The Association for Computing Machinery
1515 Broadway
New York, N.Y. 10036

Copyright © 1994 by the Association for Computing Machinery, Inc. Copying without fee
is permitted provided that the copies are not made or distributed for direct commercial
advantage,and credit to the source is given. Abstracting with credit is permitted. For other
copying of articles that carry a code at the bottom of the first page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923. For permission to republish write to:
Director of Publications, Association for Computing Machinery. To copy otherwise or
republish, requires a fee and/or specific permission.

ACM ISBN: 0-89791-678-6

Additional copies may be ordered prepaid from:

ACM Order Department Phone: 1-800-342-6626
P.O. Box 12114 (U.S.A. and Canada)
Church Street Station 1-212-626-0500

New York, N.Y. 10257 (All other countries)

Fax: 1-212-944-1318
E-mail: acmpubs@acm.org

ACM Order Number:208940

Printed in the U.S.A.

ii

The project for Suggesting Computer Science Agenda(s) for
High-Performance Computing is sponsored by the University
of Maryland Institute for Advanced Computer Studies (UMIACS),
and the National Science Foundation Center in Discrete Mathematics
and Theoretical Computer Science (DIMACS).

iii

Developing a Computer Science Agenda
for High-Performance Computing

Editor: Uzi Vishkin
University of Maryland

iy et

The Hidden Cost of Low Bandwidth Communication

Guy E. Blelloch

Bruce M. Maggs

Gary L. Miller

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Every year manufacturers of massively parallel
computers release new machines with ever more im-
pressive benchmark performance. Unfortunately,
these machines are not widely used in practice. To
date, they have been used efficiently mostly to solve
problems whose communication structure is well
understood. Furthermore, the software for solv-
ing these problems has been highly engineered, and
both data and machine specific. Progress has been
made recently on solving more irregular problems
and machine-independent programming languages
such as HPF have made software more portable,
but the machines remain difficult to program. Our
position is that much of this difficulty stems from
a lack of appreciation of the impact of low perfor-
mance interconnect on software development.

To understand why the cost of low performance
interconnect is underestimated, it helps to look at
the standards by which parallel computers have
been measured until now. Five years ago, a typ-
ical measure of the power of a massively paral-
lel computer was the peak rate at which it could
perform floating-point operations, i.e., how many
gigaflops (floating point operations per second) it
could perform. Manufacturers produced machines
that achieved very high floating point performance,
but this measure was found to be nonpredictive be-
cause the machines could rarely achieve it. More
recently, the performance of these machines has
been judged against a set of standard benchmarks,
which include the LINPACK and NAS [1] bench-
marks. As shown in Figure 1, these benchmarks,

title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Developing a CS Agenda for High-Performance Computing
@e 1992 ;?CM 0-89791-678-6..$3.50

especially the NAS, have exposed a large difference
between peak and achievable performance. One
of the conclusions that can be drawn from these
benchmarks is that machines with high communi-
cation bandwidth perform well across the board,
whereas peak floating-point performance is rele-
vant only on embarrassingly parallel problems.

The benchmarks, however, still do not reveal the
full cost of inadequate comunications bandwidth.
Absent from the performance statistics is the cost
of software development. In particular the statis-
tics fail to capture

1. the time to write the code,

2. the time to write the compiler that translates
the code,

3. the time to port the code to different distribu-
tions of data, and

4. the time to port to different machines.

These hidden costs can be substantial. First, al-
though the NAS benchmarks are relatively sim-
ple, manufacturers of parallel machines typically
spend multiple man years of software development
in order to draw high performance from their ma-
chines. Second, the time reported for the develop-
ment of code for specific benchmarks is often an
underestimate of the true time, since benchmark-
specific optimizations are often hidden in the com-
piler. Third, although the benchmarks are meant
to measure the performance of parallel computers
on basic tasks, the code for specific benchmarks
is often highly tuned to the particular distribution
of data specified by that benchmark. For exam-
ple, most of the manufacturers’ programs for solv-
ing the NAS integer sort benchmark exploit the
fact that the low order bits of the keys are ran-
domly distributed. One exception is the CRAY

C90 T3D Paragon CM-5

70
60

50

% of Peak
Performance

30
20
10

0 EP BT FT LU CG IS

Figure 1: Percent of peak floating-point performance for the 8 NAS benchmarks on 4 parallel machines.
The benchmarks names are Embarrassingly Parallel (EP), Multigrid (MG), Conjugate Gradient (CG), 3-D
FFT PDE (FT), Integer Sort (IS), LU Simulated CFD Application (LU), SP Simulated CFD Application
(SP), and BT Simulated CFD Application (BT). The benchmarks are ordered from the one that requires
the least communication on the left to the one that requires the most on the right. The machines are ordered
from the one that has the highest communication bandwidth on the left to the one that has the lowest
bandwidth on the right. The numbers were calculated using the equation benchmark-flops/(timexpeak-
machine-flops). The benchmark-flops are the number of floating-point operations required by the serial
version. In the case of the integer sort benchmark (IS), benchmark-flops is the number of integer operations.
The times are taken from the official published numbers as of November 1993 and are all for the largest
configuration of each machine for which numbers are reported (128 processors for the CM-5, Paragon and
SP1, and 16 processors for the C90).

23

Y-MP C90, which is also one of the highest band-
width machines. In fact, in order to be competi-
tive on this benchmark, one of the companies re-
placed its general-purpose sorting routine with a
special-purpose routine. As a consequence, these
codes cannot be used as efficient general-purpose
sorting routines. On the conjugate gradient bench-
mark, whose main inner loop is a sparse-matrix
vector product, many of the manufacturers use an
algorithm that works well for the specific data set
but does not work for many other classes of sparse
matrices. Finally, the algorithms used to achieve
top performance vary substantially from machine
to machine.

There are a variety of reasons for the high cost
of developing benchmark software for a new gen-
eration of computers. For example, programmers
of these machines are faced with using new pro-
gramming languages and immature compilers and
debuggers, and they have to learn to think about
solving problems in parallel. However, the primary
complication faced by these programmers is local-
ity. In order to achieve acceptable benchmark per-
formance on most of these machines, the program-
mer and the compiler writer must take into account
a large difference in cost between accessing local
memory and accessing remote memory. This com-
plication not only increases the time that is spent
developing benchmark codes, but also leads to pro-
grams that are both machine and data specific.

Two examples of ways in which local memory ac-
cesses differ in cost from remote memory accesses
are in the time required for the access to be per-
formed, and the frequency with which they can be
performed (assuming that it is possible to pipeline
multiple memory accesses). Following the LogP
model [2], the time to perform a memory access
is called the latency. Roughly speaking, the la-
tency measures the time for a memory access Ie-
quest to leave the chip of the processor making the
request, traverse a communication network, visit a
memory chip, and return. In most communication
networks, latency increases rapidly as the network
becomes overloaded with traffic. Thus, in addi-
tion to latency, there is a maximum rate at which
messages can be injected into a network. The in-
verse of this rate, which is called the gap, is the
average time needed between consecutive message
transmissions by any one processor in order to en-
sure that the network does not become overloaded.

24

Another cost included in the LogP model is the
overhead, which is the time that a processor must
spend preparing a message or receiving a message
while performing no other useful work.

Of the three costs, latency, overhead, and gap, la-
tency appears to be the easiest to cope with. There
are a variety of automatic techniques for hiding
latency with minimal hardware support providing
that the amount of excess parallelism, called slack-
ness [4], is sufficiently large. These techniques in-
clude executing multiple independent threads (with
rapid context switching) (3], emulating a collec-
tion of virtual processors, OT performing vector-
accesses (gather and scatter). At presen most par-
allel computers suffer from significant overhead,
but future parallel computers are likely to include
special hardware support, such as communication
co-processors, to eliminate overhead. The most dif-
ficult problem is the gap. Although some algorith-
mic techniques have been developed to overcome
the gap, i.e., minimize total communication, they
tend to be problem and data specific. Thus, the
gap problem leads to increased software develop-
ment costs.

Furthermore, the gap is widely viewed as reflect-
ing the inherent difference in speed between pro-
cessors and networks. This belief is based in part
on a confusion of gap and latency. Although the
speed of light provides an inherent lower bound
on the latency of any network, the gap, which
measures bandwidth, is not limited by the speed
of light. What actually limits bandwidth is the
amount of money that a manufacturer is willing
to spend on the construction of a communication
network, which can be varied, for example, when
deciding on the number of network pins per proces-
sor, the number of router nodes per processor, the
number of engineers allocated to network design,
and whether any modifications should be made to
the processor chip. As Figure 2 shows the gaps in
commerical parallel computers vary tremendously
from machine to machine.

If software costs were weighted more heavily in
deciding how much to spend on a communica-
tion network, manufacturers would likely choose
to spend more. Unfortunately, the current quoted
measures for the machines (either peak perfor-
mance or benchmark results) do not adequately in-
clude these software costs. As a consequence, it is
unlikely that a company can afford to take them

100
90
80
70

60 [
Gap sol
40
30
20
10 i I

0 CM-5 Paragon SP1 T3D C90

|

Figure 2: The gap for various parallel machines.
This is a rough measure of the ratio of computa-
tion to communication power. It is measured as the
peak floating-point performance (double-precision)
of the full machine divided by the bisection band-
width (in terms of 64-bit words). The numbers are
for the largest configurations for which data was
available and is approximate.

25

into account. In addition, the true magnitude of
these software costs are nearly always underesti-
mated because the measures tend to be qualitative.
We suggest a new standard for the manufacturers
of parallel computers: the teraflop-terabyte stan-
dard. The goal is to produce a computer with
a network capable of delivering messages across
any bisection at a rate of one terabyte per second
on the average, while at the same time perform-
ing floating-point operations at a peak rate of one
teraflop. To illustrate this benchmark, consider a
massively parallel computer composed of 4000 pro-
cessors, each capable of 250 Mflops. To achieve a
terabyte, each processor must be capable of send-
ing and receiving data at the rate of 250 Mbytes
per second. A machine that achieves the teraflop-
terabyte standard must by definition have a rea-
sonably small gap. In our 4000-processor example,
the gap is roughly 8, because each floating-point
operation involves 8-byte words. We believe that if
the gap of a parallel machine is this small, then the
programmer will be no more concerned with local-
ity than is the programmer of a sequential machine,
and that minimizing the locality concern will have
a dramatic effect on software development costs.

References

[1] D. H. Bailey, E. Barszcz, L. Dagum, and H. D.
Simon. NAS parallel benchmark results 10-93.
Technical Report RNR-94-006, NASA Ames
Research Center, March 1994.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. LogP: Towards a realis-
tic model of parallel computation. In Proceed-
ings 4th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming,
May 1993.

[3] B. J. Smith. Architecture and applications
of the HEP multiprocessor computer system.
In Real-Time Signal Processing IV, pages 241-
248, August 1981.

[4] Leslie G. Valiant. A bridging model for paral-
lel computation. Communications of the ACM,
33(8):103-111, 1990.

B B B= N

