data traveling along a pathway passes from processor to
processor automatically, with low latency, without disturbing the computations on intermediate
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processors. A pathway consumes a queue on each processor it touches. These ideas are illustrated

in Figure 10.
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Figure 10: iWarp communication structures. Processor 0 can send data to processor 2 without
interfering with the computation on processor 1.

Because the number of queues per processor is limited, in general not all desired connections
can be routed simultaneously. One way to address this problem is to use a simple message passing
system: a pathway is dynamically set up directly between the source and destination, the data is
transmitted, and the pathway is taken down to free up queues to be used for other messages. We
have also implemented ConSet communication on the iWarp, which requires explicit routing but
offers better performance.

iWarp Placement and Routing

The characteristics of the iWarp affect the efficiency of embeddings. Dilation is of minor importance
because of the low latency of the pathways. Congestion is an important measurement because
all pathways sharing a communication bus are multiplexed over that link. In addition to these
traditional measurements, we must address the constraint that a limited number of pathways can
touch any particular processor at any particular point in time. This makes the vertez congestion of
our embeddings, defined for each vertex in the target graph H as the total number of paths in H
(that correspond to edges in G') that are incident to that vertex, of paramount importance.

For placement, as with partitioning, it is to our advantage to take into account the geometric
information given in the original problem. We assign each node of G’ a coordinate in two- or
three-dimensional space by computing the center of mass of each subgraph of G. If our problem is
three-dimensional, we project G' to two dimensions to match our processor topology. One simple
approach to placing two-dimensional graphs on the iWarp is to simply halve the set of vertices
repeatedly with alternating vertical and horizontal cuts, and map the vertices to the torus in the

natural way. We further improve the placement with local hill-climbing search.

To route for the ConSet model, we must address two problems. First, each edge of G' must
be assigned to one phase, during which its connection will be active. Second, each phase’s set
of connections must be routed with a fixed number of queues and with minimal congestion. We
solve both problems together using sequential routing techniques based on weighted shortest path

algorithms.
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Our sequential routing algorithm is outlined below. It starts by trying to use a small number of
phases and increases the number of phases until it is successful. All connections are sorted, from
longest to shortest, by distance (in H) from source to destination. Each vertex of H (in each phase)
is assigned an initial cost of one. We define the cost of a path between two vertices in H to be the
sum of the cost of the vertices along the path. Connections are routed one by one, each along a
shortest path from all possible phases. Each time a connection is successfully routed, the cost of
each vertex along the path is increased. (The increase is nonlinear, and the cost of a vertex whose
queues are all used is infinite.)

If all connections can be routed this way, we have found a solution, but not necessarily a good
one, because the quality depends on the order in which connections are routed. Whether or not all
connections are successfully routed, the communication compiler tries to improve the routing with
a “ripup and reroute” stage, wherein routes are repeatedly selected to be ripped up, and the vertex
costs are updated; then the connections are rerouted. During this stage it is often possible to find
a route for a previously unroutable connection.

Algorithm (Route Connections on the iWarp)
Input: G'.
1. k = minimum possible number of phases, based on degree of G';
2. sort edges in G' by connection length (longest to shortest);
3. while not successful do
(a) use k tori (copies of H)
(b) initialize cost of each vertex in each copy of H to 1
(c) for each edge in G’ do
find shortest path in all k tori
update vertex costs in that torus
(d) for i = 0 to some empirically chosen number do

ripup and reroute a connection
() k:=k+1

When routing is complete, a schedule is generated which describes a good order in which to
exchange messages during each phase. The automatic scheduler is described by Feldmann et al. [7].

Figure 11 illustrates the quotient graph of Figure 9, placed and routed on a 64-processor iWarp
by our algorithms. We have tried other heuristics for placement and routing, including simulated
annealing and linear programming, but they have not performed as well.

Placement on the Connection Machine CM-5

Our next target machine is the Connection Machine CM-5 [24]. The CM-5 is a distributed memory
parallel computer whose computational nodes are connected by a fat-tree network [16]. The network
supports message-based, point-to-point communication, along with efficient primitives for synchro-
nization, broadcast, and scan. The network topology, a fat-tree, is best suited for communication
patterns with hierarchical locality. The network is organized such that groups of 4 processors have
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Figure 11: Interprocessor connections on a 64-processor iWarp for the quotient graph G'. Two
phases are required.

the highest bandwidth among themselves, groups of 16 processors have a slightly lower bandwidth,
and anything past a 16 processor boundary has yet a lower bandwidth.

This hierarchical locality of a fat-tree is well suited for our recursive partitioner as the separators
give a hierarchical decomposition. While partitioning G, we derive a binary cut tree T, which is
the recursion tree of the partitioning algorithm. The leaves of T represent the vertices of G'. We
can collapse alternate levels of T to obtain a 4-ary tree whose structure matches that of the fat-tree
network, and embed this tree into the fat-tree in the natural way. Because the network hardware
takes care of the routing, we do not need to specify the embedding of the edges.

Code Generation

Language Abstractions

We illustrate Archimedes’ language with several excerpts from code written to solve the heat equa-
tion.

Archimedes’ language has several distributed data types in addition to the usual C data types.
Distributed data types include vectors and sparse matrices.

Parallelism is expressed through the FORNODE and FORELEM loop constructs. These process each
node, or each element, in parallel. No data dependences between loop iterations are allowed, ex-
cept operations which combine the results with an associative, commutative operator. Consider

this simplified Archimedes code, which calculates the value of the stiffness matrix needed to solve
—V-kVu = f over a 3D region, where k and the unknown u are functions of the spatial coordinates

z, y,and z:

MATRIX K;
NODEFLOAT boundary, uo, f;
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float block([4][4];

MATRIXZERO(K);

NODEFLOATZERO();

FORELEM(7) {
GAUSS_TETRAHEDRON(:, k_function, block);
ASSEMBLEMATRIX(block, 7, K);

FORNODE(:) {
if (boundaryfi] != 0.0) {
DIRICHLET(uoli], 3, K, f);
}
}

Here, K is declared to be a sparse matrix, and boundary, uo, and f are vectors. block is an
array used to store the stiffness matrix of a single element. The identifier k_function denotes a
user-supplied C function which computes an arbitrary function of z, y, and z.

The matrix K and vector f are first set to zero. Then, Archimedes iterates through the elements
in parallel, and performs a numerical integration (by Gaussian quadrature) over the volume of each
tetrahedral element. Each integration returns a 4 x 4 element stiffness matrix, which expresses the
interactions between the corners of the tetrahedron. The values in this small matrix are assembled
into the (large, sparse) stiffness matrix K. This assembly process should be thought of as a simple
matrix addition, where the small matrix is padded to the size of the large matrix by the addition
of rows and columns (filled with zeroes) for mesh nodes not in the tetrahedron.

Because the matrix assembly process involves only addition, the elements can be processed in
any order. If a node is the corner of tetrahedra on several different processors, then the node is
duplicated across processors, so the elements can be processed in parallel.

The final loop modifies the matrix to set boundary conditions. The vector boundary specifies
which nodes are on the boundary of the region. At these points, we set the Dirichlet boundary
condition u = uo. :

None of the code thus far requires any communication. The main communication primitive is
the sparse matrix-vector product. This performs two functions: each processor performs a local
matrix-vector product on its subgraph; then, processors that share nodes communicate with each
other to ensure they have the correct value for each node. As we have explained, the communication
may be divided into several phases.

For the simplest explicit methods, this is the only communication primitive we need; all other
computation can be done locally. For iterative solvers, we also need reduction operators such
as vector norm and dot product. Because many problems can be solved with only these two
communication primitives, a simple version of Archimedes is easy to port.

Consider the inner loop of a simplified conjugate gradient code [9] to solve Ku = f.
NODEFLOAT(u, p, W, PW, residual);
while (norm > EPSILON = bnorm) {
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beta = norm / oldnorm;

SET(p = residual + beta * p);
MvPRODUCT(K, p, W);’

DOTPRODUCT(p, W, PW);

alpha = norm / pw;

SET(u = u + alpha * p);

SET(residual = residual - alpha * w);
oldnorm = norm;
DOTPRODUCT(residual, residual, norm);

Here, the SET operation performs mixed scalar/vector arithmetic, without any need to commu-
nicate. The MVPRODUCT operation forms the product w = Kp, and the DOTPRODUCT operation forms
the products pw = p - w and norm = residual - residual, each requiring communication.

Proposed Optimizations

The use of a FEM-specific language opens the door for certain program transformations which
improve the speed of the application. Here, we present some optimizations we plan to implement.
Although they are not yet a part of the code generator, they are based on well-understood compiler
design techniques, and will be simple to add.

The most important optimizations are those which reduce communication. If a system of partial
differential equations is being solved, each iteration of the inner loop of the linear solver will perform
several matrix-vector products. The communication for these can usually be performed all at once.
Hence, the code generator breaks each MVPRODUCT into two stages — a local computation stage,
and a communication stage. The communication stages are performed simultaneously after all
computation stages have completed. On a message passing multiprocessor, we might improve
communication time by combining them into a single message. With ConSet on iWarp, we need
only instantiate each phase once. Either way, execution time is reduced.

This optimization takes a subtler form if we compute a vector of the form u = Ax + By. In

this case, we can delay the communication step until after the local matrix-vector products and the
addition have been performed. Hence, only half as much data will be routed between processors.

Mesh Generation

Properties of Good Meshes

Meshes are often designed by conformally mapping a structured mesh (such as a square mesh) onto
a region. This approach gives the user little leeway to choose how the density of a mesh varies, and
is difficult to apply to complex geometries, such as airplane bodies. Unstructured mesh generators
are more flexible, but difficult to design. A good survey of mesh triangulation methods is provided

by Bern and Eppstein (3].
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It is not difficult to automatically find a triangulation for an arbitrary two-dimensional region.
It is trickier to find a tetrahedralization for an arbitrary three-dimensional-region. The real diffi-
culty, though, is that a mesh generator should avoid producing elements with large aspect ratios
— Ygkinny” triangles and tetrahedra, so to speak — because angles close to 180° cause a large
discretization error [1], and very small angles cause the stiffness matrix K to be ill-conditioned [5].
A good mesh generator will also minimize the number of nodes and elements in the mesh. Finally,
it ideally should be able to refine previously generated meshes.

Archimedes’ Mesh Generator

Archimedes includes a two-dimensional mesh generator with all of the above properties. The al-
gorithm is due to Ruppert [21], and is built on the Delaunay triangulation primitives of Guibas
and Stolfi [11]. Ruppert has proven that the algorithm can discretize two-dimensional regions with
straight-line boundaries using triangles with angles no smaller than 20° (except where there are
small input angles; these cannot be improved). This also has the effect of bounding the largest
angle below 140°. In practice, the algorithm produces relatively few nodes, as Figure 4 illustrates.

Ruppert’s algorithm starts by constructing a Delaunay triangulation of the input nodes. A
Delaunay triangulation is a triangulation which has the property that its smallest angle is maximized
(compared to any other triangulation of the same nodes). To improve the mesh further, additional
nodes are added one by one, and the triangulation is incrementally updated each time.

Nodes are added for two reasons. If the triangulation does not conform to the input boundaries,
nodes are added to force it to do so. If a triangle has an angle smaller than 20°, a node is added at
the triangle’s circumcenter. This changes the triangulation so that the skinny triangle is no longer
present.

Nodes can be added for a third reason: to refine triangles which are too large. Figure 6 was
generated from Figure 4 as follows: Archimedes solved a stress simulation on the original mesh, and
generated a posteriori error estimates on each element of the mesh. Based on the error estimates, it
determined a maximum desired triangle area on each element. Archimedes’ mesh generator refined
the existing mesh so that no triangle has area greater than the maximum allowed.

There are no known satisfactory algorithms for three dimensional mesh generation on arbitrary
regions. Archimedes has only rudimentary 3-D mesh generation; we are actively studying this area.

Matrix-Vector Product Performance

We tested Archimedes on a three-dimensional 22,000 node mesh on a 64 processor iWarp machine.
With a highly optimized kernel, each iWarp processor can perform a local symmetric sparse matrix-
vector multiply at 5.22 MFLOPS. Of the time required to perform a global multiplication, 20%
of the total time is spent communicating, so the net speed per processor is 4.15 MFLOPS. The
communication time is significant; this is the reason for our careful efforts in partitioning, placement,
and routing.

[Note to referees: we have run the same test on a CM-5, and achieved 7.75 MFLOPS on one
processor with one vector unit. Our communication measurements are still tentative, and we are
not yet permitted to publish them. We will include them in the final draft.]
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Future Directions

The code generator’s repertoire could be expanded in many directions. We plan to consider various
parallel linear solvers (12]. We will pay special attention to multigrid methods [18], domain decom-
position methods [14] related to nested dissection [15], and methods of preconditioning that are
based on the geometry of the mesh. We are also investigating the feasibility of adding primitives
for unstructured finite differences and boundary element methods.

Another of our goals is to parallelize as much of Archimedes as is practical. It should be
straightforward to parallelize mesh partitioning. With more effort, it may also be possible to
parallelize mesh generation.

Our greatest impediment to further work is the difficulty of generating high-quality three di-

mensional meshes for arbitrary geometries. It is also important to have an easy way to discretize
regions with curved boundaries.

Our most ambitious goal is adaptive time-dependent finite element methods. Suppose that we
wish to refine our mesh every few time steps to keep up with changing conditions. It is too slow to
generate and partition a new mesh each time. We need to develop algorithms which can efficiently
modify an unstructured mesh during run-time. Several serial algorithms have been developed (25],
but we know of no parallel ones.
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