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ABSTRACT
We study theoretical runtime guarantees for a class of opti-
mization problems that occur in a wide variety of inference
problems. These problems are motivated by the LASSO
framework and have applications in machine learning and
computer vision.

Our work shows a close connection between these problems
and core questions in algorithmic graph theory. While this
connection demonstrates the difficulties of obtaining runtime
guarantees, it also suggests an approach of using techniques
originally developed for graph algorithms.

We show that most of these problems can be formulated
as a grouped least squares problem, and give efficient algo-
rithms for this formulation. Our algorithms rely on routines
for solving quadratic minimization problems, which in turn
are equivalent to solving linear systems. Some preliminary
experimental work on image processing tasks are also pre-
sented.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity
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1. INTRODUCTION
The problem of recovering a clear signal from noisy data

is an important problem in signal processing. One general
approach to this problem is to formulate an objective based
on required properties of the answer, and then return its
minimizer via optimization algorithms. The power of this
method was first demonstrated in image denoising, where
the total variation minimization approach by Rudin, Osher
and Fatemi [36] had much success. More recent works on
sparse recovery led to the theory of compressed sensing [7],
which includes approaches such as the least absolute shrink-
age and selection operator (LASSO) objective due to Tib-
shirani [40]. These objective functions have proven to be
immensely powerful tools, applicable to problems in signal
processing, statistics, and computer vision. In the most gen-
eral form, given vector y and a matrix A, one seeks to min-
imize:

min
x

||y−Ax||22 (1.1)

subject to: |x|1 ≤ c

It can be shown to be equivalent to the following by intro-
ducing a Lagrangian multiplier, λ:

min
x

||y−Ax||22 + λ|x|1 (1.2)

Many of the algorithms used to minimize the LASSO ob-
jective in practice are first order methods [33, 3], which
updates a sequence of solutions using well-defined vectors
related to the gradient. These methods are guaranteed to
converge well when the matrix A is “well-structured”. The
formal definition of this well-structuredness is closely related
to the conditions required by the guarantees given in the
compressed sensing literature [7] for the recovery of a sparse
signal. As a result, these methods perform very well on prob-
lems where theoretical guarantees for solution quality are
known. This good performance, combined with the simplic-
ity of implementation, makes these algorithms the method
of choice for most problems.
However, LASSO type approaches have also been success-

fully applied to larger classes of problems. This has in turn
led to the use of these algorithms on a much wider variety
of problem instances. An important case is image denoising,
where works on LASSO-type objectives predates the com-
pressed sensing literature [36]. The matrices involved here
are based on the connectivity of the underlying pixel struc-



ture, which is often a
√
n×√n square mesh. Even in a un-

weighted setting, these matrices tend to be ill-conditioned.
In addition, the emergence of non-local formulations that
can connect arbitrary pairs of vertices in the graph also
highlights the need to handle problems that are traditionally
considered ill-conditioned. We show in Appendix A that the
broadest definition of LASSO problems include well-studied
problems from algorithmic graph theory:

Fact 1.1. Both the s-t shortest path and s-t minimum cut
problems in undirected graphs can be solved by minimizing a
LASSO objective.

Although linear time algorithms for unweighted shortest
path are known, finding efficient parallel algorithms for this
has been a long-standing open problem. The current state
of the art parallel algorithm for finding 1 + ǫ approximate
solutions, due to Cohen [10], is quite involved. Further-
more, as the reductions done in Lemma A.1 are readily par-
allelizable, an efficient algorithm for LASSO minimization
would also lead to an efficient parallel shortest path algo-
rithm. This suggests that algorithms for minimizing LASSO
objectives, where each iteration involve simple, paralleliz-
able operations, are also difficult. Finding a minimum s-t
cut with nearly-linear running time is also a long standing
open question in algorithm design. In fact, there are known
hard instances where many algorithms do exhibit their worst
case behavior [20]. The difficulty of these problems and the
non-linear nature of the objective are two of the main chal-
lenges in obtaining fast run time guarantees for grouped least
squares minimization.

Previous run time guarantees for minimizing LASSO ob-
jectives rely on general convex optimization routines [6],
which take at least Ω(n2) time. As the resolution of im-
ages are typically at least 256 × 256, this running time is
prohibitive. As a result, when processing image streams or
videos in real time, gradient descent or filtering based ap-
proaches are typically used due to time constraints, often
at the cost of solution quality. The continuing increase in
problem instance size, due to higher resolution of stream-
ing videos, or 3D medical images with billions of voxels,
makes the study of faster algorithms an increasingly impor-
tant question.

While the connection between LASSO and graph prob-
lems gives us reasons to believe that the difficulty of graph
problems also exists in minimizing LASSO objectives, it also
suggests that techniques from algorithmic graph theory can
be brought to bear. To this end, we draw upon recent devel-
opments in algorithms for maximum flow [9] and minimum
cost flow [13]. We show that relatively direct modifications
of these algorithms allows us to solve a generalization of
most LASSO objectives, which we term the grouped least
squares problem. Our algorithm is similar to convex op-
timization algorithms in that each iteration of it solves a
quadratic minimization problem, which is equivalent to solv-
ing a linear system. The speedup over previous algorithms
come from the existence of much faster solvers for graph re-
lated linear systems [38], although our approaches are also
applicable to situations involving other underlying quadratic
minimization problems.

The organization of this paper is as follows: In Section 2
we provide a unified optimization problem that encompasses

LASSO, fused LASSO, and grouped LASSO. We then dis-
cuss known applications of the grouped least squares mini-
mization in Section 3 and other algorithms in Section 4. Sec-
tion 5 shows an algorithm for approximating grouped least
squares based on the maximum flow algorithm of Christiano
et al. [9]. Some experimental results demonstrating the
practical feasibility of this algorithm are discussed in Sec-
tion 6. An alternate algorithm with better accuracy, but
worse running time dependency on the number of groups is
given in Appendix C.

2. BACKGROUND AND FORMULATIONS
The formulation of our main problem is motivated by the

total variation objective from image denoising. This objec-
tive has its origin in the seminal work by Mumford and
Shah [32]. There are two conflicting goals in recovering a
smooth image from a noisy one, namely that it must be
close to the original image, while having very little noise.
The Mumford-Shah function models the second constraint
by imposing penalties for neighboring pixels that differ sig-
nificantly. These terms decrease with the removal of local
distortions, offsetting the higher cost of moving further away
from the input. However, the minimization of this functional
is computationally difficult and subsequent works focused on
minimizing functions that are close to it.
The total variation objective is defined for a discrete, pixel

representation of the image and measures noise using a smooth-
ness term calculated from differences between neighboring
pixels. This objective leads naturally to a graph G = (V,E)
corresponding to the image with pixels. The original (noisy)
image is given as a vertex labeling s, while the goal of the
optimization problem is to recover the ‘true’ image x, which
is another set of vertex labels. The requirement of x being
close to s is quantified by ||x − s||22, which is the square of
the L2 norm of the vector that’s identified as noise. To this
is added the smoothness term, which is a sum over absolute
values of difference between adjacent pixels’ labels:

||x − s||22 +
∑

(u,v)∈E

|xu − xv| (2.3)

This objective can be viewed as an instance of the fused
LASSO objective [41]. As the orientation of the underlying
pixel grid is artificially imposed by the camera, this method
can introduce rotational bias in its output. One way to cor-
rect this bias is to group the differences of each pixel with
its 4 neighbors, giving terms of the form:

√

(xu − xv)2 + (xu − xw)2 (2.4)

where v and w are the horizontal and vertical neighbor of u.
Our generalization of these objectives is based on the key

observation that
√

(xu − xv)2 + (xu − xw)2 and |xu−xv| are
both L2 norms of vectors consisting of differences of values
between adjacent pixels. Each such difference can be viewed
as an edge in the underlying graph, and the grouping gives
a natural partition of the edges into disjoint sets S1 . . . Sk:

||x− s||22 +
∑

1≤i≤k

√

∑

(u,v)∈Si

(xu − xv)2 (2.5)

When each Si contain a single edge, this formulation is
identical to the objective in Equation 2.3 since

√

(xu − xv)2 =



|xu−xv|. To make the first term resemble the other terms in
our objective, we will take a square root of it – as we prove
in Appendix D, algorithms that give exact minimizers for
this variant still captures the original version of the prob-
lem. Also, the terms inside the square roots can be written
as quadratic positive semi-definite terms involving x. The
simplified problem now becomes:

||x− s||2 +
∑

1≤i≤k

√

xTLix (2.6)

We use || · ||Li
to denote the norm induced by the PSD

matrix Li, and rewrite each of the later terms as ||x||Li
.

Fixed labels s1 . . . sk an also be introduced for each of the
groups, with roles similar to let s = s0. As the L2 norm is
equivalent to the norm given by the identify matrix, ||x−s0||2
is also a term of the form ||x− si||Li

. These generalizations
allows us to define our main problem:

Definition 2.1. The grouped least squares problem
is:

Input: n×n matrices L1 . . .Lk and fixed values s1 . . . sk ∈
ℜn.

Output:

min
x
OBJ (x) =

∑

1≤i≤k

||x− si||Li

Note that this objective allows for the usual definition of
LASSO involving terms of the form |xu| by having one group
for each such variable with si = 0. It is also related to
group LASSO [44], which incorporates similar assumptions
about closer dependencies among some of the terms. To
our knowledge grouping has not been studied in conjunction
with fused LASSO, although many problems such as the ones
listed in Section 3 require this generalization.

2.1 Quadratic Minimization and Solving Lin-
ear Systems

Our algorithmic approach to the group least squares prob-
lem crucially depends on solving a related quadratic mini-
mization problem. Specifically, we solve linear systems in-
volving a weighted combination of the Li matrices. Let
w1 . . .wk ∈ ℜ+ denote weights, where wi is the weight on
the ith group. Then the quadratic minimization problem
that we consider is:

min
x

OBJ 2(x,w) =
∑

1≤i≤k

1

wi
||x − si||2Li

We will use OPT2(w) to denote the minimum value that
is attainable. This minimizer, x, can be obtained using the
following Lemma:

Lemma 2.2. OBJ 2(x,w) is minimized for x such that




∑

1≤i≤k

1

wi
Li



 x =
∑

1≤i≤k

1

wi
si

Therefore the quadratic minimization problem reduces to
a linear system solve involving

∑

i
1
wi

Li, or
∑

i αiLi where

α is an arbitrary set of positive coefficients. In general, this

can be done in O(nω) time where ω is the matrix multiplica-
tion constant [39, 11, 42]. When Li is symmetric diagonally
dominant, which is the case for image applications and most
graph problems, these systems can be approximately solved
to ǫ accuracy in Õ(m log(1/ǫ)) 1 time, where m is the to-
tal number of non-zero entries in the matrices [37, 38, 25,

26], and also in Õ(m1/3+θ log(1/ǫ)) parallel depth [4]. There
has also been work on extending this type of approach to
a wider class of systems [2], with works on systems arising
from well-spaced finite-element meshes [5], 2-D trusses [12],
and certain types of quadratically coupled flows [21]. For
the analysis of our algorithms, we treat this step as a black
box with running time T (n,m). Furthermore, to simplify
our presentation we assume that the solves return exact an-
swers, as errors can be brought to polynomially small values
with an extra O(log n) overhead. We believe analyses sim-
ilar to those performed in [9, 21] can be adapted if we use
approximate solves instead of exact ones.

3. APPLICATIONS
A variety of problems ranging from computer vision to

statistics can be formulated as grouped least squares. We
describe some of them below, starting with classical prob-
lems from image processing.

3.1 Total Variation Minimization
As mentioned in Section 1, one of the earliest applications

of these objectives was in the context of image processing.
More commonly known as total variation minimization in
this setting [8], various variants of the objective have been
proposed with the anisotropic objective the same as Equa-
tion 2.3 and the isotropic objective being the one shown in
Equation 2.5.
Obtaining a unified algorithm for isotropic and anisotropic

TV was one of the main motivations for our work. Our
results lead to an algorithm that approximately minimizes
both variants in Õ(m4/3ǫ−8/3) time. It’s worth noting that
this guarantee does not rely on the underlying structure of
the of the graph. This makes the algorithm readily applica-
ble to 3-D images or non-local models involving the addition
of edges across the image . However, when the neighbor-
hoods are those of a 2-D image, a log n factor speedup can
be obtained by using the optimal solver for planar systems
given in [24].

3.2 Denoising with Multiple Colors
Most works on image denoising deals with images where

each pixel is described using a single number corresponding
to its intensity. A natural extension would be to colored
images, where each pixel has a set of c attributes (in the
RGB case, c = 3). One possible analogue of |xi − xj | in
this case would be ||xi − xj ||2, and this modification can be
incorporated by replacing a cluster involving a single edge
with clusters over the c edges between the corresponding
pixels.
This type of approach can be viewed as an instance im-

age reconstruction algorithms using Markov random fields.
Instead of labeling each vertex with a single attribute, a

1We use Õ(f(m)) to denote Õ(f(m) logc f(m)) for some con-
stant c.



set of c attributes are used instead and the correlation be-
tween vertices is represented using arbitrary PSD matrices.
It’s worth remarking that when such matrices have bounded
condition number, it was shown in [21] that the resulting
least squares problem can still be solved efficiently by pre-
conditioning with SDD matrices, yielding a similar overall
running time.

3.3 Poisson Image Editing
The Poisson Image Editing method of Perez, Gangnet and

Blake [34] is a very popular method for image blending. This
method aims to minimize the difference between the gradi-
ent of the image and a guidance field vector v. We show
here that the grouped least square problem can be used for
minimizing objectives from this framework. The objective
function given in equation (6) of [34]

min
f |Ω

∑

(p,q)∩Ω6=∅

(fp − fq − vpq)
2, with fp = f∗

p ∀p ∈ ∂Ω

comprises mainly of terms of the form:

(xp − xq − vpq)
2

This term can be rewritten as ((xp− xq)− (vpq − 0))2. So
if we let si be the vector where si,p = vpq and si,q = 0, and
Li be the graph Laplacian for the edge connecting p and q,
then the term equals to ||x− si||2Li

. The other terms on the
boundary will have xq as a constant, leading to terms of the
form ||xi,p − si,p||22 where si,p = xq. Therefore the discrete
Poisson problem of minimizing the sum of these squares is
an instance of the quadratic minimization problem as de-
scribed in Section 2.1. Perez et al. in Section 2 of their
paper observed that these linear systems are sparse, sym-
metric and positive definite. We make the additional ob-
servation here that the systems involved are also symmetric
diagonally dominant. The use of the grouped least squares
framework also allows the possibility of augmenting these
objectives with additional L1 or L2 terms.

3.4 Clustering
Hocking et al. [19] recently studied an approach for clus-

tering points in d dimensional space. Given a set of points
x1 . . . xn ∈ ℜd, one method that they proposed is the mini-
mization of the following objective function:

min
y1...yn∈ℜd

n
∑

i=1

||xi − yi||22 + λ
∑

ij

wij ||yi − yj ||2

Where wij are weights indicating the association between
items i and j. This problem can be viewed in the grouped
least squares framework by viewing each xi and yi as a list of
d variables, giving that the ||xi − yi||2 and ||yi − yj ||2 terms
can be represented using a cluster of d edges. Hocking et
al. used the Frank-Wolfe algorithm to minimize a relaxed
form of this objective and observed fast behavior in prac-
tice. In the grouped least squares framework, this problem
is an instance with O(n2) groups and O(dn2) edges. Com-
bining with the observation that the underlying quadratic
optimization problems can be solved efficiently allows us to
obtain an 1+ǫ approximate solution in Õ(dn8/3ǫ−8/3) time.

4. PREVIOUS ALGORITHMIC RESULTS
Due to the importance of optimization problems moti-

vated by LASSO there has been much work on efficient al-
gorithms for them. We briefly describe some of the previous
approaches for LASSO minimization below.

4.1 Second-order Cone Programming
To the best of our knowledge, the only algorithms that pro-

vide robust worst-case bounds for the entire class of grouped
least squares problems are based on applying tools from
convex optimization. In particular, it is known that inte-
rior point methods applied to these problems converge in
Õ(
√
k) iterations with each iterations requiring solving a cer-

tain linear system [6, 17]. Unfortunately, computing these
solutions is computationally expensive – the best previous
bound for solving one of these systems is O(mω) where ω
is the matrix multiplication exponent. This results in fairly
large O(m1/2+ω) total running time and contributes to the
popularity of first-order methods described above in prac-
tical scenarios. We will revisit this approach in Appendix
C and show an improved algorithm for the inner iterations.
However, its running time still has a fairly large dependency
on k.

4.2 Graph Cuts
For the anisotropic total variation objective shown in Equa-

tion 2.3, a minimizer can be found by solving a large number
of almost-exact maximum flow calls [14, 22]. Although the
number of iterations can be large, these works show that the
number of problem instances that a pixel can appear in is
small. Combining this reduction with the fastest known ex-
act algorithm for the maximum flow problem by Goldberg
and Rao [16] gives an algorithm that runs in Õ(m3/2) time.
It’s worth mentioning that both of these algorithms re-

quires extracting the minimum cut in order to construct the
problems for subsequent iterations. As a result, it’s not clear
whether recent advances on fast approximations of maxi-
mum flow and minimum s-t cuts [9] can be used as a black
box with these algorithms. Extending this approach to the
non-linear isotropic objective also appears to be difficult.

4.3 Iterative Reweighted Least Squares
An approach similar to convex optimization methods, but

has much better observed rates of convergence is the iterative
reweighted least squares (IRLS) method. This method does
a much more aggressive adjustment each iteration and to
give good performances in practice [43].

4.4 First Order Methods
The method of choice in practice are first order methods

such as [33, 3]. Theoretically these methods are known to
converge rapidly when the objective function satisfies certain
Lipschitz conditions. Many of the more recent works on first
order methods focus on lowering the dependency of ǫ under
these conditions. As discussed in Section 1 and Appendix A,
this direction can be considered orthogonal to our guarantees
as the grouped least squares problem is a significantly more
general formulation.



5. APPROXIMATE ALGORITHM USING
QUADRATIC MINIMIZATIONS

In this section, we show an approximate algorithm for the
grouped least squares problem. The analyses of the algo-
rithms is intricate, but is closely based on the approximate
minimum cut algorithm given by Christiano et al. [9]. The
main modifications that we make are presented in this sec-
tion, while the full analysis is in Appendix B. A different al-
gorithm based on the lossy generalized flow algorithm given
in [13] is presented in Appendix C. It has better error depen-
dencies, but also takes much more time for moderate number
of groups. Both of these algorithms can be viewed as re-
ductions to the quadratic minimization problems described
in Section 2.1. As a result, they imply efficient algorithms
for problems where fast algorithms are known for the corre-
sponding least squares problems.

Recall that the minimum s-t cut problem - equivalent to an
L1-minimization problem - is a special case of the grouped
least squares problem where each edge belongs to its own
group(i.e., k = m). As a result, it’s natural to extend the
approach of [9] to the whole spectrum of values of k by treat-
ing each group as an ‘edge’.

One view of the cut algorithm from [9] is that it places
a weight on each group, and minimizes a quadratic, or L2

2

problem involving terms of the from 1
wi
||x − si||2Li

. Their

algorithm then adjusts the weights based on the flow on
each edge using the multiplicative weights update framework
[1, 29]. This flow is in turn obtained from the dual of the
quadratic minimization problem. We simplify this step by
showing that the energy of the groups from the quadratic
minimization problems can be directly used. Pseudocode of
the algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm for the approximate decision prob-
lem of whether there exist vertex potentials with objective
at most OPT

ApproxGroupedLeastSquares

Input: PSD matrices L1 . . .Lk, fixed values s1 . . . sk for each
group. Routine Solve for solving linear systems, width pa-
rameter ρ and error bound ǫ.
Output: Vector x such that OBJ (x) ≤ (1 + 10ǫ)OPT.

1: Initialize w
(0)
i = 1 for all 1 ≤ i ≤ k

2: N ← 10ρ log nǫ−2

3: for t = 1 . . . N do
4: µ(t−1) ←∑

i w
(t−1)
i

5: Use Solve to compute a minimizer for the quadratic
minimization problem where αi =

1

w
(t−1)
i

, let this so-

lution be x(t)

6: Let λ(t) =
√

µ(t−1)OBJ 2(x(t))
7: Update the weight of each group:

w
(t)
i ← w

(t−1)
i +

(

ǫ
ρ

||x(t)−si||Li

λ(t) + 2ǫ2

kρ

)

µ(t−1)

8: end for
9: t̄← argmin0≤t≤N OBJ (x(t))

10: return x(t̄)

The main difficulty of analyzing this algorithm is that the
analysis of minimum s-t cut algorithm of [9] relies strongly
on the existence of a solution where x is either 0 or 1. Our

analysis extends this potential function into the fractional
setting via. a function based on the Kulback-Liebler (KL)
divergence [28]. To our knowledge the use of this potential
with multiplicative weights was first introduced by Freund
and Schapire [15], and is common in learning theory. This
function can be viewed as measuring the KL-divergence be-

tween w
(t)
i and ||x̄ − si||Li

over all groups, where x̄ an op-
timum solution to the grouped least squares problem. This
term, which we denote as DKL is:

DKL =
∑

i

||x̄− si||Li
log

(

||x̄− si||Li

w
(t)
i

)

(5.7)

One way to interpret this function is that ||x − si||Li
and

1
wi

||x−si||2Li
are equal whenwi = ||x−si||Li

. Therefore, this

algorithm can be viewed as gradually adjusts the weights to
become a scaled copy of ||x̄−si||Li

, and DKL serves a way to
measure this difference. It can be simplified by subtracting
the constant term given by

∑

i ||x̄− si||
L

(t)
i

log(||x̄− si||
L
(t)
i

)

and multiplying by−1/OPT. This gives us our key potential

function, ν(t):

ν(t) =
1

OPT

∑

i

||x̄ − si||Li
log(w

(t)
i ) (5.8)

It’s worth noting that in the case of the cut algorithm,
this function is identical to the potential function used in
[9]. We show the convergence of our algorithm by proving
that if the solution produced in some iteration is far from
optimal, ν(t) increases substantially. Upper bounding it with
a term related to the sum of weights, µ(t) allows us to prove
convergence. The full proof is given in Appendix B.
To simplify the analysis, we assume that the guess that

we’re trying to solve the decision problem on, OPT, all en-
tries of s, and spectrum of Li are polynomially bounded in
n. That is, there exist some constant d such that −nd ≤
si,u ≤ nd and n−dI � ∑i Li � ndI where A � B means
B − A is PSD. Some of these assumptions can be relaxed
via. analyses similar to Section 2 of [9].

Theorem 5.1. On input of an instance of OBJ with edges
partitioned into k sets. If all parameters polynomially bounded
between n−d and nd, running ApproxGroupedLeastSquares

with ρ = 2k1/3ǫ−2/3 returns a solution x with such that
OBJ (x) ≤ max{(1+10ǫ)OPT, n−d} where OPT is the value
of the optimum solution.

The additive n−d case is included to deal with the case
where OPT = 0, or is close to it. We believe it should be
also possible to handle this case by restricting the condition
number of

∑

i Li.

6. EVIDENCE OF PRACTICAL
FEASIBILITY

We performed a series of experiments using the approx-
imate algorithm described in Section 5 in order to demon-
strate its practical feasibility. Their running times that are
slower than the state of the art methods, but nonetheless
reasonable. This suggests the need of further experimental
works on a more optimized version, which is outside of the
scope of this paper.



The SDD linear systems that arise in the quadratic mini-
mization problems were solved using the combinatorial multi-
grid (CMG) solver [23, 27]. One side observation confirmed
by these experiments is that for the sparse SDD linear sys-
tems that arise from image processing, the CMG solver yields
good results both in accuracy and running time.

6.1 Total Variational Denoising
Total Variational Denoising is the concept of applying To-

tal Variational Minimization as denoising process. This was
pioneered by Rudin, Osher and Fatemi [36] and is commonly
known as the ROF image model [8]. Our approximate algo-
rithm from Section 5 yields a simple way to solve the ROF
model and most of its variants. In Figure 1, we present a
simple denoising experiment using the standard image pro-
cessing data set, ‘Lenna’. The main goal of the experiment
is to show that our algorithm is competitive in terms of ac-
curacy, while having running times comparable to first-order
methods. On a 512×512 grayscale image, we introduce Ad-
ditive White Gaussian Noise (AWGN) at a measured Signal
to Noise Ratio (SNR) of 2. AWGN is the most common noise
model in photon capturing sensors from consumer cameras
to space satellites systems. We compare the results produced
by our algorithm with those by the Split Bregman algorithm
from [18] and the Gauss-Seidel variation of the fixed point
algorithm from [30]. These methods minimize an objective
with L2

2 fidelity term given in Equation 2.3 while we used
the variant with L2 fidelity shown in Equation 2.6. Also,
the parameters in these algorithms were picked to give the
best results for the objective functions being minimized. As
a result, for measuring the qualities of output images we only
use the L2 and L1 norms of pixel-wise differences with the
original image.

Our experiments were conducted on a single core 64-bit
Intel(R) Xeon(R) E5440 CPU @ 2.83GHz. The non-solver
portion of the algorithm was implemented in Matlab(R). On
images of size 256× 256, 512× 512 and 1024× 1024, the av-
erage running times are 2.31, 9.70 and 47.61 seconds respec-
tively. These running times are noticeably slower than the
state of the art. However, it’s worth noting is that on aver-
age 45% of the total running time is from solving the SDD
linear systems using the CMG solver. The rest is mostly
from reweighting edges and MATLAB function calls, which
should be much faster in more optimized versions. More im-
portantly, in all of our experiments the weights are observed
to converge in under 15 iterations, even for larger images of
size up to 3000× 3000.

6.2 Image Processing
As exemplified by the denoising with colors application

discussed in Section 3.2, the grouped least squares frame-
work can be used for a wide range of image processing tasks.
Some examples of such applications are shown in Figure 2.
Our denoising algorithm can be applied as a preprocessing
step to segmenting images of the retina obtained from Op-
tical Coherence Tomography (OCT) scans. Here the key
is to preserve the sharpness between the nerve fiber layers
and this is achieve by using a L1 regularization term. Varia-
tions of this formulation allows one to emulate a large variety
of established image preprocessing applications. For exam-
ple, introducing additional L2 terms containing differences of
neighboring pixels of a patch leads to the removal of bound-

Noisy Version Split Bregman
29.29E3, 8.85E6 6.70E3, 1.89E6

Grouped Least Squares Fixed Point
5.99E3, 1.39E6 6.64E3, 1.87E6

Figure 1: Outputs of various denoising algorithms
on image with AWGN noise. Starting form top left
in clock-wise order: noisy version, Split Bregman
[18], Fixed Point [30], and Grouped Least Squares.
Errors listed below each figure from left to right are
L2 and L1 norms of differences with the original.

aries, giving an overall blurring effect. On our examples,
this leads to results similar to methods that apply a filter
over the image, such as Gaussian blurring. Introducing such
effects using an objective function has the advantage that
it can be used in conjunction with other terms. By mixing
and matching penalty terms on the groups, we can preserve
global features while favoring the removal of small artifacts
introduced by sensor noise.
Examples of Poisson Image Editing mentioned in Section

3.3 are shown in Figure 3. The application is seamless
cloning as described in Section 3 of [34], which aims to insert
complex objects into another image. Given two images, they
are blended by solving the discrete poisson equation based
on a mix of their gradients and boundary values. We also
added L2 constraints on different parts of the image to give
a smoother result. Below we show two examples produced
by our algorithm with inputs on the left and results on the
right. The input consists of locations of the foreground pic-
tures over the background, along with boundaries (shown
in red) around the objects in the foreground. These rough
boundaries makes the blending of surrounding textures the
main challenge, and our three examples (void/sky, sea/pool,
snow/sand) are some representative situations. These ex-
amples also show that our approaches can be extended to
handle multichannel images (RGB or multi-spectral) with
only a few modifications.



OCT scan of retina Scan after preprocessing

Photo of room Global features

Newspaper Decolored version

Figure 2: Applications to various image processing
tasks. From top to bottom: image segmentation,
global feature extraction / blurring, and decoloring.

7. REMARKS
We believe that the ability of our algorithm to encompass

many of the current image processing algorithms represents
a major advantage in practice. It allows the use of a com-
mon data structure (the underlying graph) and subroutine
(linear system solvers) for many different tasks in the image
processing pipeline. Theoretically, the grouped least squares
problem is also interesting as it represents an intermediate
problem between linear and quadratic optimization.

The performances of our algorithms given in Section 5 and
Appendix C depend on k, which is the number of groups in
the formulation given in Definition 2.1. Two settings of k are
helpful for comparison to previous works. When k = 1, the
problem becomes the electrical flow problem, and the run-
ning time of both algorithms are similar to directly solving
the linear system. This is also the case when there is a small
(constant) number of groups. The other extremum is when
each edge belongs to its own group, aka. k = m. Here our

Marked moon and fleet Fleet in a pool

Marked polar bear Polar Bear on Mars 2

Figure 3: Examples of seamless cloning using Pois-
son Image Editing

approximate algorithm is the same as the minimum s-t cut
algorithm given in [9], but our analysis for our almost-exact
algorithm gives a much worse running time. This is due
to the interior point algorithm generating more complicated
linear systems, and occurs when most groups contain a small
number of edges. As a result, more work is needed on faster
almost-exact algorithms for problems with intermediate val-
ues of k. One other consequence of this dependency on k is
that although the problem with smaller number of groups is
no longer captured by linear optimization, the minimum s-t
cut problem – that still falls within the framework of linear
optimization – is in some sense the hardest problem in this
class. Therefore we believe that the grouped least squares
problem is a natural interpolation between the L1 and L2

2

optimization, and has potential to be used as a subroutine
in other algorithms.
The preliminary experimental results from Section 6 show

that more aggressive reweightings of edges lead to much
faster convergence than what we showed for our two algo-
rithms. Although the running time from these experiments
are slower than state of the art methods, we believe the re-
sults suggest that more thorough experimental studies with
better tuned algorithms are needed. Also, the Mumford-
Shah functional can be better approximated by non-convex
functions [32]. Objectives as hinged loss often lead to better
results in practice [35], but few algorithmic guarantees are
known for them. Designing algorithms with strong guaran-
tees for minimizing these objectives is an interesting direc-
tion for future work.
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APPENDIX

A. PROOFS ABOUT GRAPH PROBLEMS AS
MINIMIZING LASSO OBJECTIVES

In this section we give formal proofs that show the shortest
path problem is an instance of LASSO and the minimum cut
problem is an instance of fused-LASSO.

It’s worth noting that our proofs do not guarantee that
the answers returned are a single path or cut. In fact, when

multiple solutions have the same value it’s possible for our al-
gorithm to return a linear combination of them. However, we
can ensure that the optimum solution is unique using the Iso-
lation Lemma of Mulmuley, Vazarani and Vazarani [31] while
only incurring polynomial increase in edge lengths/weights.
This analysis is similar to the one in Section 3.5 of [13] for
finding a unique minimum cost flow, and is omitted here.
We prove the two claims in Fact 1.1 about shortest path

and minimum cut separately in Lemmas A.1 and A.2.

Lemma A.1. Given a s-t shortest path instance in an undi-
rected graph where edge lengths l : E → ℜ+ are integers be-
tween 1 and nd. There is a LASSO minimization instance
where all entries are bounded by nO(d) such that the value of
the LASSO minimizer is within 1 of the optimum answer.

Proof Our reductions rely crucially on the edge-vertex in-
cidence matrix, which we denote using B. Entries of this
matrix are defined as follows:

Be,u =







−1 if u is the head of e
1 if u is the tail of e
0 otherwise

(1.9)

We first show the reduction for shortest path. Then a path
from s to t corresponds to a flow value assigned to all edges,
f : E → ℜ such that BT f = χs,t. If we have another flow f′

corresponding to any path from s to t, then this constraint
can be written as:

||BT f− χs,t||2 =0 (1.10)

||BT (f− f′)||2 =0

||f− f′||BBT =0 (1.11)

The first constraint is closer to the classical LASSO prob-
lem while the last one is within our definition of grouped
least squares problem. The length of the path can then be
written as

∑

e le|fe|. Weighting these two terms together
gives:

min
f

λ||f− f′||2
BBT +

∑

e

le|fe| (1.12)

Where the maximum entry is bounded by max{nd, n2λ}.
Clearly its objective is less than the length of the shortest
path, let this solution be f̄. Then since the total objective is
at most nd+1, we have that the maximum deviation between
BT f̄ and χs,t is at most nd+1/λ. Then given a spanning tree,
each of these deviations can be routed to s or t at a cost of
at most nd+1 per unit of flow. Therefore we can obtain f′

such that BT f′ = χs,t whose objective is bigger by at most
n2d+2/λ. Therefore setting λ = n2d+2 guarantees that our
objective is within 1 of the length of the shortest path, while
the maximum entry in the problem is bounded by nO(d). �
We now turn our attention to the minimum cut prob-

lem, which can be formulated as finding a vertex labeling

x(vert) where x
(vert)
s = 0, x

(vert)
t = 1 and the size of the cut,

∑

uv∈E |x
(vert)
u − x

(vert)
v |. Since the L1 term in the objec-

tive can incorporate single variables, we use an additional
vector x(edge) to indicate differences along edges. The mini-
mum cut problem then becomes minimizing |x(edge)| subject



to the constraint that x(edge) = B′x(vert)′ +Bχt, where B′

and x(vert)′ are restricted to vertices other than s and t and
χt is the indicator vector that’s 1 on t. The equality con-
straints can be handled similar to the shortest path problem
by increasing the weights on the first term. One other issue

is that |x(vert)′ | also appears in the objective term, and we

handle this by scaling down x(vert)′ , or equivalently scaling
up B′.

Lemma A.2. Given a s-t minimum cut instance in an
undirected graph where edge weights w : E → ℜ+ are in-
tegers between 1 and nd. There is a LASSO minimization
instance where all entries are bounded by nO(d) such that the
value of the LASSO minimizer is within 1 of the minimum
cut.

Proof

Consider the following objective, where λ1 and λ2 are set
to nd+3 and n2:

λ1||λ2B
′x(vert)′ +Bχt − x(edge)||22 + |x(vert′)|1 + |x(edge)|1

(1.13)

Let x̄ be an optimum vertex labelling, then setting x(vert′)

to the restriction of n−2x̄ on vertices other than s and t and
x(edge) to Bx(vert) makes the first term 0. Since each entry
of x̄ is between 0 and 1, the additive increase caused by

|x(vert′)|1 is at most 1/n. Therefore this objective’s optimum
is at most 1/n more than the size of the minimum cut.

For the other direction, consider any solution x(vert)′ ,x(edge)′

whose objective is at most 1/n more than the size of the min-
imum cut. Since the edge weights are at most nd and s has
degree at most n, the total objective is at most nd+1 + 1.
This gives:

||λ2B
′x(vert)′ +Bχt − x(edge)||22 ≤ n−1

||λ2B
′x(vert)′ +Bχt − x(edge)||1

≤||λ2B
′x(vert)′ +Bχt − x(edge)||2 ≤ n−1/2 (1.14)

Therefore changing x(edge) to λ2B
′x(vert)′ +Bχt increases

the objective by at most n−1/2 < 1. This gives a cut with
weight within 1 of the objective value and completes the
proof. �

We can also show a more direct connection between the
minimum cut problem and the fused LASSO objective, where
each absolute value term may contain a linear combination
of variables. This formulation is closer to the total variation
objective, and is also an instance of the problem formulated
in Definition 2.1 with each edge in a group.

Lemma A.3. The minimum cut problem in undirected graphs
can be written as an instance of the fused LASSO objective.

Proof Given a graph G = (V, E) and edge weights cost,
the problem can be formulated as finding a vertex labeling
x such that xs = 0, xt = 1 and minimizing:

∑

uv∈E

costuv|xu − xv| (1.15)

�

B. MULTIPLICATIVE WEIGHTS BASED
APPROXIMATE ALGORITHM

In this section we show that the approximate algorithm
described in Section 5 finds a solution close to the optimum.
For readers familiar with the analysis of the Christiano et al.
algorithm [9], the following mapping of terminology might be
useful:

• edge e → group i.

• flow along edge e → value of ||x− si||Li
.

• weight on edge e → weight of group i, wi.

• electrical flow problem→ quadratic minimization prob-
lem (defined in Section 2.1)

• total energy of electrical flow / effective resistance →
OBJ 2(w).

We first show that if λ(t) as defined on Line 6 of Algorithm
1 is an upper bound for OBJ (x(t)). This is crucial in its use
the normalizing factor in our update step on Line 7.

Lemma B.1. In all iterations we have:

OBJ (x(t)) ≤ λ(t)

Proof By the Cauchy-Schwarz inequality we have:

(λ(t))2 =

(

∑

i

w
(t−1)
i

)(

∑

i

1

w
(t−1)
i

||x(t) − si||2Li

)

≥
(

∑

i

||x(t) − si||Li

)2

=OBJ (x(t))2 (2.16)

Taking square roots of both sides completes the proof. �
At a high level, the algorithm assigns weights wi for each

group, and iteratively reweighs them for N iterations. Recall
that our key potential functions are µ(t) which is the sum of
weights of all groups, and:

ν(t) =
1

OPT

∑

i

||x̄ − si||Li
log(w

(t)
i ) (2.17)

Where x̄ is a solution such that OBJ (x̄) = OPT. We

will show that if OBJ (x(t)), or in turn λ(t) is large, then

ν(t) increases at a rate substantially faster than log(µ(t)).

These bounds, and the relations between µ(t) and ν(t) are
summarized below:

Lemma B.2. 1.

ν(t) ≤ log(µ(t)) (2.18)

2.

µ(t) ≤
(

1 +
ǫ(1 + 2ǫ)

ρ
t

)

µ(t−1) (2.19)

and

log(µ(t)) ≤ ǫ(1 + 2ǫ)

ρ
t+ log k (2.20)



3. If in iteration t, λ(t) ≥ (1+ 10ǫ)OPT and ||x− si||Li
≤

ρ
w
(t−1)
i

µ(t−1) λ
(t) for all groups i, then:

νt ≥ ν(t−1) +
ǫ(1 + 9ǫ)

ρ
(2.21)

The relationship between the upper and lower potentials
can be established using the fact that wi is non-negative:

Proof of Lemma B.2, Part 1:

ν(t) =
1

OPT

∑

i

||x̄− si||Li
log(w

(t)
i )

≤ 1

OPT

∑

i

||x̄− si||Li
log

(

∑

j

w
(t)
j

)

= log(µ(t))

(

1

OPT

∑

i

||x̄ − si||Li

)

≤ log(µ(t)) (2.22)

�

Part 2 follows directly from the local behavior of the log
function:

Proof of Lemma B.2, Part 2: The update rules gives:

µ(t)

=
∑

i

w
(t)
i

=
∑

i

w
(t−1)
i +

(

ǫ

ρ

||x(t) − si||Li

λ(t)
+

2ǫ2

kρ

)

µ(t−1)

by update rule on Line 7 of GroupedLeastSquares

=µ(t−1) +
ǫ

ρ

∑

i ||x(t) − si||Li

λ(t)
µ(t−1) +

∑

i

2ǫ2

kρ
µ(t−1)

=µ(t−1) +
ǫ

ρ

OBJ (x(t))

λ(t)
µ(t−1) +

2ǫ2

ρ
µ(t−1)

≤µ(t−1) +
ǫ

ρ
µ(t−1) +

2ǫ2

ρ
µ(t−1) By Lemma B.1

=

(

1 +
ǫ(1 + 2ǫ)

ρ

)

µ(t−1) (2.23)

Using the fact that 1 + x ≤ exp(x) when x ≥ 0 we get:

µ(t) ≤ exp

(

ǫ(1 + 2ǫ)

ρ

)

µ(t−1)

≤ exp

(

t
ǫ(1 + 2ǫ)

ρ

)

µ(0)

=exp

(

t
ǫ(1 + 2ǫ)

ρ

)

k

Taking logs of both sides gives Equation 2.20.
�

This upper bound on the value of µt also allows us to show
that the balancing rule keeps the wt

is reasonably balanced
within a factor of k of each other. The following corollary
can also be obtained.

Corollary B.3. The weights at iteration t satisfy w
(t)
i ≥

ǫ
k
µ(t).

Proof

The proof is by induction on t. When t = 0 we have

w
(0)
i = 1, µ(0) = k and the claim follows from ǫ

k
k = ǫ < 1.

When t > 1, we have:

w
(t)
i

≥w(t−1)
i +

2ǫ2

kρ
µ(t−1) By line 7

≥
(

ǫ

k
+

2ǫ2

kρ

)

µ(t−1) By the inductive hypothesis

=
ǫ

k

(

1 +
2ǫ

ρ

)

µ(t−1)

≥ ǫ

k

(

1 +
ǫ(1 + 2ǫ)

ρ

)

µ(t−1)

≥ ǫ

k
µ(t) By Lemma B.2, Part 2 (2.24)

�

The proof of Part 3 is the key part of our analysis. The
first order change of ν(t) is written as a sum of products of
Li norms, which we analyze via. the fact that x(t) is the
solution of a linear system from the quadratic minimization
problem.

Proof of Lemma B.2, Part 3:

We make use of the following known fact about the be-
havior of the log function around 1:

Fact B.4. If 0 ≤ x ≤ ǫ, then log(1 + x) ≥ (1− ǫ)x.

ν(t) − ν(t−1)

=
1

OPT

∑

1≤i≤k

||x̄− si||Li
log
(

w
(t)
i

)

− 1

OPT

∑

1≤i≤k

||x̄ − si||Li
log
(

w
(t−1)
i

)

By Equation 2.17

=
1

OPT

∑

1≤i≤k

||x̄− si||Li
log

(

w
(t)
i

w
(t−1)
i

)

≥ 1

OPT

∑

1≤i≤k

||x̄− si||Li
log

(

1 +
ǫ

ρ

||x(t) − si||Li

λ(t)

µ(t−1)

w
(t−1)
i

)

By update rule in line 7

≥ 1

OPT

∑

1≤i≤k

||x̄− si||Li

ǫ(1− ǫ)

ρ

||x(t) − si||Li

λ(t)

µ(t−1)

w
(t−1)
i

Since log(1 + x) ≥ (1− ǫ)x when 0 ≤ x ≤ ǫ

=
ǫ(1− ǫ)µ

(t−1)
i

ρOPTλ(t)

∑

1≤i≤k

1

w
(t−1)
i

||x̄ − si||Li
||x(t) − si||Li

(2.25)

Since Li forms a P.S.D norm, by the Cauchy-Schwarz in-
equality we have:



||x̄− si||Li
||x(t) − si||Li

≥(x̄− si)
TLi(x

(t) − si)

=||x(t) − si||2Li
+ (x̄− x)TLi(x

(t) − si) (2.26)

Recall from Lemma 2.2 that since x(t) is the minimizer to
OBJ 2(w(t−1)), we have:

(

∑

i

1

w
(t−1)
i

Li

)

x(t) =
∑

i

1

w(t−1)
si

(2.27)
(

∑

i

1

w
(t−1)
i

Li

)

(x(t) − si) =0 (2.28)

(x̄− x(t))T
(

∑

i

1

w
(t−1)
i

Li

)

(x(t) − si) =0 (2.29)

Substituting this into Equation 2.25 gives:

ν(t) − ν(t−1)

≥ ǫ(1− ǫ)µ
(t−1)
i

ρOPTλ(t)

∑

i

1

w
(t−1)
i

||x(t) − si||2Li

=
ǫ(1− ǫ)

ρOPTλ(t)
µ(t−1)OBJ 2(w,x(t))

=
ǫ(1− ǫ)

ρOPTλ(t)
(λ(t))2

By definition of λ(t) on Line 6

≥ ǫ(1− ǫ)(1 + 10ǫ)

ρ

By assumption that λ(t) > (1 + 10ǫ)OPT

≥ ǫ(1 + 8ǫ)

ρ
(2.30)

Since the iteration count largely depends on ρ, it suffices
to provide bounds for ρ over all the iterations. The proof
makes use of the following lemma about the properties of
electrical flows, which describes the behavior of modifying
the weights of a group Si that has a large contribution to
the total energy. It can be viewed as a multiple-edge version
of Lemma 2.6 of [9].

Lemma B.5. Assume that ǫ2ρ2 < 1/10k and ǫ < 0.01 and

let x(t−1) be the minimizer for OBJ 2(w(t−1)). Suppose there

is a group i such that ||x(t−1) − si||Li
≥ ρ

w
(t−1)
i

µ(t−1) λ
(t), then

OPT2(w(t)) ≤ exp

(

− ǫ2ρ2

2k

)

OPT2(w(t−1))

Proof

We first show that group i contributes a significant portion
to OBJ 2(w(t−1),x(t−1)). Squaring both sides of the given
condition gives:

||x(t−1) − si||2Li

≥ρ2 (w
(t−1)
i )2

(µ(t−1))2
(λ(t))2

=ρ2
(w

(t−1)
i )2

(µ(t−1))2
µ(t−1)OBJ 2(w(t−1),x(t−1)) (2.31)

1

w
(t−1)
i

||x(t−1) − si||Li

≥ρ2w
(t−1)
i

µ(t−1)
OBJ 2(w(t−1),x(t−1))

≥ ǫρ2

k
OBJ 2(w(t−1),x(t−1))

By Corollary B.3 (2.32)

Also, by the update rule we have w
(t)
i ≥ (1+ ǫ)w

(t−1)
i and

w
(t)
j ≥ w

(t−1)
j for all 1 ≤ j ≤ k. So we have:

OPT2(w(t))

≤OBJ 2(w(t),x(t−1))

=OBJ 2(w(t),x(t−1))− (1− 1

1 + ǫ
)||x(t−1) − si||2Li

≤OBJ 2(w(t),x(t−1))− ǫ

2
||x(t−1) − si||2Li

≤OBJ 2(w(t),x(t−1))− ǫ2ρ2

2k
OBJ 2(w(t−1),x(t−1))

≤ exp

(

− ǫ2ρ2

2k

)

OBJ 2(w(t−1),x(t−1)) (2.33)

�

This means the value of the quadratic minimization prob-
lem can be used as a second potential function. We first
show that it’s monotonic and establish rough bounds for it.

Lemma B.6. OPT2(w(0)) ≤ n3d and OPT2(w(t)) is mono-
tonically decreasing in t.

Proof By the assumption that the input is polynomially
bounded we have that all entries of s are at most nd and
Li � ndI. Setting xu = 0 gives ||x−si||2 ≤ nd+1. Combining
this with the spectrum bound then gives ||x−si||Li

≤ n2d+1.
Summing over all the groups gives the upper bound.
The monotonicity of OPT2(w(t)) follows from the fact

that all weights are decreasing. �

Combining this with the fact that OPT2(w(N)) is not low
enough for termination gives our bound on the total iteration
count.

Proof of Theorem 5.1: The proof is by contradiction.
Suppose otherwise, since OBJ (x(N)) > ǫ we have:

λ(N) ≥(1 + 10ǫ)n−d

≥2n−dOPT (2.34)
√

µ(N)OPT2(w(t)) ≥2n−d (2.35)

OPT2(w(t)) ≥ 4

n−2dµ(N)
(2.36)



Which combined with OPT2(w(0)) ≤ n3d from Lemma
B.6 gives:

OPT2(w(0))

OPT2(w(N))
≤n5dµ(N) (2.37)

By Lemma B.2 Part 2, we have:

log(µ(N))

≤ ǫ(1 + ǫ)

ρ
N + log k

≤ ǫ(1 + ǫ)

ρ
10dρ log nǫ−2 + log n

By choice of N = 10dρ log nǫ−2

=10(1 + ǫ)ǫ−1 log n+ log n

≤10d(1 + 2ǫ)ǫ−1 log n

when ǫ < 0.01 (2.38)

Combining with Lemma B.5 implies that the number of

iterations where ||x(t−1) − si||Li
≥ ρ

w
(t−1)
i

µ(t−1) λ
(t) for i is at

most:

log
(

µ(N)n5d
)

/

(

ǫ2ρ2

2k

)

=10d(1 + 3ǫ)ǫ−1 log n/

(

2ǫ2/3

k1/3

)

By choice of ρ = 2k1/3ǫ−2/3

=8dǫ−5/3k1/3 log n

=4dǫ−1ρ log n ≤ ǫN (2.39)

This means that we have ||x(t−1)−si||Li
≤ ρ

w
(t−1)
i

µ(t−1) λ
(t) for

all 1 ≤ i ≤ k for at least (1 − ǫ)N iterations and therefore
by Lemma B.2 Part 3:

ν(N) ≥ν(0) +
ǫ(1 + 8ǫ)

ρ
(1− ǫ)N > µ(N) (2.40)

Giving a contradiction. �

C. ALMOST-EXACT ALGORITHM USING
INTERIOR POINT ALGORITHMS

We now show improved algorithms for solving the sec-
ond order cone programming formulation given in [6, 17].
It was shown in [13] that in the linear case, as with graph
problems such as maximum flow, minimum cost flow and
shortest path, interior point algorithms reduce the problem
to solving Õ(m1/2) symmetrically diagonally dominant lin-
ear systems. The grouped least squares formulation creates
artifacts that perturb the linear systems generated by the
interior point algorithms, making the resulting system both
more difficult to interpret and to solve. However, the itera-
tion count of this approach also only depends on k, [17, 6],
and has a better dependency on ǫ of O(log(1/ǫ)).

There are various ways to solve the grouped least squares
problem using interior point algorithms. We follow the log-
barrier method, as presented in Boyd and Vandenberghe [6]

here for simplicity. This formulation defines one extra vari-
able yi for each group and enforces yi ≥ ||x − si||Li

using
the barrier function φi(x, yi) = log(y2

i − ||x − si||2Li
). Min-

imizing t · (∑i yi) for gradually increasing values of t gives
the following sequence of functions to minimize:

f(t,x,y) = t
∑

i

yi −
∑

i

log(y2
i − ||x− si||2Li

) (3.41)

Various interior point algorithms have been proposed, one
commonality that they have is finding an update direction
by solving a linear system. The iteration guarantees for re-
covering almost-exact solution can be characterized as fol-
lows:

Lemma C.1. (Section 11.5.3 from [6]) A solution that’s
within additive ǫ of the optimum solution can be produced in
Õ(k1/2 log(1/ǫ)) steps, each of which requires solving a linear
system involving ∇2f(t, x, y) for some value of t, x and y.

Since the t
∑

i yi term is linear, it can be omitted from the
Hessian, leaving

∑

i∇2φ(x, yi). We then check that the bar-
rier term yi creates a low rank perturbation to the Li term,
which is the Hessian for ||x−si||2Li

. By taking Schur comple-
ments and applying the Sherman-Morrison-Woodbury iden-
tity on inverses for low rank perturbations, we arrive at the
following observation.

Theorem C.2. Suppose there is an algorithm for solving
linear systems of the form

∑

i αiLi in T (n,m) time where m.
For any choice of x, y, a linear system involving the Hessian
of φ(x, y), ∇2φ(x, y) can be solved in O(kω+kT (n,m)+k2n)
time.

Proof

We first consider the barrier function corresponding to
each group, φ(x, yi). Its gradient is:

∇φ(x, yi) =∇− log
(

y2
i − (x− si)

TLi(x− si)
)

=
2

y2
i − ||x− si||2Li

[

Li(x− si)
−yi

]

(3.42)

and its Hessian, ∇2φ(x, yi), is:

2

(y2
i − ||x − si||2Li

)2





(y2
i − ||x − si||2Li

)Li

+2Li(x− si)(x− si)
TLi

2yiLi(x− si)

2yi(x− si)
TLi y2

i + ||x − si||2Li





(3.43)

Since the variable yi only appears in φ(x, yi), we may use
partial Cholesky factorization to arrive at a linear system
without it. The n× n matrix that we obtain is:

Li(y
2
i − ||x− si||2Li

)

+

(

2− 4y2
i

y2
i + ||x − si||2Li

)

Li(x− si)(x− si)
TLi

=(y2
i − ||x− si||2Li

)

(

Li − 2Li(x− si)(x− si)
TLi

y2
i + ||x − si||2Li

)

(3.44)



Since φ(x,y) =
∑

i φ(x, yi), this partial Cholesky factoriza-
tion of ∇2φ(x,y) can be written as:

∑

i

αiLi − βiuiu
T
i (3.45)

Where ui = Li(x − si) and αi and βi are scalars. We can
simplify solving this system using the Sherman-Morrison-
Woodbury formula:

Fact C.3. (Sherman–Morrison–Woodbury formula)
If A, U, C, V are n× n, n× k, k× k and k× n matrices

respectively, then:

(A+UCV)−1 = A
−1 −A

−1
U(C−1 +VA

−1
U)−1

VA
−1

Here we have A =
∑

i αiLi, C = −I, U being the k

columns vectors
√
βiui concatenated and V = UT . So the

linear system that we need to evaluate becomes:

A−1 −A−1U(UTA−1U− I)−1UTA−1 (3.46)

The system A−1U can be found using k solves in A =
∑

i αiLi, which is equivalent to the quadratic minimization
problem. Multiplying this by U can be done in O(k2n) time
and gives us UTA−1U. This k × k system can in turn be
solved in kω time. The other terms can be applied to vec-
tors in either solves in A or matrix multiples in U, taking
O(T (n,m) + kn) time. �

Combining this with the iteration count of Õ(k1/2 log(1/ǫ))

gives a total running time of Õ((kω+1/2 + k3/2T (n,m) +

k5/2n) log(1/ǫ)).

D. OTHER VARIANTS
Although our formulation of OBJ as a sum of L2 objec-

tives differs syntactically from some common formulations,
we show below that the more common formulation involv-
ing quadratic, or L2

2 fidelity term can be reduced to finding
exact solutions to OBJ using 2 iterations of ternary search.
Most other formulations differs from our formulation in the
fidelity term, but more commonly have L1 smoothness terms
as well. Since the anisotropic smoothness term is a special
case of the isotropic one, our discussion of the variations will
assume anisotropic objectives.

D.1 L2
2 fidelity term

The most common form of the total variation objective
used in practice is one with L2

2 fidelity term. This term
can be written as ||x− s0||22, which corresponds to the norm
defined by I = L0. This gives:

min
x

||x − s0||2L0
+
∑

1≤i≤k

||x − si||Li

We can establish the value of ||x − s0||2L0
separately by

guessing it as a constraint. Since the t2 is convex in t, the
following optimization problem is convex in t as well:

min
x

∑

1≤i≤k

||x− si||Li
||x− s0||2L0

≤ t2

Also, due to the convexity of t2, ternary searching on the
minimizer of this plus t2 would allow us to find the optimum
solution by solving O(log n) instances of the above problem.

Taking square root of both sides of the ||x − s0||2L0
≤ t2

condition and taking its Lagrangian relaxation gives:

min
x

max
λ≥0

k
∑

i=1

||x − si||Li
+ λ(||x− s0||L0 − t)

Which by the min-max theorem is equivalent to:

max
λ≥0
−λt+

(

min
x

k
∑

i=1

||x− si||Li
+ λ||x − s0||L0

)

The term being minimized is identical to our formulation
and its objective is convex in λ when λ ≥ 0. Since −λt is
linear, their sum is convex and another ternary search on λ
suffices to optimize the overall objective.

D.2 L1 fidelity term
Another common objective function to minimize is where

the fidelity term is also under L1 norm. In this case the
objective function becomes:

||x − s0||1 +
∑

i

∑

1≤i≤k

||x− si||Li

This can be rewritten as a special case of OBJ as:
∑

u

√

(xu − su)2 +
∑

i

∑

1≤i≤k

||x− si||Li

Which gives, instead, a grouped least squares problem
with m+ k groups.
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