SUMS OF DIVISORS, PERFECT NUMBERS,
AND FACTORING

(Extended Abstract)

Eric Bach (%) Gary Miller
Department of Applied Mathematics
Massachusetls Institule of Technology
Cambridge, MA 02139

Computer Science Division
Unsversity of California
Berkeley, CA 84720

Abstract.

Let N be a positive integer, and let (N} denote
the sum of the positive integral divisors of N. We show
computing o) is equivalent to factoring N in the fol-
lowing sense: there is a random polynomial time algo-
rithm that, given o(N), produces the prime factoriza-
tion of N, and a{/N} can be easily computed given the
factorization of N.

We show that the same sort of result holds for
o N), the sum of the k-th powers of divisors of M.

We give three new examples of problems that are
in Gill's complexity class BPP: {perfect numbers},
{multiply perfect numbers}, and {amicable pairs}.
These are the first “‘natural” candidates for BPP - RP.

1. Introduction.

Factoring is a well-known difficult problem whose
precise computational complexity is still unknown,
despite recent progress (see [Guyl], [Pol], [Dix]).

The relationship of factoring to other functions in "
number theory has also been explored. For example,
Miller showed that if the Extended Riemann
Hypothesis (ERH) is true, then ¢(N) (the number of
positive integers less than NV and relatively prime to N)
is equivalent to factoring N in the sense that a
polynomial-time method for either problem gives one
for the other [Mill. He also demonstrated a similar
equivalence for two other number-theoretic functions,
A(N) and X (N). Long pointed out that if one is wil-
ling to use randomization, the ERH assumption in the

(*) Research sponsored in part by NSF grant MCS 82-04506.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given Ithal copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-133-4/84/004/0183 $00.75

Jeffrey Shallit (+)
Department of Computer Science
University of Chicago
Chicago, IL 60637

above results can be eliminated, and further showed
that the calculation of orders im the multiplicative
group of integers mod /N is randomly equivalent to fac-
toring [Lon|. Using this last result, a method for
composite-modulus discrete logarithm problems implies
a method for factoring [Bac].

However, not every difficult number-theory funec-
tion is equivalent to factoring; some are apparently
harder. For example, remarks of Shanks indicate that
factorization is reducible to finding the class number of
an imaginary quadratic field [Sha] but no reduction in
the other direction is known, nor is it even clear that
this problem is in NP.

This paper continues in the above tradition and
adds another well-known function to the list: o{N), the
sum of the positive integral divisors of N. Clearly o{N)
is readily computed from the factorization of N, if

N = Pl“ Sy pr‘r
then o N) is given by
ay+1 a+1
-1 -1
O'(M = Py o P
h- 1 P 1
={P‘1‘"§'"’+”"'(P:’+"'+l)- {0)

We show how to split N, given o(N).

Recall that BPP is the class of languages recog-
nized in polynomial time by a probabilistic Turing
machine, with error probability bounded by 2 constant
away from 1/2. We show that {perfect numbers},
{multiply perfect numbers}, and {amicable pairs} are
in BPP.

II. Splitting N using o{/N): the square-free case.

In this section we assume that

N=pp " 'm

is the product of ome or more distinet primes. This
case is somewhat easier than the case where N is divisi-
ble by a square, so we give our proofs in detail.

The following procedure will state that N is prime,
or with high probability produce a non-trivial divisor of
N.

(By iteration, il necessary, we eventually produce
the complete factorization of N.)

Algorithm A.
[Given o N) with N squarefree, try to split NJ]

A0. If o(N) = N + 1, output N and stop.
Al. If Nis even, output the factor 9% and stop.

Repeat until N splits:

A2. Run a single iteration of the random-
ized version of Miller's algorithm (as
described by Long [Lon]), using o(N) as the
exponent. If a non-trivial divisor of N is
produced, output that divisor and stop.

A3. Choose a random monic quadratic
polynomial from Z X, aay,
X=X +X+c

A4. Choose a random linear polynomial

from Z X, say, fX) = tX + u such that
t and are not both 0.

A5. | Ensure that f(X) 70 (mod ¢) for
all primes ¢ | N|. If ged(t,N) splits N, out-
put that divisor and stop.

A8. Compute #M(mod (f,N)) = dX + e
A7. If ged(d,N) splits N, output that divi-
sor and stop.

A8. If ged(e-1,N) splits N, output that

divisor and stop.

A9. [Failure.] No divisor of N has been pro-
duced on this iteration.

In our analysis of Algorithm A, we will find the
following group-theoretic lemma useful:

Lemma A.
Let G be a finite cyclic group, |G] = n. Let o be
the homomorphism defined by o(g) = ¢". Then
o(G) is also a finite cyclic group. We have

n

1N = Zca(mn
and if ¢ € o(G) then |o7)(¢")| = ged(n,r). Hence
o(G) is the trivial group iff n | r.

Proof.
Easy. Left to the reader.

184

Here are the ideas behind Algorithm A:
Steps AO and Al are self-explanatory.
In step A2, if for every p; dividing N we have

p; - 1| o(N) then the randomized version of Miller's
algorithm will split N in polynomial time.

Hence let us assume that for at least one p; (call it
p) we have p; - 1 [o(N).

Suppose f is a monic quadratic polynomial chosen
at random from Za{X]. Then a simple argument
shows that with probability

1 p-1

T i)

[is irreducible (mod p); so assume it is. (In practice, of
course, we choose many different f and perform the
algorithm on all of them. With high probability, the
algorithm succeeds somewhere.)

Similarly, for a prime ¢, with probability

1 g-1 '
i (2)

[splits as the product of distinct linear factors (mod g,

say fiX) = (X-B) (X-1) (mod q), so assume it does
for some p; 7% p; (call it q)-

We now distinguish two cases:
Casel: g- 1] o(N).
CaseIl: ¢-1|a(N).

Lemma B.
Suppose Case I holds. (This corresponds to step
A7 of the algorithm). Then with probability at

least -;—, ged(d, N) splits N.

Proof.
We show that we always have d= 0 (mod p) but
440 (mod q) with probability > -;- From this we

conclude that ged(d, N) splits N with probability > -;-

To see that d = 0 (mod p) it is enough to see that
X! (mod) € Z . '
This is true since the field extension is as follows:

1X) € ZX/AX)

it € Z,

Figure 1: Field extensions

Now the p-th power automorphism gives all the conju-
gates of the element r(X). Since f(X) is quadratic, there
are only two conjugates: rand r®. Their product must
lie in the base field Z , since the product of conjugates
is a norm (see [Mar]). Thus d = 0 (mod p).

Now let us show that 4350 with probability
> 1/2. By the Chinese Remainder Theorem, we have
the isomorphism
Z JX/AX) = Z[X/(X-5 & ZJX/(X-1)
Indeed, we can make this isomorphism explicit. There
exist fixed w, X + w, and v, X+ v € Z |X] such that
every linear f(X) € Z [X] can be written uniquely as

f(X) = e)(w X + wy) + ey, X + vg) (mod g) (3)
Here the ¢; and ¢, are in Z , and depend on r{X). Step

A5 of the procedure above ensures that ¢; and ¢, are
not both 0.

Now

XM = ¢, M(w, X + wg) + ¢ M0 X + v;) (mod g)
50

d= ¢, M + ¢, My, (mod q)
Il is easy to see that wy, v; S0 (mod g), so if d=0 we
must have

¢, Mwyo! = "M (mod g) (4)
Now let us count the number of pairs (¢, ¢3) for which
this can happen.

If ¢, =0, then for (3) to hold we must have
¢y = 0, and by step AS this cannot happen. A similar
argument holds if ¢g = 0.

Now if both ¢;, ¢g 0 (mod g) then ¢, o € S
which is a cyclic group. Hence we may apply Lemma A
to see that for any fixed value of ¢;, the number of ¢,
satisfying equation (1) is ged(g-1, o(NN))- But by the
hypothesis for Case I, this is < 9-1 Hence the total

number of pairs for which (4) can hold is < (g - 1)%/2.
Dividing this by ¢ -1 total pairs (cy, ¢2) with ¢;, ¢
not both 0, we get d = 0 (mod g) with probability

< 1 9-1

= 2 g+1

Hence with probability > %, we have d =£0 (mod g).

This completes the proof of Lemma B.

Now we turn to case T, where ¢-1|o(N). We
have the following Lemma:

Lemma C.
Suppose Case II holds. (This corresponds to step
A8 of the algorithm). Then with probability at

1 g1 .
least 2 il ged(e-1,N) splits V.
Proof.

First, we show that, with high probability, we
have e = 1 (mod ¢}.

Equation (1) implies that
e= ¢,"Muy + ¢, My, (mod g)

185

Now with high probability (-ﬂl- , to be precise) nei-

ther ¢; nor ¢, equals 0, so let us assume this is true.

. Then both ¢; and ¢y lie in Z 4, so both ¢, and ¢,

must equal 1. Now it easily verified that
wp + vp = 1 (mod ¢); hence e =1 (mod q) with high
probability.

Now let's consider what e looks like (mod p).
Considered mod p, r{X) lies in the group of invertible
elements of a finite field of p* elements. (It is invertible
by the check in step A5). We have already shown that

(3™ = dX + ¢ (mod p)

and d = 0 (mod p). Using Lemma A, then, the proba-
bility that e = 1 (mod p) is

cd(p” - 1,
7£-1
But since p—-1J o(N), certainly p?- 1] o(N) and so
ged(#? - 1,0(V) < £+

2
Thus ged(e-1,N) splits N with probability at least
1 ¢g-1
2 g+1 (6)

and the proof of Lemma C is complete.
Putting Lemmas B and C together, we get

Theorem 1.

With probability at least 3—10-, a single iteration of .

steps A2-A8 splits V.

Proof.
Putting together the worst cases above, we
multiply the probabilities given in equations (1),
(2), (8) with p = 5,¢ = 3 to get the result.

A brief remark is in order. Algorithm A will work
even if we have a non-zero multiple of o(N) instead of
o(N) itself. The only difference is that in step AO we
must use a polynomial-time prime test on IV; for exam-
ple, the probabilistic test given in [SS].

M. Factoring N using o(N): What to do
about repeated factors.

This section serves two purposes: We generalize
the algorithm in section (II) to the case when NN is not
necessarily squarefree, and we show how to obtain the
complete factorization of N, given o N).

Before presenting the algorithm, we need some
preliminary remarks on factorization. Ordinarily, we
factor a number by splitting it into two pieces, then

)

splitting each of them, and continuing until we arrive
at prime powers. For reasons that will become
apparent later, we can only recursively split factors of
N that contain all the available copies of some prime p
dividing N. To refer to splittings that are useful in this
sense, we say that a factorization N= NNy - N,
segregates p il v (N;) = v(N) for some i, where by
v (k) we mean the exponent of the highest power of p
that divides N.

A factorization segregates every prime if and only
if the elements are pairwise relatively prime. The fol-
lowing procedure produces such a factorization.

Factor refinement procedure:

(At all times we have N= M, - -+ M,", possibly
needing further processing).

RO. Let the initial factorization be N = M; Mo.
While factors remain with ged(M; M) > 1:
R1. Set g = ged (M;, M)).

R2. Replace Mt‘_e..l .M,‘" in the list by glt,+ %
(Mi/g}“: (M_,fy)".

R3. If necessary, remove units from the list and
combine powers of equal numbers.

The properties of the refinement procedure are
given by

Lemma D.)
The factor refinement procedure terminates in at

most log, N iterations, with all the M;s relatively

prime. If the initial factorization is nontrivial and
segregates some p | N, then on termination r > 2.

Proof.
Left to the reader.

Now assume that we want to split

N=p," - p"; the algorithm below uses a guess for

one of the a;’s, say «. Since a; < logy N, we can try
all possible a's without spoiling the polynomial time
bound.

Algorithm B:
[Try to split N given o N) and &)
BO. If Nis a prime power, output N = p* and stop.

Bl. If N is even, output 2 relatively prime factoriza-
tion N = 2* - M and stop.

186

Repeat:
B2. Pick a random monic f€ & MX] of degree
o+ 1.

B3. Pick a random r € Z pX] of degree < c.

B4. Compute
PMmod f=d, X"+ -+ +dX+e

B5. Foreach i1 < i< a,let g;= ged(d; N).
B6. Let h = ged(e -1, N).

B7. Try to split N using o{N) as an exponent
for Z], yielding a possibly trivial factor I

B8. If any of the factors g; h, or I lead to a
relatively prime factorization, output the results
and stop.

We now prove that with reasonable probability,
Algorithm B produces a relatively prime factorization.

First, note that if NV is a prime power or even, We
get a good factorization. It can also be shown that if

e P l) | U{M
then with probability at least 1/2 Miller's algorithm
splits N and segregates one of the primes dividing N.
Therefore we may as well assume that N is odd, has at
least two prime factors, and there is some p| N with
p-1] o(N). Let ¢ be any other prime dividing N.

We hope that [is irreducible mod p, but reducible
and squarefree mod ¢; if this is the case, we call [sult-
able. We then have

Z X/ = GAg) ® ®GAd)

with 7> 2. There is a nice relation between the
representations on both sides of this isomorphism, given

by

lcm{pl -]., 't

Lemma E.
It oX) € I [X]/() has degree < a, then a’s non-
constant terms vanish identically if and only if all
the projections are equal and are contained in

GFg)

Proof.
Each condition is satisfied by ¢ elements, and the
first condition implies the second.

We now need some probability estimates:

Lemma F.
A monic polynomial f of degree @+ 1 is suitable
with probability at least

1 1 1 1
—_— (1) (e ———
a+1 (\/E” g o+ 1]
Proof.
First, f is irreducible mod p with probability at
least

1 1

N S ;| SENGA...c.
a+1 (\/;)

(see [Ber, p.80]). Second, [is irreducible mod ¢

with probability at most

, and has a
1

repeated factor with ‘probability exactly L (see
q
[Car]).

We also want #{X) not to vanish mod g; the
chances of this are estimated by the following
lemma.

Lemma G.
Given that fis suitable, r{z) 50 (mod g) with pro-

. 1
bability at least 1 — —.
7

Proof.
Clear.

Now assume that p|| N, f is suitable, and
r 50 (mod g). We are interested in two events, either
one of which gives us a splitting that segregates some
prime:

B5 succeeds: there is some i for which ¢) d;.
(Note that p| d; for all f, since in analogy with
Figure 1 of section II, the map z — ZWM takes
GF(p**!) into GF(p)).

B6 succeeds: g e-1,butp[e-1
Now let (¢, €3 -, ¢,) denote the projections of
N given by the isomorphism (7) above; for conveni-
ence assume that all the ¢s are contained in some
common field. Since by Lemma E, B5 always succeeds
when some but not all ¢; = 0, we have

Pr [B5 or B8 succeeds | >
‘Pr [B5 or B6 succeeds | all ¢;7# 0]

Because of this, we may as well assume that all
¢; 5£0; as before, consider two cases.

Case 1: Raising to the ofN) power does not
annihilate (Z [X]/(/))% then the image of this
homomorphism is a direct product of cyclic groups, say

187

C1®Cg® @C,.
and we may assume, without loss of generality, that o)
is non-trivial. If C; () Ca 7 Cy, orif Ci N G # Oy,
then ¢; and ¢, are distinct with probability at least
1/2, because they have to be in Cj M) Cy to be equal.
Thus assume C; = C;. Then the probability that
€ = & is

1

—_— 12,

#ane =2
In this case, by Lemma E, B5 succeeds with probability
at least 1/2.

Case 2: Raising to the o(N) power annihilates

(Z JX1/(/)" then by the hypothesis on p, the image of
this homomorphism is non-trivial mod p (p - 1 doesn’t
divide o(N), so p*! - 1 doesn’t either). Then BS& 1
successful with probability at least 1/2.

Using lemmas F and G and the above discussion.
we have

Lemma H.
For some a < logs N, the above algorithm pro-
duces a relatively prime factorization of N with
probability at least

S S
33a+ 1)

We observe that, as in the previous section, o(/N)
can be replaced by any multiple of (V) with no change
in the above result. Since o(mn) = ¢(m) ofn) for rela-
tively prime m and n, we can use o{N) to factor the
relatively prime pieces output by the slgorithm until
we reach a prime power. Thus we get

Theorem 2.
Given o(N), we can produce the complete factori-
zation of N in random polynomial time.

An interesting corollary is that the function ryN),
the number of ways to write N as the sum of four
integer squares, is (randomly) equivalent to factoring.
This follows easily from a theorem of Lagrange (see, for
example, [HW, Theorem 386]).

IV. Generalizations to o(N).

A natural generalization of o{N) is summing the
k-th powers of divisors of N, i. e.

M=% &
d{N
+9t+1)

it ke,
B T £ 0 | R al R

where N = p;* - * p,".
We have

Theorem 3.
Computing o N) is (randomly) equivalent to fac-
toring, for any fixed integer k £ 0.

Proof (sketch).
If k is negative then :
olN) = NFa_i(N)
so it suffices to consider positive k.
The essential idea is that the map z — 27" takes

GF(p"°*Y) into GFg*), when p* || N.

Algorithm C.
| Try to split N given ay(N).]

CO0. If Nis even or a prime power, output a factor
and stop.

Set a «— 1, and repeat until N splits:

C1. Try to split N using o)(/N) as an exponent for
Z i

C2. | Construct GF(p*).]| Pick a random monic
a € & p[Y] of degree k; let R denote Z \{ Y]/(a).

C3. Pick a random monic f € R[X] of degree o + 1.
C4. Pick a random r € R[X] of degree < a.

C5. Compute ¥ (mod f) =
LINX+ -+ +d(NX+ oY),

C8. For each 5, 1 < i < a, and each coefficient ¢ of
d{Y), see if ged(¢,N) splits NV.

C7. See if ged(e(0) - 1, V) splits N.

C8. [Failure]. If o+ 1 <logg N, set a—a + 1;
else set a +— L.

There is only one new observation to make here:
we want a{Y) to be irreducible modulo two distinct
divisors of N, and this happens with probability about
1/E. Since k < logy oy(N), we only expect to wait a
polynomial-bounded time until this happens. In all
other respects, Algorithm C behaves just like algorithm
B. The details are left to the reader.

188

V. Some classes of numbers that can
be factored guickly.

The reduction of factoring to computing o{N) dis-
cussed in the previous sectiods is interesting from a
complexity theory point of view, but it also has some
practical applications: it allows us to quickly factor
those numbers N for which o(V) is easily computable.

Consider the equation o(N) = 2N. Numbers satis-
fying this equation are kmown as perfect numbers;
there is an enormous literature about such numbers
dating back as far as Euclid. If we define s(/V) to be
the sum of the “aliquot parts” of a number N, i. e. the
sum of all divisors of N except N itself, then for perfect
kE we have ok) =k the ancients read mystic
significance into the fact that a perfect number exactly
equalled the sum of its ‘'parts”.

Even perfect numbers are exactly those of the
form 2% (2" - 1) where 2" - 1 is prime; Euclid proved
that this condition is sufficient, and the necessity was
proved a few millenia later by Euler. No one knows if
there are any odd perfect numbers, but if there are,
they must satisfy many stringent conditions (see, e.g.,
[teR]). We now add one inore: they are all easy to fac-
tor!

Looking at this in another way, we can prove that
the set {perfect numbers} is recognizable in (two-sided)
random polynomial time. By {perfect numbers}, of
course, we mean the set

{ z€ (0, 1)*: z (interpreted in binary) is perfect }.

Given N, assume that o(N) = 2N. Run the algorithm
of section Il with the appropriate polynomial time
bound; the result is a (purportedly -complete) factoriza-
tion of N. Now check to see if N is indeed perfect by
using equation (0).

We end up accepting if N is perfect, or if we
accidentally produced an incorrect factorization (i. e.
one where our probabilistic prime test said all the fac-
tors were prime, but some really weren't). But such an
accident happens only ¢ of the time, and we can fix ¢
ahead of time.

We end up rejecting if N is not perfect, or if we
accidentally produced an incorrect factorization as
above, or if the algorith:n of section III failed to pro-
duce any factorization at all in our (pre-fixed) time
bound. Again, this happens only ¢ of the time.

Gill's complexity class BPP denotes the class of
languages that are recognized by probabilistic Turing
machines in polynomial time, with a (two-sided) proba-,
bility of error bounded by a constant away from 1/2.
Thus the above remarks show

Theorem 4.
{perfect numbers} € BPP.

For discussion of random complexity classes, see
[Gil].

Theorem 4 gives the first “natural” candidate for
BPP - RP. Of course, it is possible to construct exam-
ples like

L= {z# y:zis prime and yis composite }.

L € BPP, but it is somewhat ‘“artificial”, since it may
be written as the product of two languages, one of
which is known to be in RP, and one which is known
to be in co-RP.

Nevertheless, Theorem 4 may in fact be less
interesting than it appears at first glance; if there are
no odd perfect numbers (as is widely believed), then the
clever Lucas-Lehmer test (see [Knu]) combined with the
Euclid-Euler result for even perfect numbers gives a
deterministic polynomial time algorithm to recognize
the language {perfect numbers}.

However, there are well-studied generalizations of
perfect numbers for which no deterministic tests are
known. For example, numbers such that o{N) = 3N
are sometimes called sous-doubles; examples are 120
and 672. It is easy to see that an argument like that in
Theorem 4 shows that {sous-doubles} € BPP.

A still-larger class is {multiply perfect
numbers}; i. e., those numbers N for which N | o(N).
To show that {multiply perfect numbers} € BPP, we
need the following lemma:

Lemma J.
o(N) < 5Nloglog N for N > 3.

Proof.
A well-known theorem (e. g. [HW, Thm. 329])

states that
AN N .,
M —

A result of Rosser and Schoenfeld [RS] is

N c 3
i) < e% log log N.+ e N
for N > 3. Here Cis Euler's constant.

Combining these two inequalities, we get
f-%\-il < (¢ + 3) log log N

for N > ¢°. From this the result easily follows.

Lemma J shows that we can determine if N is mul-
tiply perfect with fewer than 5 log log NV iterations of
Algorithm B. This can be done in random polynomial
time, so we have proved

Theorem B.
{multiply perfect numbers} € BPP.

189

The multiply perfect numbers less than 10° are as
follows:

1, 8, 28, 120, 498, 672, 8128, 30240, 327860,
523776, 2178540, 23569920, 33550338, 45532800,
142990848, 450818240,

See, for example, [Carm]. Tt is not known whether or
not there are an infinite number of multiply perfect
numbers, However, there are some density results that
give upper bounds; for example, Hornfeck and Wirsing
have shown [HoW] that if m{z) denotes the number of
multiply porfeet numbers < z, then

¢log s log log log =
m(:] _— 0(e log log = }

To give still another example, consider the pairs
(M, N) such that

o{M) = o(N) =M+ N

Such numbers are known as amicable pairs. Jacob
gave Esau 220 goats and 220 sheep [Gen], and some
scholars have interpreted this as showing that the
Hebrews knew about o{N). Amicable pairs also have
an enormous amount of literature (see [LM]). An argu-
ment similar to those above gives

Theorem 8.
{amicable pairs} € BPP.

It is not known whether or not there are an
infinite number of amicable pairs (M, N), but Erdds
conjectures that the mumber of such pairs, A(z), with
M < N < zis at least ez’ [Guy?2].

Using our methods, it is possible to show that
many other types of numbers (for example the
“betrothed numbers” of Isaacs [Guy2, p. 33]) can be

-recognized in two-sided random polynomial time.

In Theorems 4-8 above, we have given three prob-
lems in BPP. The two-sidedness of these problems is
due to the dependence on primality testing; if we had a
deterministic polynomial-time prime test, we would be
able to show that {perfect numbers}, {multiply perfect
numbers}, and {amicable numbers} are in RP. No
such prime test is currently known, although there is
an “‘almost-polynomial-time” one [APR].

VI. Acknowledgements.

We are pleased to acknowledge the use of the com-
puter algebra program VAXIMA, which allowed us to

confront our early ideas with the harsh reality of
specific examples.

We would also like to express our deep apprecia-

tion to Manuel Blum, who created an environment
eminently suitable to conducting research.

REFERENCES

[APR] Leonard M. Adleman, Carl Pomerance, and
Robert S. Rumely, “On distinguishing prime numbers
from composite numbers”, Ann. Math. 117 (1983) 173-
206.

[Bac] Eric Bach, “Discrete logarithms and factoring”,
to appear.

[Ber] Elwyn R. Berlekamp, Algebraic Coding Theory,
McGraw-Hill, New York, 1968.

[Car]] Leonard Carlitz, “The arithmetic of polynomials
in & Galois field”, Amer. Journ. Math., 54 (1932) 39-
50.

[Carm] R. D. Carmichael, “A table of multiply perfect
numbers?, Bull. Amer. Math. Soc. 13 (1907) 383-386.

[Dix] J. D. Dixon, “Asymptotically fast factorization of
integers”, Math. Comp. 86 (1981) 255-260.

[Gen] Genesis, xxxii, 14.

[Gil] John Gill, “Computational complexity of proba-
bilistic Turing machines”, Siam J. Comput. 8 (1977)
675-695.

[Guyl] Richard K. Guy, “How to factor a number”,
Proe. Fifth Manitoba Conf. on Numerical Math., Winni-
peg, 1976, 48-89.

[Guy2] Richard K. Guy, Unsolved Problems in Number
Theory, Springer-Verlag, New York, 1981.

[HoW] Bernhard Hornfeck and Eduard Wirsing, “i..Iber.

die Haufigkeit vollkommener Zahlen”, Math. Annalen
133 (1057) 431-438.

[HW] G.H. Hardy and E. M. Wright, An inlroduction
to the theory of numbers, Oxford, 1971.

[Knu] Donald E. Knuth, The Art of Computer Pro-
gramming, V. 0 {Seminumerical Algorithms), 2nd
edition, Addison-Wesley, Reading, Mass. (1981) 391-
394,

[LM] Elvin J. Lee and Joseph S. Madachy, “The his-
tory and discovery of amicable numbers”, Journ. Rec.
Math. 5 (1972) 77-03, 153-173, 231-249.

190

[Lon] Douglas L. Long, “Random equivalence of factor:
ization and computation of orders”, to appear, Theorel-
ical Computer Science.

[Mar] Daniel A. Marcus, Number Fields, Springer-
Verlag, New York, 1977.

[Mil] Gary Miller, “Riemann’s hypothesis and tests for
primality”, J. Comp. System Ses. 18 (1976) 300-317.

[Pol] J. M. Pollard, “Theorems on factorization and
primality testing”, Proe. Cambridge Phil. Soc.78 (1974)
521-528.

[RS] J. Barkley Rosser and Lowell Schoenfeld,
“Approximate formulas for some functions of prime
numbers”, fll. Journ. Math. 6 (1962) 64-94.

[Sha] Daniel Shanks, “Class number, a theory of fac-
torization, and genera”, Proceedings of Symposia in
Pure Mathematics, V. 20 (1969 Number Theory Insti-
tute), American Mathematical Society (1971) 415-440.

[SS] R. Solovay and V. Strassen, “A fast Monte-Carlo
test for primality”, Siam J. Computing 8 (1977) 84-5.

[teR] H. J. J. te Riele, “Perfect numbers and aliquot
sequences”, in Computational Methods in Number’
Theory, Amsterdam Math. Centre Tracts 154 (1982)
141-157.

