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Abstract. A new topological representation of surfaces in higher dimensions, “cell-chains” is devel-
oped. The representation is a generalization of Brisson’s cell-tuple data structure. Cell-chains are iden-
tical to cell-tuples when there are no degeneracies: cells or simplices with identified vertices. The proof
of correctness is based on axioms true for maps, such as those in Brisson’s cell-tuple representation. A
critical new condition (axiom) is added to those of Lienhardt’s n-G-maps to give “cell-maps”. We show
that cell-maps and cell-chains characterize the same topological representations.
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1 Introduction

The ability to represent and manipulate topological structures in a computer is central to many areas, such
as the finite element method in scientific computation, computational geometry, computer graphics, solid
modeling, and scientific visualization. In general, a user has a particular decomposition of a domain into
a collection of topological objects and needs a data structure for representing the connectivity information
between various simple objects. We present a new data structure that addresses this task more generally
than previous data structures, while providing a strong theoretical characterization of those objects that
can be represented. This problem has been cited as an important open area of research in computational
topology [BEA+99].

A classic example of this task occurs in meshing, wherein a complex geometric objects is decomposed into
simple atomic objects. In two dimensions, this is the equivalent to the representation of a graph embedded
on a surface. The embedding partitions the surface up into three types of cells: vertices, edges, and faces;
called cells in general. Another very important example are CAD systems. Here the objects or cells may be
much more complicated then simply a collection of simplices or d-dimensional cells, [Far99].

The goal of the topological data structure is to maintain the cells and incidence relationship between
these cells in such a way that topological and other information can be stored and retrieved correctly and
efficiently. If the full dimensional cells, say d-dimensional cells, are simplices, then one can, in principle, just
enumerate the shared d − 1-simplices. In general for many applications the d-cells will not be simplices.
As an example, for spectral or high-order methods, cube-like elements are used because sparse methods for
representing the stiffness matrix are known [DFM02]. Other applications may use a mesh with a mix of
element types since, in general, it may be easier to have a mesh with mostly cube elements and only a few
tetrahedral elements.

For d-cells that are finite, one can decompose the cells into simplices using the barycentric subdivision. In
two dimensions, most, if not all, proposed topological data structures represent the barycentric subdivision,
either implicitly or explicitly.

The most popular data structure is the cell-tuple of Brisson [Bri89,Bri93]. In this structure, topological
information is stored via cell-tuples, which are maximal paths in the incidence graph or incidence poset
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ACI 0086093, CCR-0085982 and CCR-0122581.
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Fig. 1. (i) A simple cell complex made from a square adjacent to a triangle. (ii) The barycentric subdivision of this
complex: The barycenter of each cell, vertex, edge, or face, is inserted and labeled with the dimension of the cell. The
result is triangulated to form numbered simplices. (iii) The incidence graph (poset) for this complex. The vertices are
cells edges connect neighboring cells whose dimension differs by 1.

[Ede87], see Figure 1. This data structure yields extremely efficient and elegant implementations for many
operations on topological arrangements, and it is widely used in practice [Hal97].

The two main limitations of Brisson’s cell-tuple is that it can only represent a very regular class of
structures and that the test for membership in this class is undecidable in higher dimensions. To address
the first limitation, we propose an extension to cell-tuples that allows for representation of an incidence
multigraph, thus allowing various types of degeneracies. We operate using cell-chains (Section 4), which
are maximal paths in the multigraph. In Section 8 we discuss clusters of cell-chains that correspond to
a single cell-tuple. We show that in two-dimensions, clusters can be of size at most four, whereas clusters
can be arbitrarily large in three or higher dimensions. We discuss implementation details for cell-chains in
Section 7.

The ability of the data structure to handle degeneracies is very useful. Several authors have decomposed
2D surfaces up into highly degenerate pieces for efficient processing purposes [Hop96]. We also have used
these degeneracies in a biological application to specify cell and artery boundaries [CCM+04] succinctly.
The alternate approach for dealing with degeneracies is to refine the cell decomposition to remove these
degeneracies. If the software cannot handle these degeneracies then they must be removed manually.

The second limitation of Brisson’s cell complexes is that he requires that the cell-tuple representation
comes from a manifold, a space locally homeomorphic to R

d, for a d-dimensional structure. But determining
if a topological structure is locally homeomorphic to R

d is undecidable for d ≥ 6 [Mar58,VKF74], it is open
for d = 5, and only known to be in NP for d = 4 [Sch]. To address the undecidability problem inherent
in Brisson’s cell complexes, we do not require our representation be locally homeomorphic to R

d. We only
require cell complex to satisfy testable conditions that are also known to be true in Brisson’s case. These
conditions are true for many degenerate structures also. The combinatorial axioms we give can be verified in
O(nd) where n is input size and d is dimension. Our axiomatic approach follows those developed for algebraic
representations.

One of the early algebraic representations of graph connectivity on surfaces was given by Edmonds and
Tutte [Edm60,Tut73]. Other examples of this type of representation include maps [Tut84,Vin83a,Vin83b,BS85],
n-G-maps [Lie91,Lie94,LM], and the quad-edge structure [GS85]. Another similar algebraic structure is Tits
notion of buildings [Tit81].



The benefit of algebraic representations is that they have axiomatic definitions for the combinatorial
structure of the topological space that is being represented. The vast majority of algebraic representations
(some in hindsight) use permutation groups that act on the simplices of the barycentric subdivision
or barycentric complex (see Figure 1 as well as Section 2.) The barycentric complex is constructed
bottom-up by “gluing” together numbered simplices. Axiomatic gluing rules are given so that the complex
will be well-formed (in terms of whatever algebraic structure is involved.) Throughout the paper we will call
a set of gluing rules a map. The most popular data structures of this form are n-G-maps, due to Lienhardt
[Lie91,Lie94], which use a overly loose set of axioms to construct a very large class of topological structures.

We propose an additional axiom, to those of Lienhardt, the Orthogonality Axiom (Section 3), that
restricts the possible combinatorial structures, but still allows a rich class of topological structures.

The central result of this work is Theorem 3 in Section 4, wherein we show that our cell-chain extension to
Brisson’s cell-tuple is precisely equivalent to our axiomatic restriction of Lienhardt’s n-G-maps. This middle
ground allows for an intuitive data structure that still represents a large group of topologies, thus combining
the benefits of both major approaches to topological data structures. A two-dimensional implementation of
cell-chains has been implemented within the TUMBLE software package. [Tum].

A plethora of similar data structures and representations exist in the literature. Cell-Chains, n-G-maps,
and cell-tuples have much in common with other topological data structures [Bau72,Män88,GS85,Wei85]
and [Wei86,DL87,RO89,Ros97]. An excellent review of existing work can be found in [LLLV05].

The rest of this paper is organized as follows. In Sections 2 and 3 respectively, we discuss the concepts
of maps from a geometrical and combinatorial point of view. In Section 4 we introduce simplex-chains, cell-
chains and prove our main result. In Section 5 we give a formal presentation of cells and show that they are
well-defined for our cell-maps. In Section 6 we show that all of our axiom are true for a CW-complex thus
justifying our axioms. In Section 7 we discuss some preliminary implementation issues. Finally in the last
section we delineate the difference between the complexes we can represent and those of Brisson’s cell-tuples.

2 Barycentric Complexes and Maps

In this section we discuss the concept of maps from a geometric point of view. This information should give
enough background to introduce a set of axioms and to work in the more formal setting in Section 3. We start
by defining some topological notions. For more background on topology refer to [RF90,Kin93,LW69,Moi77,Jan84].

The goal of a topological map is to partition a topological space up into regions that are homeomorphic
to open balls. More formally, for d ≥ 1 define

B
d = {x ∈ R

d : |x| < 1},

Bd = {x ∈ R
d : |x| ≤ 1},

S
d = {x ∈ R

d+1 : |x| = 1}.

A space homeomorphic to B
d is called an open d-cell, a space homeomorphic to Bd is called a closed

d-cell, and a space homeomorphic to S
d is called an d-sphere. By convention we say that single points are

both open and closed 0-cells.
A partition of a space into open cells is called a CW-complex. Recall that a d-dimensional (finite,

normal, homogeneous) CW-complex is a pair (X, C) where X is a Hausdorff space and C is a finite

partition of X into open cells such that for every open d-cell, c in C, there is a continuous map hc : Bd → X

whose restriction to B
d is a homeomorphism onto c and whose restriction to S

d−1 is the union of open cells
in C of dimension less than d. In addition it is required that every open cell is either a d-cell or is on the
boundary of a d-cell. A sub-complex of (X, C) is a CW-complex (Y, D) where Y ⊆ X and D ⊆ C. We
will usually refer to a CW-complex by its underlying space X alone and do not mention the partition C. A
CW-complex is said to be a pseudo-manifold if every (d − 1)-face is adjacent to at most two d-cells and
every d-cell can be reached from every other d-cell traveling along (d − 1)-faces.

Since we are interested in d-dimensional CW-complexes that represent generalized barycentric subdivi-
sions, we add some additional constraints. The idea in representing a CW-complex is to further partition
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Fig. 2. (a) a barycentric complex with two 2-cells(faces), seven 1-cells(edges) and six 0-cells(vertices). (b) a 2-cell
(left) and its boundary (right). (c) a 1-cell (left) and its boundary (right).

each i-cell into i-simplices. We do this by adding a new point interior to each cell. Each point is labeled by
the dimension of the cell containing it. Using these points we now form d-simplices out of these points [Bri93]
that partition up the d-cells. A barycentric complex X is a CW-complex where the sub-complex of every
closed cell in X is a combinatorial simplex, and every vertex v in X is assigned a number ν(v) between 0
and d in such a way that no two vertices on the boundary of any given open cell have the same label, see
Figure 2.

Since the closed cells of a barycentric complex are combinatorial simplices, by abuse of the notation we
will refer to open cells as open simplices, and closed cells as closed simplices. Sometimes we will drop the
open or closed adjective when the meaning is clear from the context or is irrelevant. A vertex whose label is
i is said to be an i-vertex.

Instead of taking a manifold or surface and decomposing it into cells, we take numbered d-simplices and
prescribe rules for gluing them into surfaces. In particular, a map is a set of numbered simplices and gluing
rules that hopefully represent a connected barycentric complex that results from gluing numbered closed
d-simplices along (d − 1)-faces whose vertices have the same labels as prescribed by the gluing rules. The
gluings must be induced by cell preserving homeomorphisms that respect the labeling. Every (d − 1)-face
can be involved in at most one gluing.

Throughout this paper we will consider only one type of gluing, namely, we will only glue or identify
simplices of dimension d − 1 and only if the set of vertex numbers are the same. Thus if σ1 and σ2 are two
numbered d-simplices containing, respectively, d − 1-simplices σ′

1 and σ′
2. To identify σ′

1 and σ′
2 it must be

the case that the vertex labels agree and that they contain all the labels from 0 . . . d except one number. If
we identify them, then we will identify all simplices in σ′

1 with all simplices in σ′
2 containing the same vertex

numbers.
Hence a map X can be represented by a tuple (S, α0, . . . , αd) where S is a set of numbered closed d-

simplices and the αi’s are involutions on S that describe the gluing’s. If αi has no fixed points for 0 ≤ i < d

we say that X has a proper boundary. The barycentric complex in Figure 2 is a map while the one in
Figure 3(b) is not.

Note that there are maps that are not proper but satisfy the conditions put forward in [Lie94]. See
Figure 3(a) for an example.

One possibility for an even stronger condition would be that the cell decomposition itself be a CW-
complex, unfortunately, this is undecidable in higher dimension.

3 Formal Presentation of Maps

In this section we present a formal approach to combinatorial maps, as motivated in Section 2. A more
formal specification is necessary for at least three reasons. Firstly, a combinatorial structure is closer to
what is actually stored and manipulated internally in the machine. Secondly, the proofs for topological data



0 0

0

2

1 1

1

1

11
2

0 1

1 0

0

11
2

0 1

0 1 0

0

(a) (b)

Fig. 3. (a) This map is not proper. The one-cell interior to the two-cell is not an open one-disk. (b) This barycentric
complex is not a map. The vertex common to the two two-cells is a face of two triangles which cannot be reached
from one another by traversing edges containing it.
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Fig. 4. A CW-complex and its barycentric decomposition.
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Fig. 5. If the A is glued to F and B is glued to E (both gluings by α2), then the resulting object is a cylinder. If
additionally, C is glued to H and G is glued to D (both gluings by α2), then the resulting object is a torus.

structures are all based on this formal specification. Third, since it is undecidable to determine if the structure
we will consider is a well-formed manifold, we must therefore work in a formal combinatorial model.

A k-simplex σ is a set of k + 1 atomic objects and all subsets of these objects. Each subset and all the
subsets containing it is also a simplex (a subsimplex). We call an atomic object a vertex or 0-simplex.
Throughout this paper we deal only with numbered simplices. A numbered k-simplex σ is a k-simplex
where each vertex is assigned a distinct integer label. A consecutively numbered k-simplex is a numbered
simplex with numbers from the range {i, . . . , i + k}. We call a consecutively numbered 1-simplex an edge-
simplex. The span of a numbered simplex is the set of its integer labels.

Throughout this paper we consider only one type of gluing of two simplices, namely, we only glue or
identify two subsimplices of dimension d− 1 of two distinct d-simplices and only if the set of vertex numbers
are the same. That is, if σ1 and σ2 are two numbered d-simplices containing, respectively, d − 1-simplices
σ′

1 and σ′
2 then to identify σ′

1 and σ′
2 it must be the case that the vertex labels agree and must contain all

numbers but say i. If we identify them then we also identify all subsimplices in σ′
1 with all subsimplices in

σ′
2 with the same vertex labels.

In the definition to follow one can think of the set Σ as n numbered d-simplices, but formally it is just
a finite set of size n. By the discussion in the last paragraph to describe the d − 1 simplices that are to be
identified it will suffice to list pairs of d-simplices and, for each pair, the vertex that will not be identified. As



has been the tradition since Tutte we do this in a group theoretic way [Tut73,Lie91]. There is yet another
important way to view the gluing of the d-simplices described above. Here we think of going from σ1 to σ2

by reflecting σ1 about the d − 1-simplex common to σ1 and σ2. Thus the αi′s in Definition 1 are some kind
of reflection and we are interested in the group generated by these “reflection”.

We let 〈a1, . . . , ak〉 denote the subgroup generate by the permutations a1, . . . , ak. We say the permutation
group G acts transitively on Σ if for every pair of elements σ1, σ2 ∈ Σ there is a permutation α ∈ G such
that α(σ1) = σ2.

Definition 1. A map M is a tuple (Σ, α0, . . . , αd) where Σ is a finite set of size n and each αi is a
permutation of Σ for 0 ≤ i ≤ d such that

1. α2
i = ident for 0 ≤ i ≤ d.

2. αi is fix-point-free (fpf) for 0 ≤ i < d.

We say that M is connected if 〈α0, . . . , αd〉 acts transitively.

If we view Σ as a disjoint set of numbered d-simplices and the α′s as gluing rules as defined above then
M gives a simplicial complex, denoted by complex(M). One interprets the fixed points of αd as determining
the d − 1-dimensional boundary faces of the complex.

We view the permutations α0, . . . , αd as acting on the d-simplices of M. In general the permutations do
not act in a well defined way on the i-simplices for 0 ≤ i < d. The first restriction that Lienhardt and others
require is that many of the αi commute. We shall call a map with the commutivity property a commuting-
map. For complexes of commuting-maps, there will be a natural and well-defined action of permutations on
simplices.

Definition 2 (Commuting-Map). A commuting-map M = (Σ, α0, . . . , αd) is a map with the further
property:

Commutivity: αiαj = αjαi whenever 2 ≤ i + 2 ≤ j ≤ d.

The commuting condition is very natural one. In 2D it just says that exactly four numbered triangles
contain an edge unless the edge is on the boundary in which case there are two. It is implicit in Tutte’s
axioms [Tut73]. A commuting-map is what Lienhardt calls an n-bG-map where his n is our d, [Lie94].
Lienhardt replaces our commutivity condition with the condition that αiαj is an involution whenever 2 ≤
i + 2 ≤ j ≤ d which can easily be seen to be equivalent. He has also proposed that αiαj is fpf whenever
2 ≤ i + 2 ≤ j ≤ d. The orthogonality condition is a stronger condition and we will show that it is necessary
and sufficient to prove Theorem 2. Again, in Section 6 a formal justification will be given for these axioms.

Denote the group 〈αj , . . . , αi〉 for 0 ≤ j ≤ i ≤ d by Gi
j . Given a numbered simplex λ we denote by Gλ

the subgroup 〈αi | i 6∈ span(λ)〉.

Definition 3 (Cell-Map). A cell-map M = (Σ, α0, . . . , αd) is a commuting-map with the further prop-
erty:

Orthogonality: For every 0 < i < d, σ ∈ Σ, α ∈ Gi−1

0 , and β ∈ Gd
i+1 if αβ(σ) = σ then α(σ) = β(σ) =

σ.

Observe that for a cell-map the groups Gi−1

0 and Gd
i+1 commute and their intersection is the identity

permutation. Thus the group generated by Gi−1

0 and Gd
i+1 is isomorphic to their direct product. The main

goal of this section is to show that their action on the cell-chains(to be defined) is the natural direct product
action.

In what follows we will first prove properties of maps. Using these properties prove properties of commuting-
maps. Finally we consider properties of cell-maps. An important property held by any map is local strong
connectivity.



Definition 4 (Local Strong Connectivity3). A d-simplicial complex C is locally strongly connected or
simply locally connected if whenever τ and γ are two d-simplices that share a nonempty simplex λ, then
there exists a sequence σ1, . . . , σt of d-simplices such that σ0 = τ , σt = γ, and σi and σi+1 have a common
(d − 1)-simplex containing λ for 0 ≤ i < t.

As is well known, the simplicial complex of a map is locally connected. In fact, the simplicial complex of
a map is a pseudo-manifold.

Lemma 1. If C is the simplicial complex of a map M then C is locally strongly connected.

We prove something slightly stronger. Namely, if we glue d-simplices by identifying d − 1-faces then the
complex is locally connected. The proof is by induction on the number of identifications or gluings. Initially
we have n disjoint d-simplices. In this base case we are done since no two distinct d-simplices can have a
nontrivial intersection. Thus we may assume that after k identification the complex is locally connected.
Suppose by induction that τ and γ are distinct d-simplices that share a simplex λ after k + 1 identifications.
There are two cases depending on whether or not λ ⊆ τ ∩γ before the k+1 first identification. In the former
case we are done since we get a sequence by induction.

τ

τ ′

τλ

γ

γ′

γλ

k + 1s1 s2

Fig. 6. Illustration of the proof of Lemma 1. s1 and s2 represent the inductively generated sequences. The k + 1
gluing connects the sequence.

In this latter case, the common simplex λ, must have been formed by identifying two simplices during
the k + 1 gluing. Thus there must have been d − 1-simplices τλ and γλ, contained in the simplices τ and
γ, respectively, that were identified to form λ at the k + 1 gluing. It is critical to the proof that a single
identification must have formed this common simplex λ. Before this identification τ and γ would not contain
this common simplex but after this single identification they do. Thus, it must be that case that at gluing
k+1, τλ and γλ are identified. There must exist two d-simplices, τ ′ and γ′ containing τλ and γλ, respectively,
that are identified along a d − 1-simplex λ′ and the simplex λ′ contains λ. Here we use the fact that we do
not ever identify d-simplices. By induction there a sequences of d-simplices from τ to τ ′ and one from γ′ to
γ. By combining these two sequences with the k + 1st gluing we get the prescribed sequence from τ to γ. �

Observe that the k + 1 gluing in the proof above is obtained by applying the permutations αi, where
i 6∈ Gλ, such that αi(τ

′) = γ′. Therefore by induction all the gluings on the path obtained from permutations
in Gλ.

It is not hard to see that the sequence of d-simplices can be obtain one from another by applying permuta-
tions αi, where i 6∈ Gλ, where λ is the intersection. Thus, we reformulate Lemma 1 group theoretically. This
formulation of the locally connectivity lemma is very simple group theoretically and will be used throughout
the paper.

Lemma 2 (Local Connectivity Lemma). If τ and γ are d-simplices in the complex of a map that share
a nonempty simplex λ then there exists a permutation α ∈ Gλ such that α(τ) = γ.

3 Locally Strongly Connected has appeared in other topological literature in a different context.



It follows by induction for a complex of a map that every d-simplex has a unique subsimplex with a given
subset of labels from the set 0, . . . , d. Using this fact we define a natural boundary map. If σ is a simplex
and S is a set of labels then [σ]S denotes the sub-simplex of σ with label in S. When there is no confusion
we let [σ]i denote the subsimplex [σ]{0,...,i}.

We say the permutation α ∈ 〈α0, . . . , αd〉 acts in a well defined way on a simplex σ if for all d-simplices
τ and γ containing σ

[α(γ)]S = [α(τ)]S

where S is the set of labels of σ

Lemma 3. If C is the simplicial complex of a map M, σ is a simplex of C, and α ∈ Gσ then α acts in a
well defined way on σ and α(σ) = σ.

Proof. Suppose that σ is an i-simplex with span S. It will suffice to prove the lemma for any permutation αj

for j 6∈ S. If i = d the lemma is vacuously true. Suppose that i < d and let γ be any d-simplex that contains
σ. There must exist a d − 1-simplex τ with span S′ = {0, . . . , d} − {j} such that σ ⊆ τ ⊂ γ. If j = d and
γ is a fixed point then so it τ . If not then there a a unique γ′ such that αj(γ) = γ′ and γ′ also contains τ .
Thus in either case αj fixes τ . That is [αj(γ)]S′ = τ . This gives the following sequence of equalities:

[αj(γ)]S = [[αj(γ)]S′ ]S = [τ ]S = σ

�

Additionally, we need one more technical lemma that will be used to prove our main theorem, Theorem 3.

Lemma 4. If C is a numbered simplicial-complex of a commuting-map and γ, γ′, and λ be three simplices
such that span(γ) = span(γ′) ⊂ {0, . . . , i}, λ ⊆ γ ∩ γ′, and {j, . . . , i} = span(λ) for j ≤ i then there exits an
αL ∈ G

j−1

0 such that αL(γ) = γ′.

Proof. In general α(γ) may not be well-defined. Here all we mean is that there exists a d-simplex γ ⊂ σ such
that γ′ ⊂ α(σ). By Lemma 1 there exists an α ∈ Gλ such that α(γ) = γ′. By the Commutivity condition
α = αLαH where αL ∈ G

j−1

0 and αH ∈ Gd
i+1. Thus, αL(γ) = α−1

H (γ′). Since α−1

H fixes γ′ by Lemma 3 we
get that αL(γ) = γ′. �

4 Simplex-Chains and Cell-Chains

In this section we introduce the notation of simplex-chains. Simplex-chains are a natural generalization of
Brisson’s cell-tuples. Let C be a numbered simplicial complex.

Definition 5 (Simplex-Chain). A sequence (XL0 , γ1, XL1 , . . . , γk, XLk
) is a length k simplex-chain of

C if:

1. Each γi is a consecutively numbered simplex of C of dimension di ≥ 1 for 1 ≤ i ≤ k.
2. Each XLi

is 0-simplex with label Li for 0 ≤ i ≤ k

3. XLi
= γi ∩ γi+1 for 0 < i < k.

4. XL0 ( XLk
) is the 0-simplex in γ1 ( γk ) with minimum (maximum) label.

A simplex-chain is an cell-chain if every di = 1. The dimension of the chain is d1 + · · · + dk. In general
we may drop some or all of the 0-simplices when they are not being considered since they are determined by
the simplices containing them.

Lemma 5. If C is a numbered simplicial-complex of a commuting-map then every simplex-chain of length 2
and dimension d′ is contained in a d′-simplex and thus a d-simplex.



Proof. Let (λL, Xi, λH) be a simplex-chain of length 2. There must exist d-simplices σL and σH containing
λL and λH , respectively. Therefore Xi ⊂ σL ∩ σH .

By the local connectivity property there exists a permutation α ∈ GXi
such that α(σL) = σH By

the commutivity property for cell-maps we know that α = αLαH where αL ∈ Gi−1

0 and αH ∈ Gd
i+1. Thus

αH(σL) = α−1

L (σH). We claim that αH(σL) contains both λL and λH since αH(σL) contains λL and α−1

L (σH)
contains λH by Lemma 3.

In a d-simplex every subset is a simplex thus there must exist a simplex of dimension that of (λL, λH)
containing λL and λH . �

To prove that every simplex-chain is contained in a simplex we then use induction on the length of the
chain. This gives the following Theorem:

Theorem 1. If C is a numbered simplicial-complex of a commuting-map and SC is a simplex-chain of
dimension d′ then SC is contained in a d′-simplex.

We now show that the simplex of minimum dimension containing a chain is unique. This will require
that the map is a cell-map. We start by considering chains of length two.

Lemma 6. If C is a numbered simplicial-complex of a cell-map and SC is a length two simplex-chain of
dimension d′ then SC is contained in a unique d′-simplex.

Proof. Let (Xi, γ1, Xj, γ2, Xk) be a simplex-chain of dimension d′ and suppose by way of a contradiction
that it is contained in two distinct d′-simplices λ and λ′. Let σ be some d-simplex that contains λ. Using the
fact that γ2 ⊂ λ ∩ λ′ and Lemma 4 there exists αL ∈ G

j−1

0 such that λ′ ⊂ αL(σ) 6= σ. Letting σ′ = αL(σ)
and using the fact that γ1 ⊂ λ∩ λ′ and the dual to Lemma 4 there exists αH ∈ Gd

j+1 such that αH(σ′) = σ.
We have a contradiction since αLαH(σ) = σ but αL(σ) 6= σ. �

Following by induction on the length of simplex-chains, we get the following theorem:

Theorem 2. If C is a numbered simplicial-complex of a cell-map and SC is a d′-dimensional simplex-chain
then SC is contained in a unique d′-simplex.

We will use the following simple corollary:

Corollary 1. For a complex of a cell-map there is a one-to-one correspondence between the cell-chains and
d-simplices.

We next show that the orthogonality condition is not only sufficient but necessary to get the uniqueness
condition of Corollary 1.

Theorem 3. If C is the simplicial complex of a commuting-map M, then M is a cell-map if and only if
there is a one-to-one correspondence between the cell-chains and d-simplices.

Proof. The one-to-one correspondence is necessary by Corollary 1. We claim that it is also sufficient to make
M a cell-map.
We must show orthogonality. To this end, let a d-simplex σ be given, and let αL ∈ G

j−1

0 and αH ∈ Gd
j+1 be

given for some j, such that αLαH(σ) = σ.
Define σ′ = αH(σ). It then suffices to show that σ = σ′.
By assumption, we have a one-to-one correspondence between edge chains and d-simplices, so let us define
X and X ′ as the unique edge chains associated with σ and σ′ respectively. Let γi and γ′

i be the edges of X

and X ′.
Since σ′ = αH(σ), and since αH ∈ Gd

j+1, we have

[σ′]j = [αH(σ)]j = [σ]j

So that σ and σ′ must have the same j-cell. Therefore γi = γ′
i for i < j.

By a dual argument for the high-dimensional edges (using σ = αL(σ′)), it holds that γi = γ′
i for i ≥ j. Hence

X = X ′, so by the assumed correspondence, σ = σ′, so orthogonality must hold. �



We can use this theorem to give an algorithm for testing if a map is a cell-map. Given a map M =
(Σ, α0, . . . , αd), we can first verify that it is a commuting-map. If |Σ| = n, then this can be done naively in
O(nd2), since there are O(d2) permutations that must commute for each of the n elements.

We can then use a commuting-map to build the incidence multigraph as follows. Begin with a set of n

disconnected cell-chains of length d, one for each element. Then for each αi, for each element σ, we join the
two chains associated with σ and σ′ = αi(σ). Joining these two chains consists of identifying all of their
edges except γi and γi+1, this makes O(d) edges that must be joined for each σ and for each αi. Naively this
takes O(nd2), but a simple divide-and-conquer approach can yield O(nd log d).

Once the incidence multigraph is constructed, we need simply count the number of maximal paths (num-
ber of cell-chains). Denote this as t. This path-counting can be accomplished by simple dynamic programming.

Since we have a commuting-map, by Theorem 1, each cell-chain is contained in some σ. Since each
σ can contain at most one cell-chain, it follows by counting that the cell-chains and Σ are in one-to-one
correspondence iff the t = n. Hence by Theorem 3, we have a cell-map iff t = n.

5 Cells

In this section we consider cells of a numbered simplicial complex of commuting-maps and cell-maps. We
consider the natural decomposition of the complex into cells, Definition 6.

The main goal of this section is to show that for cell-maps each cell, in a natural way, can also be viewed
as a complex of a cell-map. This justifies the definition of a cell-map (Definition 3). A CW-complex is a
homotopy-theoretic generalization of the notion of a simplicial complex. A CW-complex is a space X which
is partitioned in a collection of cells each homeomorphic to an open ball of some dimension. Under certain
conditions a CW-complex can be partitioned into a simplicial complex using a barycentric decomposition.
We are interested in simplicial complexes which admit a natural decomposition into cells. We will show that
cell-maps do this for us.

We first show that many of the permutation that we have defined to act on the d-simplices actually act
in a well defined way on subsimplices.

In this section we give a standard formal definition of a cell in a barycentric-complex. We then show that
each cell can be viewed as barycentric-complex and if the original complex comes from a cell-map then the
cells also can be viewed as coming from a cell-map.

Let C be a numbered simplicial-complex derived from a cell-map M = (Σ, α0, . . . , αd).

Definition 6. Let Xi be a 0-simplex of C with label i. The cell or i-cell C of Xi is the set of all simplices of
C containing Xi with labels ≤ i.

Except for 0-cells a cell is not simplicial-complex (They are not closed under subsimplices). There are
two natural closures, namely, the closure in C and the free-closure. The closure in C is simply the smallest
simplicial-complex in C containing C. To obtain the free-closure we add new simplices to C to close it
under subsimplices.

We first show that the elements of Gi−1
0 act in a well defined way on the i-simplices of an i-cell C.

Lemma 7. If C is a numbered simplicial-complex of a commuting-map and τ and γ are d-simplices that
contain an i-simplex λ of an i-cell, and α ∈ Gi−1

0 then [α(τ)]i = [α(γ)]i

Proof. It will suffice to prove the lemma for each αj where 0 ≤ j < i. Let τ , γ, and λ be as in the lemma
hypothesis. By the Local Connectivity Lemma, Lemma 2, there exists a permutation α ∈ Gd

i+1 such that
α(τ) = γ. This gives the following sequence of equalities:

[αj(γ)]i = [αj(α(τ))]i = [α(αj(τ))]i = [αj(τ)]i

�

By the last lemma we see that we can define a natural action of α ∈ Gi−1

0 on an i-simplex λ of an i-cell C.
Namely, α(λ) equals the i-simplex λ′ of C that is obtained by taking any d-simplex containing λ, applying



α, and then restricting the image to an i-cell of C. The lemma says that it does not matter which d-simplex
we pick.

Thus, if C̄ is the free closure of an i-cell in C with Σ′ being the i-simplices of C̄ then (Σ′, α′
0, . . . , α

′
i) is

a map where α′
i is the identity permutation and α′

j for 0 ≤ j < i is the permutation given by Lemma 7
as described above. If we want (Σ′, α′

0, . . . , α
′
i) to be a map then we must insure that α′

j is fixed-point-free
for 0 ≤ j < i. This requires that (Σ, α0, . . . , αd) be a cell-map. Its will give us the nice property that
(Σ′, α′

0, . . . , α
′
i) is also a cell-map.

Lemma 8. If (Σ, α0, . . . , αd) is a cell-map then (Σ′, α′
0, . . . , α

′
i) as defined above is a cell-map.

Proof. We first will show that (Σ′, α′
0, . . . , α

′
i) is map. It will suffice to show that α′

j for 0 ≤ j < i is fpf.
Suppose by way of contradiction that γ is a fix point of α′

j and σ is a d-simplex containing γ. By the local

connectivity lemma there exists an α ∈ Gd
i+1 such that ααj(σ) = σ. Therefore by the orthogonality condition

αj(σ) = σ, a contradiction. Thus αj(γ) 6= γ.
It should be clear that Σ′ will inherit the commutivity property. We next show that it has the orthogo-

nality property.
Suppose that α ∈ G

j−1

0 and α′ ∈ Gi
j+1 and αα′(γ) = γ for a i-simplex γ in the i-cell. Let σ be a d-simplex

containing γ. We claim that αα′ fixes σ. For suppose that αα′(σ) = σ′. By the local connectivity lemma
we know that there exists a α′′ ∈ Gd

i+1 such that α′′(σ′) = σ. Thus α′′αα′(σ) = σ. By the orthogonality
property αα′(σ) = σ. Again by the orthogonality property α(σ) = α′(σ) = σ. Therefore α(γ) = α′(γ) = γ.

Thus (Σ′, α′
0, . . . , α

′
i) has all the properties of a cell-map. �

Thus the free-closure of our cells are also cells-maps and their permutations are just the natural ones
inherited from the full cell-map. We think of the permutation as also acting on the subsimplices when it is
well-defined.

6 Axiom Justification

In this section we justify our axioms of a cell-map. In particular, using the work of Brisson [Bri93] we show
that our combinatorial axioms hold for the generalized barycentric subdivision of a subdivided d-manifold
(also known as a finite regular CW-complex). Thus the topological class of structures able to be represented
by cell-complexes can be characterized combinatorially as cell-maps.

Throughout this section we will assume the manifold and subdivision has no boundary.
Brisson’s notion of a cell-tuple can be defined it in the following terms, where C is a numbered d-simplicial

complex.

Definition 7. A sequence (X0, . . . , Xd) is a cell-tuple if

1. Each Xi is a vertex with label i.
2. Each pair Xi and Xi+1 is contained in a edge-simplex.

A cell-triple is just a consecutive sub-tuple of length three.
Since each Xi is interior to a unique cell we could as Brisson does replace each vertex with its cell.
Brisson does not actually prove the following lemma but does state it to be true, page 404, line 8, [Bri93].

Lemma 9. Every cell-tuple of C is contained in a unique d-simplex of C.

Following this lemma for each 0 ≤ i ≤ d, there is a unique fixed-point free involution that Brisson
calls switchi, which takes a cell-tuple (X0, . . . , Xi, . . . , Xd) to another cell-tuple (X0, . . . , X̄i, . . . , Xd) where
Xi 6= X̄i.

The main fact we need from Brisson is Corollary 1 from [Bri93]:

Lemma 10. The action of switchi is well-defined on the cell-triple (Xi−1, Xi, Xi+1).



Here well defined means that the image of Xi under switchi is only dependent on Xi−1 and Xi+1.
We next claim that the switch acting on the cell-tuple is a cell-map.

Lemma 11. Let Σ be the cell-tuples of a generalized barycentric subdivision of a subdivided d-manifold and
switchi’s be the switch operators acting on Σ then (Σ, switch0, . . . , switchd) is a cell map.

Proof. The switch operators are fixed-point free involutions by Lemma 9. The commutivity and orthogonality
conditions follow from Lemma 10. �

7 Implementation Issues

As we stated in the introduction, the use of Brisson’s cell-tuples has the nice property that the cells are
explicitly presented. This is why we propose using cell-chains as defined in Section 4. The reason is that
we would expect most edges (in the incidence multigraph) of a cell-chain to be determined by their vertices
(cells). In particular if we label the edges between two consecutive vertices with integers starting from zero
we would expect that all but a small number would be labeled with zero.

One very important feature of Brisson’s representation for non-degenerate structures is that the permuta-
tion switchi is well defined and is determined solely by its action on cell triples of the form (Xi−1, Xi, Xi+1).
For degenerate structures this is not the case. For cell-maps, by a simple extension of Lemma 7, the per-
mutation αi is well defined and determined by its action on consecutively numbered 2-simplices with labels
{i − 1, i, i + 1}. By Theorem 3 there is a one-to-one correspondence between every cell-chain of length two
and every consecutively numbered 2-simplex. Thus we have:

Lemma 12. For cell-maps for each 0 ≤ i ≤ d the permutation αi is well defined and determined by its
action on cell-chains of the form (Xi−1, γ1, Xi, γ2, Xi+1)

Thus we need only store the action of each αi on cell-chains (Xi−1, γ1, Xi, γ2, Xi+1). Since most cell-chains
will be determined by their cells we propose to have two data structures for storing the value of length two
cell-chains. One for the case when the cell-chain is determined by its cell-tuple and one for the others. In
the prior case, we use a regular cell-tuples structure, and in the latter case, we use complete length two
cell-chains structure. If the image of a cell-tuple is an cell-chain then we store the image in the cell-chain
data structure costing two lookups.

The ability to store the action on triples instead of full chains leads to an important improvement in
space efficiency for high dimensions. The number of cell-chains within a given cell is nominally O(d!), but by
only storing triples we see a vast decrease in complexity, allowing the switch structure to be stored in space
smaller than that of the entire incidence multi-graph.

8 Two and Three Dimensional Clusters

In this section we show that 2D clusters have size at most 4. In 3D we give an example of a cell-map with
unbounded size cluster. Recall a cluster is a set of d-simplices all containing the same cell-tuple. We say the
cluster is nontrivial if it has size two or more.

Theorem 4. A nontrivial cluster of a 2-dimensional simplicial complex of a cell-map has size either two or
four. If the cluster has size four then the surface of the complex must be non-planar.

Proof. : Let (X0, X1, X2) be a cell-tuple of the simplicial complex. We know by Theorem 2 that there is
a one-to-one correspondence between the simplices containing the cell-tuple and cell-chains containing the
cell-tuple. Thus it will suffice to count the containing cell-chains. Since a 1-cell contains exactly two vertices
there can be at most two edges from X0 to X1. By duality there are at most two edges from X1 to X2. Thus
there are at most four cell-chains containing (X0, X1, X2) and the number can either be one, two, or four.



Consider the case when there are four cell-chains containing a cell-tuple. The two edges containing
(X0, X1) form one cycle and the two edges containing (X1, X2) form another one. These two cycles cross
only at X1 and in a fundamental way. Thus the surface must not be planar. �

In the case of 3D clusters we need to understand the cell-chains containing a cell-tuple (X0, X1, X2, X3).
Based on the discussion in the proof of Theorem 4 there can be at most two edges containing (X0, X1) and
at most two containing (X2, X3). We show by an example that there can be an unbounded number of edges
containing (X1, X2).

B

A

e

Fig. 7. The napkin example with four folds.

Consider the example of the so-called “napkin” surface in 3D. This surface is formed by taking a flat
sheet and folding together several corners, then pinching the surface where the corners meet. In Figure 7,
we show a napkin with four corners, though in general the number may be increased without bound. The
surface in Figure 7 has two vertices (A and B), and five edges. The vertical edge is denoted e, and the four
loops around the top are denoted e1, e2, e3, and e4.

The surface is shown unfolded in Figure 8(a), where we see that this surface is homeomorphic to an
open disk. It’s barycentric decomposition is seen in Figure 8(b). Note that there are 8 simplices defined by
C,e,B, and in general the size of this cluster is twice the number of leaves chosen. The use of cell-chains al-
lows us to distinguish within this cluster by numbering the different spokes connecting C and e in Figure 8(b).
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Fig. 8. (a) The incidence multigraph of the napkin. (b) The napkin surface and its boundary. (c) Barycentric decom-
position of the napkin surface.

9 Cell Automorphisms and Cell-Chains

In many, if not most, applications of meshes each cell has data associated with it. In general, this data will
not be invariant under automorphisms of the cell. Thus the data must be permuted or changed depending on
the orientation of the cell. The simplest example is a data on a triangle. For a triangle, any permutation of
the vertices is an automorphism. If the data of a triangle is initially given with respect to a fixed cell-chain,
then for each of the six cell-chains we must permute the data accordingly. In practice, this is often done in
a fairly ad-hoc fashion.



Throughout, let C = (Σ, α0, . . . , αd) be a cell-map of a d-dimensional cell where αd is the identity
permutation. We let G = 〈α0, . . . , αd〉 be the group called the group of switches and let B be the group
of automorphisms of C. Since C is connected G acts transitively on Σ. It is not hard to see that only the
identity permutation in B has fixed points.

The interaction between these to groups is the focus of this section. Recall, that an automorphism of
C is by definition a permutation β of Σ such that β commutes with each αi for 0 ≤ i ≤ d. That is
αi(β(σ)) = β(αi(σ)) for any σ ∈ Σ. We begin with a few simple properties of these groups.

Lemma 13. If α ∈ G, σ, σ′ ∈ Σ, β ∈ B such that α(σ) = σ, and β(σ) = σ′ then α(σ′) = σ′.

Proof. By the definition of a automorphism we know that α and β commute. Thus α = βαβ−1. This gives
α(σ′) = βαβ−1(σ′) = σ′

�

A simple corollary to Lemma 13 is the following:

Corollary 2. If O ⊆ Σ is an orbit of the group B of automorphisms of C then a permutation α ∈ G must
fix all the elements of O or none. In the special case when O = Σ it follows that |G| = |Σ| = |B|.

We first consider the case of cells that have a transitive automorphism group such as the case of a cell
being a simplex and the case of it being a hypercube. At first hand one might think that the groups G and
B are similar. In fact, the only elements they have in common is the identity.

The goal is to take a canonical simplex σ0 ∈ Σ and any other simplex σ and find an automorphism β

such that β(σ0) = σ. To this end suppose we have found an α ∈ G such that α(σ0) = σ. In particular,
suppose that α = αi0 · · ·αik

where 0 ≤ it ≤ d for 0 ≤ t ≤ k.
Let βi be an automorphism such that βi(σ0) = αi(σ0). Assuming that B acts transitively, there will

always be such a βi.

Lemma 14. α(σ0) = βik
· · ·βi0(σ0)

Proof. We use the fact that the two groups G and B commute. �

Thus by precomputing the βi’s we can find our needed automorphism if we can find the permutation in
G taking σ0 to σ

We next discuss two special but important cases. Namely when the d-cell is a simplex and when it is a
hypercube. We start with the simplex case first.

In this case the automorphism are precisely all permutations of the 0-simplices of the d-cell. The construc-
tion will be in two parts. In the first we will describe the additional information that we need to maintain
besides the switch operators. The issue is given a d-cell C, its canonical edge chain Chain, and a arbitrary
chain Chain′ find a sequence of permutation W from α0, . . . , αd−1 such that W (Chain) = Chain′.

We give two types of procedures: One where no extra data is stored with each cell and a second where we
store what we call a down-map. In both cases, we will find a word of length O(d2), that is of optimal length
up to constant factors. In the first case we will use O(d3) switch operators to find the word while only O(d2)
in the later case. These bounds will apply to both the case of a simplex cell as well as a hypercube cell even
though the algorithms are slightly different.

Throughout the discussion, let Chain = X0, e1, X1, . . . , ed, Xd and Chain′ = X ′
0, e

′
1, X

′
1, . . . , e

′
d, X

′
d.

Further more, let i be the index of the first edge for which they differ starting from the largest dimension.
That is, ei 6= e′i and for i < j ≤ d ej 6= e′j.

The subgoal is to find a word W such that W (Chain) and Chain′ agree through i. In the first algorithm
we simply observe the we can explicitly construct at most i + 1 words each of length at most i such that one
of these words “works”. Thus there exists words W0, . . . , Wi in Gi−1 =< α0, . . . , αi−1 > each of length i− 1
such that αiW0(Chain), . . . , αiWi(Chain) is a sequence of chains containing each of the i-cells contained in
the i + 1-cell of Chain. Applying this idea recursively we get the bounds as stated. The fact that the words
Wj exist will follow from the construction below.

To get the more efficient algorithm we will add a new data structure to store more information about the
complex. In the case of a cell that is a simplex we use the fact that simplices are closed under intersection.



That is given an two edge-chains Xi, e, Xi+1 and X ′
i, e

′, Xi+1. there exist a unique edge-simplices e′′ and e′′′

and vertex-simplex Xi−1 such that αi(Xi−1, e
′′, Xi, e, Xi+1) = Xi−1, e

′′′, X ′
i, e

′, Xi+1

Thus we shall store the pair Xi−1, e
′′ for every 5-tuple Xi, e, Xi+1, e

′, X ′
i. We call the down-map. This

should require about as much space the storing the switch operators.
The algorithm is straightforward. In order to find the word W such that Chain and Chain′ agree up to

ei we compute the down-map e′′i for the tuple Xi, ei, Xi+1, e
′
i, X

′
i and recursively find a word W ′ such the

W ′(Chain) contains the edge e′′. Thus in O(i) work we have found a chain which agree with Chain′ up to
the ith edge.

For the case of the hypercube the down-map may not exists. In which case we will simply store NULL.
In this case either the down-map exists or the down-map of αi(Chain) and Chain′ exists. Thus the only
change from the simplex case is when the down-map is NULL. In which case we apple αi where ei is the
first edge where the chains differ and do a down-map lookup.
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