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ABSTRACT
We show an algorithm for solving symmetric diagonally dom-
inant (SDD) linear systems with m non-zero entries to a
relative error of ✏ in O(m log1/2 n log logc n log(1/✏)) time.
Our approach follows the recursive preconditioning frame-
work, which aims to reduce graphs to trees using iterative
methods. We improve two key components of this frame-
work: random sampling and tree embeddings. Both of these
components are used in a variety of other algorithms, and
our approach also extends to the dual problem of computing
electrical flows.

We show that preconditioners constructed by random sam-
pling can perform well without meeting the standard re-
quirements of iterative methods. In the graph setting, this
leads to ultra-sparsifiers that have optimal behavior in ex-
pectation.

The improved running time makes previous low stretch
embedding algorithms the running time bottleneck in this
framework. In our analysis, we relax the requirement of
these embeddings to snowflake spaces. We then obtain a
two-pass approach algorithm for constructing optimal em-
beddings in snowflake spaces that runs in O(m log log n)
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time. This algorithm is also readily parallelizable.

Categories and Subject Descriptors
G.1.3 [NUMERICAL ANALYSIS]: Numerical Linear Al-
gebra—Sparse, structured, and very large systems (direct
and iterative methods)

General Terms
Algorithms,Theory

Keywords
combinatorial preconditioning, SDD linear systems, random
matrices, tree embeddings

1. INTRODUCTION
Recently, solvers for linear systems in graph Laplacians

have emerged as a powerful primitive for designing e�cient
algorithms. The ability to solve such systems in nearly-linear
time [38] led to a variety of e�cient algorithms [10, 17, 13,
22, 31, 12, 11, 29, 28] as well as studies of more e�cient
solver algorithms [25, 26, 23, 27, 33]. For an undirected
graph G = (V,E,w), with n vertices and m edges, the graph
Laplacian is given by the n⇥ n matrix with O(m) non-zero
entries:

8u 6= v : LG,uv = �wuv,

8u : LG,uu =
X

v 6=u

wuv.

Solving linear systems in these matrices in turn leads to
solutions to linear systems in symmetric diagonally domi-
nant matrices [19] and symmetric M matrices [17]. This
reduction also holds for approximate solvers [38], and in the
presence of fixed point round-o↵ errors [23]. As a result,
algorithmic studies of this problem usually work with graph
Laplacians.

The close connection between graph Laplacians and graphs
allows the use of combinatorial methods to bound the con-
vergence of numerical methods. This was first systematically
studied by Vaidya [43], and played a central role in the de-



velopment of nearly-linear time solvers [9, 37, 38]. These
algorithms led to a sophisticated framework consisting of:

1. Recursive preconditioning that reduces a solve to sev-
eral ones on smaller, but similar graphs.

2. Ultra-sparsifiers that lead to such smaller graphs.

3. Tree embeddings that form backbones of ultra-sparsifiers.

Koutis et al. [25] gave a simpler construction of ultra-
sparsifiers. Instead of using the trees to reroute the graph,
they use the distortions of edges in the trees, known as
stretch, to directly sample the graph. This gave a direct
connection between the total stretch of o↵ tree edges and
the size of the problem. Existing results on finding low-
stretch spanning trees [3, 18, 1, 2] then led to a running
time of about m log2 n.

This approach of sampling by o↵-tree stretch has been
extended in two directions: a more refined analysis in con-
junction with the recursive preconditioning framework gives
a running time of about m log n under exact arithmetic [26].
This overhead of log n is in fact the square root of a product
of two log factors: one from tree embedding, and one from
spectral sparsification. The square-root is in some sense
natural: preconditioned Chebyshev iteration, which is at
the heart of the recursive conditioning framework, requires
about

p

 iterations to correct a multiplicative distortion of
. This is also reflected by the fact that the nearly-optimal
ultra-sparsifiers by Kolla et al. [24] shows the existence of
solver circuits of size about m log1/2 n for any graph.

Kelner et al. [23] proposed a combinatorial approach for
solvers based on repeatedly updating o↵-tree cycles. It re-
places the iterative method with data structures, leading to
a simple algorithm that’s stable under fixed precision arith-
metic. Improvements by Lee and Sidford [27] led to an algo-
rithm that makes about m log1/2 n data structure calls. The
faster convergence is obtained by showing that small steps
made by sampling edges with probabilities proportional to
stretch reduces the total error by a good amount in expec-
tation. On the other hand, each of these steps updates a
(possibly long) path in a tree, which with the data struc-
tures gives a log n factor overhead. One data structure that
supports such operations is Top Trees [4], which are based
on repeatedly eliminating low degree vertices. Such opera-
tions also underlie recursive preconditioning, leading to the
hope that these two frameworks can be combined.

In this paper, we give an algorithm that removes both the
overhead of spectral sparsification and data structure calls,
leading to the following result:

Theorem 1.1. Given a graph G with m edges, a vector
b = LGx , and any error ✏ > 0, we can find w.h.p. a vector
x such that

kx � xk

LG
 ✏ kxk

LG
,

in expected O(m log1/2 n log log3+� n log( 1✏ )) time for any con-
stant � > 0.

In Section 3, we give an overview of the recursive precon-
ditioning framework and the modifications that we make.
There were two main challenges that we addressed in order
to obtain the faster algorithm. They cover fairly disjoint di-
rections that are of independent interest, and are addressed
in more details in two manuscripts on arXiv [15, 16]. We will

only describe the overall algorithm and state key theorems
here.

In [15], we prove a multi-edge version of the expected er-
ror reduction bound from [23]. It can also be viewed as a
probabilistic version of matrix Cherno↵ bound that holds in
expectation. This is discussed in detail in Section 4.

A common component in all the solver algorithms is a
tree used to generate the sampling probabilities. The low
running time of our algorithm precludes us from directly us-
ing existing tree constructions. In fact, the decomposition
schemes in all e�cient constructions of low-stretch spanning
trees lead to a running time of about m log n. Instead, we
show that discounting stretch as in snowflake spaces su�ces
for the recursive preconditioning algorithm. This discount-
ing allows us to treat some edge classes with coarser granu-
larity. It leads to a two-pass approach for constructing these
embeddings that runs in O(m log log n) time. An outline of
this algorithm is in Section 5, and it’s described in detail
in [16].

2. BACKGROUND
We begin by stating some of our key notations. Many

of the tools that we use and modify have been studied be-
fore. As a result, our presentation combines (and as a re-
sult omits) several sets of notations that originated indepen-
dently.

We will use standard linear algebraic notations. As graph
Laplacians are not of full rank, we will use the pseudo-inverse
of LG, L

†
G, to denote the inverse on its rank space. A sym-

metric matrix A is positive semi-definite if xT
Ax � 0 for all

vectors x . For such matrices, we can define the A norm of

x as kxk
A

def

=
p

x

T
Ax . We will describe matrix approxima-

tions using the Loewner ordering of matrices. For matrices
A and B , we let A � B if B �A is positive semidefinite.

A graph Laplacian can be written as a sum of rank-one
matrices, one per edge. We will denote these matrices by
Y

1

. . .Ym and let Y i = v iv
T
i . Graph approximations can

be obtained by sampling and rescaling these matrices. Here
a crucial quantity is the e↵ective resistance which in its more
general form is known as statistical leverage score. These
quantities have wide applications in sampling the rows of
matrices [14, 36, 42]. We will use a generalization of these
measured w.r.t. a di↵erent matrix, specifically the graph
Laplacian of a tree. For a matrix X , the statistical leverage
score of Y i w.r.t. X is

⌧
X

(Y i)
def

= Tr
⇣
X

†
Y i

⌘
.

Given any upper bound of these scores, ⌧ , we can approx-
imate a sum of positive semi-definite matrices by sampling
them with probabilities proportional to ⌧ , and rescaling
them to maintain expectation. Pseudocode of this process
is given in Figure 1. It is common in most random construc-
tions of matrix approximations [34, 36, 42].

The combinatorial components of our algorithm rely on
the connection between leverage scores and stretches of edges
first observed in [40]. Stretch is more conveniently defined in

terms of lengths, which are inverses of the weights, l(e)
def

=
1

w(e) . For a tree T = (VT , ET , lT ), the stretch of an edge
e = uv with respect to T is

STRT (e)
def

=
lT (u, v)
l(e)

= ⌧
LT (Le).



Z = Sample({Y
1

, . . . ,Ym},X , ⌧ , �), where Y i = v iv
T
i

are rank one matrices, ⌧ i are upper bounds of leverage
scores, ⌧ i � ⌧ i for all i, and � < 1 is an arbitrary pa-
rameter.

1. Initialize Z to X .

2. Let s be
Pm

i=1

⌧ i and t = ��1s.

3. Pick an integer r uniformly at random in the interval
[t, 2t� 1].

4. For j = 1 . . . r

(a) Sample entry ij with probability proportional to
⌧ ij .

(b) Z  Z + �
⌧ ij

Yij .

5. Return Z .

Figure 1: Sampling Algorithm

3. OVERVIEW OF THE ALGORITHM
Our algorithm is recursive, but works on a di↵erent ran-

dom sample at each recursive call. To analyze it, we induc-
tively prove convergence towards solutions at the levels of
the recursion. Here it is convenient to define an abstract
graph Laplacian solver routine.

Definition 3.1. A routine Solver(·) is said to be a Lapla-
cian solver when it takes as input (G, T, ⌧ , b, ✏), where G
is a graph, T a spanning tree of this graph, and ⌧ upper
bounds on the combinatorial stretch of the o↵-tree edges of
G w.r.t. T , and the routine returns as output a vector x

such that ���x � L

†
Gb

���
LG

 ✏
���L†

Gb

���
LG

.

As we will use total o↵ tree stretch to bound graph sizes, it
is convenient to view inputs as graph-tree tuples containing
the graph G, the tree T , and upper bounds on stretches of
o↵-tree edges ⌧ . The recursive preconditioning framework
aims to transfers solutions between a sequence of sparsifiers
known as a solver chain [39]. It generates graph precon-
ditioners, called ultra-sparsifiers, by sampling a number of
edges to supplement a carefully chosen spanning tree. A
small sample size allows reductions to the problem size by
eliminating o↵ tree edges. This can be interpreted as partial
Cholesky factorization and its guarantees can be stated as:

Lemma 3.2. There is a routine Eliminate&Solve that for
a graph-tree tuple (H,T, ⌧ ) with n vertices and m0 o↵-tree
edges, input vector b and a Laplacian solver Solver, ✏ and
returns a vector x such that

kx � xk

LH
 ✏ kxk

LH
.

Furthermore, Eliminate&Solve(H,T, ⌧,Solver, b, ✏) per-
forms O(n+m0) operations plus one call to Solver with a
graph-tree tuple (H 0, T 0, ⌧ 0) with O(m0) vertices and edges,
the same bounds for the stretch of o↵-tree edges, and the
same error tolerance ✏.

A proof of it can be found in Appendix C of [32]. This
suggests the goal of reducing o↵ tree edges, which in turn

(H,T 0) = RandPrecon(G, T, ⌧ ), where G is a graph, T is
a tree, ⌧ are upper bounds of the stretches of edges in G
w.r.t. T .

1. Let X = LT , Y = LG, Y i be the rank-1 matrix
corresponding to each edge.

2. Set ⌧̂ to be the same as ⌧ for non tree-edges, and 1
for all tree edges.

3. Repeat

(a) Z = Sample

�
Y ,X , ⌧̂ , 1

10

�
.

(b) Set

i. H be the edges corresponding to Z , and

ii. T 0 be the tree in H with the same combina-
torial edges as T , and

iii. ⌧ 0 to be 10 times the number of times each
o↵-tree edge is sampled.

4. Until the number of o↵-tree edges in H is at most
4800 k⌧kpp, and k⌧

0
k

p
p  480 k⌧kpp.

5. Return (H,T 0, ⌧ 0).

Figure 2: Pseudocode for Generating a Randomized
Preconditioner

allows us to work with smaller problems. An observation
central to the Koutis et al. construction of preconditioners
[25, 26] is that the total o↵-tree stretch serves as a proxy
for the number of o↵-tree edges. As Sample will sample
edges with high stretch, as well as tree edges, we need to
modify its construction bounding both the number of o↵-
tree edges, and the total o↵-tree `p-stretch. Pseudocode of
this modified algorithm for generating a preconditioner is
given in Figure 2.

O↵-tree stretch is useful as a measure for problem size
because perturbing the tree by a factor of  decreases this
parameter by a factor of . Iterative methods in turn al-
lows us to solve the problem by solving

p

 instances of the
original. This leads to a recurrence of the form

T (m) =
p

 (m+ T (m/)) ,

which solves to O(m). Of course, this is the ideal situation,
and our algorithm will be slower due to distortions from the
sampling, as well as the initial sum of ⌧ being larger than
m. We also need one additional modification. In Section 5,
we show that it is easier to produce a tree where k⌧kpp is
small for some constant 1/2 < p < 1. It can be checked that
this quantity is also a proxy for problem size.

Lemma 3.3. For any parameter p, RandPrecon(G, T, ⌧ )
runs in expected O(m+k⌧kpp) time and produces a graph-tree

tuple (H,T, ⌧ 0) such that

1. the number of o↵-tree edges in H is at most O(k⌧kpp),
and

2. k⌧ 0
k

p
p  O(k⌧kpp).

To complete the picture, we need to show that this smaller
graph Laplacian, LH , can be used to solve linear systems in



LG. For large distortions, we will use Chebyshev iteration,
which can be described as follows:

Lemma 3.4. Given matrices A,B such that A � B � A
for some constant  > 0, along with error ✏ > 0 and a
routine Solve

B

such that for any vector b

0 = Bx

0 we have

��
Solve

B

(b 0)� x

0��
B



✏4

304

��
x

0��
B

;

preconditioned Chebyshev iteration gives a routine Solve
A

(b) =
PreconCheby (A,B ,Solve

B

, b) , such that in the exact arith-
metic model, for any vector b = Ax ,

• kSolve

A

(b)� xk

A

 ✏ kxk
A

, and

• Solve

A

(b) takes O(
p

 log(1/✏)) iterations, each con-
sisting of one call to Solve

B

and a matrix-vector mul-
tiplication using A.

The following guarantee can be shown for such a precon-
ditioner using matrix Cherno↵ bounds [34, 21, 42]. It can
also be derived from spectral sparsification by e↵ective re-
sistance [36].

Lemma 3.5. There exists a constant c such that for any
graph-tree tuple (G, T, ⌧ ), H = RandPrecon(G, T, ⌧ ) sat-
isfies

1
c log n

LG � LH � c log nLG

with high probability.

This means that if we increase the tree by a factor of ,
we can obtain a graph H 0 with k⌧ 0

k

p
p 

1

p k⌧kp, and:

LG � LH0
� O(log2 n)LG.

Therefore O(log n
p

) recursive calls to a Laplacian solver
for LH0 produces a good answer. When 1/2 < p < 1, setting
 to a su�ciently large polylog factor then gives a nearly-
linear algorithm. This is a crude version of the algorithm
underlying the previous fastest graph Laplacian solver algo-
rithm [26], which runs in about m log n time.

To obtain a faster algorithm, note that if the approxima-
tion ration between G and H from Lemma 3.5 is O(1), we
would only need O(

p

) iterations to solve a problem whose
size is smaller by a factor of p. Setting  to a constant
would then lead to a O(k⌧kpp+m) time algorithm. Such op-
timal ultra-sparsifiers were constructed by Kolla et al. [24]
by building upon the nearly-optimal spectral sparsifiers by
Batson et al. [7]. However, the current fastest algorithm
for constructing such sparsifiers by Zouzias [44] takes cubic
time. Finding nearly-linear time algorithms for constructing
such sparsifiers was listed as an important open question in
the article by Batson et al. [8].

To work around this issue, it’s worth observing that the
randomized descent algorithms by Kelner et al. [23] and Lee
and Sidford [27] give bounds without this distortion. From
the preconditioner setting, this can be viewed as L

†
H be-

having in expectation as L

†
G from the purpose of iterative

methods. Although we believe such behavior is the case
for preconditioned Chebyshev iterations, it is much easier
to prove such a bound for preconditioned Richardson itera-
tion, or iterative refinement. As a result, we view the graph
with T scaled up as another intermediate state, and ana-
lyze the iterative methods with large and small number of

x = RandRichardson(G, T, ⌧ ,Solver, b, ✏), where G is a
graph, T is a tree, ⌧ are upper bounds of the stretches of
edges of G w.r.t. T , b is the vector to be solved, and ✏ is
the target error.

1. Set ✏
1

= 1

320cs logn and t = O
�
log
�
✏�1 log n

��
.

2. Let Z be the linear operator corresponding to the
solver given in Lemma 3.7.

3. Repeat

(a) x

0

= 0.

(b) For i = 1 . . . t

i. (Hi, Ti, ⌧ i) = RandPrecon(G, T, ⌧ ).

ii. r i = LGx i�1

� b.

iii.

y i = Eliminate&Solve (Hi, Ti, ⌧ i,

Solver, r i, ✏1) .

iv. x i = x i�1

�

1

10

y i.

4. Until kZ (LGx t � b)k
LG


✏
cZ log

4 n
kZbk

LG
.

5. Return x t.

Figure 4: Randomized Richardson Iteration

calls separately. This simplification in analysis introduces
yet another procedure. The call structure of our procedures
is given in Figure 3

Our use of randomized preconditioners relies on two facts,
the first being that each step of standard Richardson itera-
tion makes significant progress in expectation.

Lemma 3.6. For any pair of vectors x and b = LGx , we
have

EH

"����x �
✓
x �

1
10

L

†
H (LGx � b)

◆����
LG

#



✓
1�

1
160

◆
kx � xk

LG
.

We can also check whether the error has been reduced by
su�cient amounts using coarser solvers.

Lemma 3.7. There exist a constant cZ such that given a
graph-tree tuple (G, T, ⌧ ), we can construct with high proba-
bility a linear operator Z such that under exact arithmetic

1. L

†
G � Z � cZ log4 nL†

G, and

2. given any vector b, Zb can be evaluated in O(m +
k⌧kpp) time where p is any constant > 1/2.

This gives us additional control over the process, and al-
lows us to produce a Las Vegas algorithm that w.h.p. pro-
duces a solution meeting the guarantees. Pseudocode of such
an algorithm is given in Figure 4

Lemma 3.8. Given a Laplacian solver Solver, any graph-
tree pair (G, T ), bounds on stretch ⌧ , vector b = LGx and



Solve(G, T, ⌧ , b, ✏)

�
H,T 0, ⌧ 0� =

✓
G+ (� 1)T,T,

1

⌧

◆

x = PreconCheby

�
G,H,RandRichardson

�
H,T 0, ⌧ 0,Solve, ·, ✏4�4

�
, b
�

PreconCheby (A,B ,Solve
B

, b)

y i+1

= Solve

B

(Ax i � b)

one call on A of size (m, k⌧kpp) with preconditioner B of size (m, k⌧kpp /
p)

RandRichardson(G, T, ⌧ ,Solver, b, ✏)

Hi = RandPrecon(G, T, ⌧ )

y i = Eliminate&Solve (Hi, Ti, ⌧ i,Solver, r i, ✏1)

O(
p

 log log n) calls on G of size (m, k⌧kpp /
p)

Eliminate&Solve(H,T, ⌧ ,Solver, b, ✏)

O(log log n) calls on H of size (n� 1 +O(k⌧kpp /
p), k⌧kpp /

p)

one recursive call on G of size (O(k⌧kpp /
p), k⌧kpp /

p)

Figure 3: Workflow of recursive solve algorithm with arrows indicating function calls, and the sizes given as
(number of edges, and total `p-stretch). On an input graph with m edges and stretch upper bounds ⌧ , Solve
makes O(

p

 log log n log(1/✏)) recursive calls with graphs of size (O(k⌧kpp /
p), k⌧kpp /

p)

error ✏ > 0, RandRichardson(G, T, ⌧ ,Solver, b, ✏) re-
turns with high probability a vector x such that

kx � xk

LG
 ✏ kxk

LG
,

and the algorithm takes an expected O(log(✏�1) + log log n))
iterations. Each iteration consists of one call to Solver

on a graph with O(k⌧kpp) edges and error 1

O(logn)

, plus an

overhead of O(m+ k⌧kpp) operations.

Combining Lemma 3.8 with Chebyshev iteration as de-
scribed in Lemma 3.4 leads to a Laplacian solver that fol-
lows the workflow of Figure 3. It picks the scaling factor 
based on the given values of k⌧kpp, m, and p in order to op-
timize running time. Pseudocode of this algorithm is given
in Figure 5.

Lemma 3.9. Given a parameter 1/2 < p < 1 and a graph-
tree tuple (G, T, ⌧ ) with m edges such that k⌧kpp  m logp n.

For any vector b = LGx , Solve(G, T, ⌧ , b, 1

320cs logn ) re-
turns w.h.p. a vector x such that

kx � xk

LG


1
320cs log n

kxk

LG
,

and its expected running time is

O

0

@m

 
k⌧kpp
m

! 1
2p

log log2+
2

2p�1 n

1

A .

Proof. The proof is by induction on graph size. As our in-
duction hypothesis, we assume the lemma to be true for all

x = Solve(G, T, ⌧ , b, ✏), where G is a graph, T is a tree, ⌧
are upper bounds of the stretches of edges in G w.r.t. T , b
is the vector to be solved, and ✏ is the goal error.

1. Set  = c(log log n)4/(2p�1)

⇣ k⌧kpp
m

⌘
1/p

for an appro-

priate constant c (dependent on p).

2. Let (H,T 0, ⌧ 0) be the graph-tree tuple with T scaled
up by a factor of , ⌧ scaled down by a factor of .

3.

x = PreconCheby (G,H,RandRichardson

�
H,T 0, ⌧ 0,Solve, ✏4�4

�
, b
�
.

4. Return x

Figure 5: Recursive Solver

graphs of size m0 < m. The choice of  gives
��⌧ 0��p

p


m

cp log log2+
2

2p�1 n
.

The guarantees of randomized Richardson iteration from
Lemma 3.8 gives that all the randomized preconditioners
have both o↵-tree edge count and o↵-tree stretch bounded

by O(k⌧ 0
k

p
p) = O

✓
m

cp log log

2+ 2
2p�1 n

◆
.



An appropriate choice of c makes both of these values
strictly less than m, and this allows us to apply the induc-
tive hypothesis on the graphs obtained from the randomized
preconditioners by Eliminate&Solve.

As  is bounded by c log2 n and ✏ is set to 1

320cs logn , the
expected cost of the recursive calls made by RandRichard-

son is O(m log log n). Combining this with the iteration
count in PreconCheby of

O(
p

 log(1/✏)) = O

0

@(log log n)
2

2p�1

 
k⌧kpp
m

! 1
2p

log log n

1

A

gives the inductive hypothesis.

It remains to pick a tree with small value of k⌧kpp. The
state of the art low-stretch spanning tree algorithm due to
Abraham and Neiman gives a tree with k⌧kpp  O(m log n)
for any p < 1 in O(m log n log log n) time. To reduce the pre-
processing cost, we use the low `p-stretch embeddable trees
from [16]. The guarantees of these trees can be summarized
as follows:

Lemma 3.10. Given a graph Ĝ with n vertices, m edges,
and any constant 0 < p < 1, we can construct a graph-tree
tuple (G, T, ⌧ ) and associated bounds on stretches of edges
⌧ such that

1. The construction takes O(m log log n log log log n) time
in the RAM model

2. G has at most 2n vertices and n+m edges, and

3. k⌧kpp  O(m log n), and

4. there is a |V
ˆG|⇥ |VG| matrix ⇧ with one 1 in each row

and zeros everywhere else such that:

1
2
L

†
ˆG
� ⇧

1

⇧L

†
G⇧

T⇧T
1

� L

†
ˆG
.

Note that ⇧ maps some vertices of G to unique vertices
of Ĝ, and ⇧T maps each vertex of Ĝ to a unique vertex in
G. The spectral guarantees given in Part 4 allow the solver
for LG to be converted to a solver for L

ˆG while preserving
the error quality.

Fact 3.11. Let ⇧ and ⇧
1

be the two projection matrices
defined in Lemma 3.10 Part 4. For a vector b̂, if x is a
vector such that���x � L

†
G⇧

T⇧T
1

b̂

���
LG

 ✏
���L†

G⇧
T⇧T

1

b̂

���
LG

,

for some ✏ > 0. Then the vector x̂ = ⇧
1

⇧x satisfies

���x̂ �⇧
1

⇧L

†
G⇧

T⇧T
1

b̂

���⇣
⇧1⇧L

†
G
⇧

T
⇧

T
1

⌘†

 ✏
���⇧

1

⇧L

†
G⇧

T⇧T
1

b̂

���⇣
⇧1⇧L

†
G
⇧

T
⇧

T
1

⌘† .

Therefore, a good solution to LGx = ⇧T
b̂ also leads to a

good solution to L
ˆGx̂ = b̂. The constant relative error can in

turn be corrected using preconditioned Richardson iteration
described in Section 3. For the rest of our presentation,
we will focus on solving linear systems in settings where we
know small bounds to k⌧kpp.
To prove Theorem 1.1, we first invoke Solve with ✏ set to

a constant. Following an analysis identical to the proof of

Lemma 3.9, at the top level each iteration of PreconCheby

will require O(m log log n) time, but now only

O(
p

 log(1/✏)) = O

0

@(log log n)
2

2p�1

 
k⌧kpp
m

! 1
2p

1

A

iterations are necessary. Setting p arbitrarily close to 1
means that for any constant � > 0 and relative error ✏, there
is a solver for LG that runs in O(m log1/2 n log log3+� n)
time. This error can be reduced using another iterative
method. We will use Richardson iteration at this outer
loop, while transferring solutions and errors to the original
graph using the guarantees of the embeddable tree given in
Lemma 3.10.

Proof. (of Theorem 1.1) Using Fact 3.11 on the solver de-
scribed above for LG gives a solver for (⇧

1

⇧L

†
G⇧

T⇧T
1

)†

with relative error 1

5

. This condition and Lemma 3.10 Part 4
then allows us to invoke the above Lemma with A = L

ˆG and

B = ⇧
1

⇧L

†
G⇧

T⇧T
1

. Incorporating the O(log( 1✏ )) iteration
count then gives the overall result.

4. PRECONDITIONING IN EXPECTATION
Here we describe the guarantee that we can give for the al-

gorithm Sample. When � is set to 1

O(logn)

, the algorithm is
identical to random sampling routines for constructing spec-
tral sparsifiers [36]. The preconditioner produced contains
X plus O(s log n) of the matrices Y i’s, where s =

P
⌧ i.

If we let the original matrix be Y

def

= X +
Pm

i=1

Y i, ma-
trix Cherno↵ bounds such as the ones by Tropp [42] gives
1

2

Y � Z � 2Y . The Kolla et al. [24] result can be viewed
as finding Z consisting of only O(s) of the matrices, and
Y � Z � O(1)Y , albeit in cubic time. These spectral
guarantees allows us to show that one step of preconditioned
Richardson iteration using Z as a preconditioner makes good
progress. Such a statement is Lemma 3.6 without the ex-
pectation.

We will show that running Sample with � set to a con-
stant gives a preconditioner that makes similar progress in
expectation. This is formalized in Lemma 3.6, and can be
proven by bounding the first and second moments of Z�1

w.r.t.Y . These bounds are at the core of our result. By nor-
malization and restricting operators to their column spaces,
it su�ces to show the following about sampling vectors in
the isotropic position.

Lemma 4.1. Suppose Ri = u iu
T
i are rank one matrices

with
Pm

j=1

uju
T
j = I , S is a positive definite matrix sat-

isfying S � I and ⌧
1

. . . ⌧m are values that satisfy ⌧ i �

Tr
�
S

�1

Ri

�
, and 0 < � < 1 is an arbitrary parameter. Then

the matrix W = Sample(R
1

. . .Rm,S , ⌧
1

. . . ⌧m, �) satis-
fies:

1. Er,i1...ir

⇥
x

T
W

�1

x

⇤
�

1

3

x

T
x , and

2. Er,i1...ir

⇥
x

T
W

�1

x

⇤


1

1�2�x
T
x , and

3. Er,i1...ir

⇥
x

T
W

�2

x

⇤


1

1�3�x
T
x .

To analyze the Sample algorithm, it will be helpful to
keep track of its intermediate steps. We define W

0

to be the
initial value of the sample sum matrix W . This corresponds
to the initial value of Z from line 2 in the pseudocode of



figure 1, and W

0

= S . We define W j to be the value of W
after j samples, W j+1

= W j+ �
⌧ ij+1

u ij+1u
T
ij+1

. Our proof

also relies on the definition of Harmonic sums, and various
convexity properties related to it.

HrmSum (x, y)
def

=
1

1/x+ 1/y
.

Some of the facts that we use involving it and matrices are
given in Figure 6. Facts 1, 2, and 3 in Figure 6 are standard
results, while the remaining are proven in [15]. With these
facts, Part 1 follows readily from a generalization of the
arithmetic mean (AM) - harmonic mean (HM) inequality
for matrices [35]. In remainder of this section, we give a
brief justification of Parts 2 and 3.

1. Given positive definite matrices A and B where A �

B , we have B

�1

� A

�1.

2. Let w
1

, . . . , wr be positive numbers such that
Pr

1

wi =
1, and M

1

, . . . ,M r be positive definite matrices.
Then
�
w

1

M

�1

1

+ . . .+ wrM
�1

r

��1

� w
1

M

1

+ . . .+wrM r.

3. Sherman-Morrison formula:

(A+ uu

T )�1 = A

�1

�

A

�1

uu

T
A

�1

1 + u

T
A

�1

u

.

4. Let us define HrmSum (x, y)
def

= 1

1/x+1/y . Then if X
is a positive random variable and ↵ > 0 is a constant,
then

EX [HrmSum (X,↵)]  HrmSum (E [X] ,↵).

5. For any unit vector v , positive definite matrix A, and
scalar ↵ > 0

v

T (A+ ↵I )�1

v  HrmSum
⇣
v

T
A

�1

v , 1/↵
⌘
.

6. Let A be a positive definite matrix and u be any unit
vector. Then

�

1
t
u

T
A

�2

u  HrmSum
⇣
u

T
A

�1

u , t
⌘
� u

T
A

�1

u .

Figure 6: Matrix Facts

The Sherman-Morrison formula given in Fact 3 gives

Eij

h
(W j + uju

T
j )

�1

���W j

i

� Eij

"
W

�1

j �
W

�1

j uju
T
j W

�1

j

1 + �

�����W j

#

�W

�1

j � (1� �)W�1

j Eij

h
uju

T
j

i
W

�1

j

�W

�1

j �
(1� �)

t
W

�2

j . (1)

If we combine the above with Fact 6, we find that for any

unit vector v

v

TEij+1

h
(W j + uj+1

u

T
j+1

)�1

���W j

i
v

 �vT
W

�1

j v + (1� �)HrmSum
⇣
v

T
W

�1

j v , t
⌘
.

If we now include the choice of W j in the expectation and
apply Fact 4 with X = v

T
W

�1

j v and ↵ = t, we then get

Ei1,...,ij+1

h
v

T
W

�1

j+1

v

i
 �Ei1,...,ij

h
v

T
W

�1

j v

i

+ (1� �)HrmSum
⇣
Ei1,...,ij

h
v

T
W

�1

j v

i
, t
⌘
.

For convenience, we define Ej := Ei1,...,ij

⇥
v

T
W

�1

j v

⇤
.

Now the previous inequality can be written as

Ei+1

 �Ei + (1� �)HrmSum (Ei, t)

Since we start with W

0

= S , we have W j ⌫ S . Thus,
by Fact 1

W

�1

j � S

�1 = S

�1

X

i

Ri.

So Tr
�
W

�1

j

�


Pm
i=1

⌧ i = t�, and hence Ej  t� < t.
This lets us write:

Ej+1

 �Ej +
1� �
1

Ej
+ 1

t



1⇣
1

Ej
+ 1

t

⌘⇣
1�

�Ej

t

⌘



1
1/Ej + (1� 2�)/t

.

So

1
Ej+1

�

1
Ej

+ (1� 2�) /t.

Then it follows by induction that after t steps

1
Ej
� (1� 2�) .

Thus we have proven

Ei1,...,it

h
v

T
W

�1

t v

i


1
1� 2�

.

Additionally, for any integer r � t, W r ⌫W t, so fact 1
gives W

�1

r � W

�1

t . This means that with r chosen uni-
formly at random in the interval [t, 2t� 1], we have

Er,i1,...,ir

h
v

T
W

�1

r v

i


1
1� 2�

.

Thus we have shown Part 2 of Lemma 4.1.
Using the spectral inequality fomr Fact 1, taking expec-

tation over W j , and telescoping gives

Ei1,...,i2t

h
v

T
W

�1

2t�1

v

i
� Ei1,...,it

h
v

T
W t

�1

v

i



2t�1X

j=t

Ei1,...,ij


�(1� �)

t
v

T
W

�2

j v

�
.



So

1
t

2t�1X

j=t

Ei1,...,ij

h
v

T
W

�2

j v

i


1
1� �

Ei1,...,it

h
v

T
W

�1

t v

i



1
(1� 2�)(1� �)

<
1

1� 3�
.

This implies that for an integer r chosen uniformly at
random in the interval [t, 2t� 1], we have

Er,i1,...,ir

h
v

T
W

�2

r v

i


1
1� 3�

.

Which completes the proof of Part 3 of Lemma 4.1.

5. STRETCHING STRETCH
In this section we briefly describe how to remove the tree

construction obstacle from obtaining faster solver algorithms.
More details on this algorithm can be found in [16]. We
introduce two modifications to the definition of low stretch
spanning trees which greatly simplify the construction. First,
we allow additional vertices in the tree, leading to a Steiner
tree. that we require to be embeddable into the original
graph. Secondly, we discount the cost of high-stretch edges
in ways that more accurately reflect how these trees are used.
This discounting of stretch has been studied as embeddings
in snowflake space [5, 30], where distance is discounted to
some exponent p < 1. We will use the notation STRp

T (e) to
denote this discounting of stretch.

Our algorithm draws upon works by Alon et al. [3] and
Bartal [6] on low stretch embeddings. The tree construction
by Alon et al. is based on a bottom-up decomposition which
runs in linear time, and it can be shown that this scheme
achieves polylog stretch under `p stretch. On the other
hand, Bartal’s decomposition is a top-down scheme runs in
O(m log n) time, but it leads to an expected O(logp n) `p-
stretch per edge. In much the same spirit as [6], we define a
certain decomposition of the graph

Definition 5.1. Let G = (V,E) be a connected graph, we
say that a sequence of forests B = (B

0

, B
1

, . . . , Bt) is a
Bartal decomposition of G if

1. B
0

is a spanning tree of G and Bt is an empty graph.

2. For any i  t, Bi is a subgraph of G in the weighted
sense.

3. For any u, v 2 V and i < t, if u and v are connected
in Bi+1

, then they are also connected in Bi.

4. There is a sequence (d
0

, d
1

, . . . , dt) of diameter bounds,
such that for any i  t, any connected component of
Bi has diameter at most di.

The definition of the stretch can be naturally extended:
we simply define the stretch of an edge e w.r.t. to a Bartal
decomposition to be di/l(e) if the endpoints of e is sepa-
rated on level i. Furthermore, a Bartal decomposition is
embeddable if the union of the Bis is embeddable. By first
pre-computing a crude decomposition à la Alon et al. in lin-
ear time, and using it as a guide for speeding up the Bartal
decomposition construction, we obtain a two-pass algorithm
which e�ciently produces a Bartal decomposition with good
lp stretch:

Lemma 5.2. There is a routine that for any graph G and
a constant p < 1, produces in expected O(m log log n) time
in the RAM model an implicit representation of a Bartal
decomposition B with expected size O(m log log n) such that
with high probability for any edge e, E

B

[STR

p
B

(e)]  O(logp n).

To satisfy the embeddability requirement, we make crucial
use of our definition of lp stretches, and obtain embeddabil-
ity by exploiting di↵erent moments:

Lemma 5.3. For constants 0 < p < q < 1 and a given graph
G, we can construct another graph G0 in linear time, such
that from a Bartal decomposition B

0 of G0 we can obtain
an embeddable Bartal decomposition B of G in linear time.
Furthermore, the `p-stretch of an edge e in G w.r.t. B and
its `q-stretch in G0 w.r.t. B 0 are related by

STR

p
B

(e) = O
�
STR

q
B

0(e)
�
.

Finally, we can extract our Steiner tree from the implicit
representation of an Bartal decomposition with same guar-
antees on stretches up to a constant factor.

Lemma 5.4. Given an embeddable Bartal decomposition B

of a graph G = (V,E), we can construct in O(m log log n)
time an embeddable tree T with O(n) vertices containing V
such that for any edge e we have

STRT (e) = O(STR

B

(e)).

We also show the folklore result that embeddings are suf-
ficient for guarantees on the linear operators.

Lemma 5.5. Let G and H be graphs such that G is a sub-
graph of H in the weighted sense and H \G is embeddable in
G. Furthermore, let the graph Laplacians of G and H be LG

and LH respectively. Also, let ⇧ be the |VG| ⇥ |VH | matrix
with one 1 in each row at the position that vertex corresponds
to in H and 0 everywhere else, and ⇧

1

the orthogonal pro-
jection operator onto the part of <VG that’s orthogonal to
the all-ones vector. Then we have:

1
2
L

†
G � ⇧

1

⇧L

†
H⇧T⇧T

1

� L

†
G.

The above lemmas together gives us Lemma 3.10. The
various stages of our algorithm are shown in Figure 7 Al-
though our running time of O(m log log n) is in the RAM
model, this dependency only occurs in the implicit compu-
tation of the decomposition in Lemma 5.2. Here the use of
RAM model algorithms occur in two places: approximately
bucketing the edge weights, and a shortest path algorithm
due to Han and Thorup [20, 41]. The use of RAM-model
shortest path routines can be removed with an overhead of
O(log log n) by bucketing the edges as in [26, 2]. The buck-
eting process can also work with approximate edge weights.
If all edge lengths are between 1 and �, this can be done in
O(m log(log�)) time in the pointer machine model, which
is O(m log logm) when �  mpoly(logm). We suspect that
there are pointer machine algorithms without even this mild
dependence on�, and perhaps even algorithms that improve
on the runtime of O(m log log n). Less speculatively, we also
believe that our two-stage approach of combining bottom-
up and top-down schemes can be applied with the decom-
position scheme of [2] to generate actual spanning trees (as
opposed to merely embeddable Steiner trees) with low `p-
stretch. However, we do not have a rigorous analysis of this
approach, which would presumably require a careful inter-
play with the radius-bounding arguments in that paper.
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