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Abstract

We consider a simple graph-based metric on points in Euclidean space known as
the edge-squared metric. This metric is defined by squaring the Euclidean distance
between points, and taking the shortest paths on the resulting graph. This metric has
been studied before in wireless networks and machine learning, and has the density-
sensitive property: distances between two points in the same cluster are short, even
if their Euclidean distance is long. This property is desirable in machine learning.

In this paper, we show that this metric is equal to previously studied geodesic-
based metric defined on points in Euclidean space. Previous best work showed that
these metrics are 3-approximations of each other. It was not known or suspected that
these metrics were equal. We give fast algorithms to compute sparse spanners of this
distance, a problem that can be seen as a generalization of both the Euclidean spanner
and the Euclidean MST problem. Spanners of the edge-squared metric are faster to
compute and sparser than the best known Euclidean spanners in a variety of settings.
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1 Introduction

A foundational hypothesis in non-linear dimension reduction and machine learning is that
data can be represented as points in Euclidean space, and that graphs on these points can
be generated to solve a variety of problems on the data, including classification, regression,
and clustering [29, 26, 53, 32, 43, 74, 55]. Such graphs can induce similarity measures or
distances on the point set, which are used as the key model when generating a clustering or
classification [29, 16, 67

Although graph algorithms have been extensively studied, the problem of generating
metrics and graphs on data sets is an active topic whose study has mostly occurred in
machine learning, statistics, and geometry [44, 6, 58, 73, 16, 43, 4, 69, 38, 30, 23, 39, 40,
75, 3, 63, 45]. We believe two important problems are: comparing the various methods of
generating distances from point sets, and building data structures to quickly compute these
distances.

In this paper, we study a particular distance generated from a graph on points in Eu-
clidean space, called the edge-squared metric. It is defined by taking the Euclidean distance
squared between two points, and finding the shortest path on the resulting graph. This
metric has the property that two points in a dense cluster are considered close, even if
their Euclidean distance is far [16]. This property is known as density-sensitivity [73],
and is desirable for clustering and classification [58, 4, 45, 28]. The edge-squared metric
has been studied before in the context of machine learning [16, 73, 45, 4, 28] and power-
efficient wireless networks [50, 51]. Squared Euclidean distances have been examined before
as an optimization objective, and occur in natural settings including k-means clustering
and RMS matching [54, 61]. We compare the edge-squared metric to another distance on
point-sets known as the nearest-neighbor geodesic distance, first introduced in [28] as the
nearest neighbor distance. Close variants of this metric have been studied in probability and
machine learning [58, 28, 45]. We then give efficient algorithms constructing sparse spanners
for both metrics.

In this paper, we show that the edge-squared metric and nearest-neighbor geodesic dis-
tance are identical. It was not previously known or suspected that the two might be the
same. This is the first work we know of that equates a discrete metric with a continuous
geodesic, and gives the first nontrivial example of a so-called density-based distance [58]
that can be computed exactly. This considerably improves a result in [28], which showed
that the two were 3-approximations of each other. Previous works computing geodesics or
density-based distances generally use approximate methods whose run-time grows as the
approximation quality improves [46, 67, 4, 3, 45, 28], or calculus of variations [15, 60, 66].
We use a different method. Our proof employs the Kirszbraun theorem, also known as the
Lipschitz Extension Theorem [47, 18]. This theorem has been widely used in computational
geometry, classification, and metric embedding theory [57, 49, 56, 40]. Our result lets us com-
pute the persistent homology of the nearest-neighbor geodesic, a general problem of interest
for many continuous metrics in the computational geometry setting [33, 36, 24, 25, 22, 2].

In order to perform clustering or classification with the edge-squared metric or nearest-
neighbor geodesic distance, we provide data structures that admit fast, practical computation



of these metrics with theoretical guarantees. The edge-squared metric can have high doubling
dimension even if the underlying points are in 2 dimensions [28]. This means that many
data structures suitable for low-doubling dimension metrics will not immediately work on it.
Despite this, if the underlying point set is in low dimension, we compute a sparse (1 + ¢)-
spanner of the edge-squared metric quickly. This spanner is sparser and faster to compute
than the best known (1 4+ ¢)-spanners for Euclidean metrics, and uses techniques from well-
separated pair decompositions [20] and approximate Euclidean MSTs [11, 12, 21].

A foundational assumption of machine learning is that most data points are samples from
a well-behaved probability distribution with low intrinsic dimension [67, 38, 72, 43, 55, 45].
We compute a sparse 1-spanner for our metrics in such a setting. Our 1-spanner is a k-nearest
neighbor graph (k-NN graph) with edge weights equal to Euclidean distance squared, with
k = O(2¢logn). Here, d is the intrinsic dimension of the probability density. Note that a
sparse 1-spanner of Euclidean distance is not possible in this setting. Our result may allow
for fast computation of edge-squared spanners in practice, given the breadth of literature
on the k-NN graph [19, 32, 26] and its widespread use in practice [67, 53, 32]. If intrinsic
dimension d is constant, our k is nearly optimal: it is believed k = Q(logn) is necessary for
connectivity of the k-nearest neighbor graph [14, 37, 53].

We also show how spanners of the edge-squared metric can be seen as a generalization
of Euclidean spanners [70, 34, 11, 20], approximate Euclidean MSTs [21, 9, 12, 5, 77], and
single linkage clustering [41, 77].

1.1 Definitions and Preliminaries

Edge-squared metric: For z € RY, let ||z| denote the Euclidean norm. For a set of points
P CR%

Definition 1.1. The edge-squared metric for a,b € P is

dy(a,b) = min Zsz pi1ll?,

(Poy--Pk)

where the minimum is over sequences of points po, . ..,pr € P with po = a and p = b.

Nearest-neighbor geodesic distance: Another metric on the points of P is called the
nearest-neighbor geodesic distance, and is denoted dy. This distance was first defined and
studied in [28]. Before we can define it, we need a couple other definitions.

Given any finite set P C R¥, there is a real-valued function rp : R¥ — R defined as
rp(z) = mingep ||z — 2||. A path is a continuous mapping 7 : [0,1] — R<. Let path(a, b)
denote the set of piecewise-C; paths from a to b. We will compute the lengths of paths
relative to the distance function rp as follows.

o) = / rp((1)) /(1) dt.



By considering the velocity of v, this definition is independent of the parameterization of
the path.

Definition 1.2. The nearest-neighbor geodesic distance is defined as:

dy(a,b) :=4 inf {(y).

~v€Epath(a,b)
The factor of 4 normalizes the metrics.

In particular, when P has only two points a and b, dy(a,b) = dy(a,b). This reduces to
a high school calculus exercise as the minimum path v will be a straight line between the
points and the nearest neighbor geodesic is

dy(a,b) = 4/0 rp(y(0)Y (t)]|dt =8 /02 tla —bl*dt = la — b]|* = da(a, b).

This observation about pairs of points makes it easy to see that the nearest-neighbor
geodesic distance is never greater than the edge-squared distance, as proven in the following
lemma.

Lemma 1.3. For all s,p € P, we have dy(s,p) < da(s,p).
Proof. Fix any points s,p € P. Let qo,...,q € P be such that gy = s, ¢x = p and

k
da(s,p) = Z lg: = qial*.
i=1

Let ¢;(t) = tq; + (1 — t)gi—1 be the straight line segment from ¢;_; to ¢;. Observe that
0(¢;) = |lgs — qi—1||*/4, by the same argument as in the two point case. Then, let ¥ be the
concatenation of the 1; and it follows that

do(s,p) =4(xp) >4 inf  l(y) =dy(s,p). O

y€Epath(s,p)

Spanners: For real value ¢t > 1, a t-spanner of a weighted graph G is a subgraph S such
that dg(x,y) < ds(z,y) <t-dg(z,y) where dg and dg represent the shortest path distance
functions between vertex pairs in G and S. Spanners of Euclidean distances, and general
graph distances, have been studied extensively, and their importance as a data structure is
well established. [27, 70, 20, 42].

k-nearest neighbor graphs: The k-nearest neighbor graph (k-NN graph) for a set of ob-
jects V' is a graph with vertex set V' and an edge from v € V' to its k£ most similar objects in
V', under a given distance measure. In this paper, the underlying distance measure is Eu-
clidean, and the edge weights are Euclidean distance squared. k-NN graph constructions are
a key data structure in machine learning [32, 26], clustering [53], and manifold learning [67].

Gabriel Graphs: The Gabriel graph is a graph where two vertices p and ¢ are joined by
an edge if and only if the disk with diameter pq has no other points of S in the interior.
The Gabriel graph is a subgraph of the Delaunay triangulation [63], and a 1-spanner of the
edge-squared metric [63]. Gabriel graphs will be used in the proof of Theorem 1.6.
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1.2 Contributions

Our paper has three main theorems.

Theorem 1.4. Given a point set P € R?, the edge-squared metric on P and the nearest-
neighbor geodesic on P are always equivalent.

Theorem 1.5. For any set of points in R? for constant d, there exists a (1 + ) spanner of
the edge-squared metric, with size O (ne_d/z) computable in time O (n logn 4 ne~%?log é)
The logg term goes away given a fast floor function.

Theorem 1.6. Suppose points P in Fuclidean space are drawn i.i.d from a Lipschitz prob-
ability density bounded above and below by a constant, with support on a smooth, connected,
compact manifold with intrinsic dimension d, and smooth boundary of bounded curvature.
Then w.h.p. the k-NN graph of P for k = O(2¢Ilnn) and edges weighted with Euclidean
distance squared, is a 1-spanner of the edge-squared metric on P.

Theorem 1.4 considerably strengthens a result from in [28], which showed dj is a 3-
approximation of dy. Our theorem finds dy exactly, and lets us compute the persistent
homology of dy. dy is defined on all points in space, and is thus a metric extension [56] of
the edge-squared metric and of negative type distances [31] to the entire space.

Theorem 1.5 proves that a (1 4+ ¢) spanner of the edge-squared metric with points
in constant dimension is sparser and quicker to compute than the Euclidean spanners of
Callahan and Kosaraju [20]. The latter spanners have O(ne~?) edges and are computable
in O(nlogn + ne™?) time. To the authors’ knowledge, these are the sparsest quickly-
constructable Euclidean spanners in terms of € dependence. Later works on spanners have
focused on bounding diameter, degree, or total edge weight [11, 34]. We give a size lower
bound for (1+ ¢)-Euclidean spanners, which is close to the sparsity of our (1+ ¢) spanner of
the edge-squared metric. Previously, sparse spanners of the edge-squared metric were shown
to exist in two dimensions via Yao graphs and Gabriel graphs [50].

Theorem 1.6 proves that a 1-spanner of the edge-squared metric can be found assuming
points are samples from a probability density, by using a k-NN graph for appropriate k. Our
result is tight when d is constant. This is not possible for Euclidean distance, as a 1-spanner
is almost surely the complete graph. Without the probability density assumption, there are
point sets in R* where 1-spanners of the edge-squared metric require (n?) edges. Finally,
we show that spanners of p-power metrics, which are edge-squared metrics but with powers
of p instead of 2, generalize Euclidean spanners and Euclidean MSTs. p-power metrics were
considered in [50].

2 Outline

Section 3 contains the proof of Theorem 1.4, equating the edge-squared metric and nearest-
neighbor geodesic distance in all cases. We then compute the persistent homology of the
nearest-neighbor geodesic distance. Section 4 outlines a proof of Theorem 1.5, and compares
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our spanner to new lower bounds on the sparsity of (1+ ¢)-spanners of the Euclidean metric.
We outline a proof of Theorem 1.6 in Section 5 and discuss its implications.

Section 6 introduces the p-power metrics. We show that Euclidean spanners and Eu-
clidean MSTs are special cases of p-power spanners. We show how clustering algorithms
including k-means, level-set methods, and single linkage clustering, are special cases of clus-
tering with p-power metrics.

Conclusions and open questions are in Section 7. Full proofs for Theorems 1.6, 1.5 are
contained in the Appendix.

3 Edge-Squared Metric is Equivalent to the Nearest-
Neighbor Geodesic Distance

In this section, we prove Theorem 1.4. By Lemma 1.3, it suffices to show that for a and b
on Euclidean point set P, we have dy(a,b) > dy(a,b) for a,b € P.

Let P C R? be a set of n points. Pick any source point s € P. Order the points of P as
D1y, Dn SO that

d2(sap1) S e S d2(8apn)‘

This will imply that p; = s. It will suffice to show that for all p; € P, we have da(s,p;) =
dy(s,p;). There are three main steps:

1. We first show that when P is a subset of the vertices of an axis-aligned box, d = dy.
In this case, shortest paths for d are single edges and shortest paths for d y are straight
lines.

2. We then show how to lift the points from R to R" by a Lipschitz map m that places
all the points on the vertices of a box and preserves da(s, p) for all p € P.

3. Finally, we show how the Lipschitz extension of m is also Lipschitz as a function
between nearest-neighbor geodesic distances. We combine these pieces to show that
d <dy. Asd > dy (Lemma 1.3), this will conclude the proof that d = dy.

3.0.1 Boxes

Let @@ be the vertices of a box in R™. That is, there exist some positive real numbers
a1, ..., 0y such that each ¢ € Q) can be written as ¢ = ) .., aje;, for some I C [n].

Let the source s be the origin. Let rg : R" — R be the distance function to the set Q.
Setting 7;(z) := min{x;, a; — x;} (a lower bound on the difference in the ith coordinate to a
vertex of the box), it follows that




Let v : [0,1] — R™ be a curve in R". Define v;(t) to be the projection of v onto its ith
coordinate. Thus,

ri(v(t)) = min{v;(t), s — 7i(t)} (2)

and

(3)

We can bound the length of v as follows. For simplicity of exposition we only present the
case of a path from the origin to the far corner, p = """ | aze;.

() = / ro(1(8) 17/ (8) |t by definition]

> / PIRCIOVNDIEHOR K [by (1) and (3)

1=1 1=1
noopl
> Z/ ri(y()vi(t)dt [Cauchy-Schwarz]
i=1 Y0
n 0 1
>3 [ it [ o= o
i=1 \70 &
[by (2) where ~;(¢;) = «;/2 for the first time and ~;(¢;) = «;/2 for the last time.]
n 2
=> 2 / Vi) vi(t)dt [by symmetry]
i=1 V0
> - basic calcul
> ; 1 [basic calculus]

It follows that if y is any curve that starts at s and ends at p = > | aze;, then dy (s, p) =
d2(87p)'

3.0.2 Lifting the points to R”

Define a mapping m : P — R"™. We do this by adding the points p1, ..., p,, as defined above,
one point at a time. For each new point we will introduce a new dimension. We start by
setting m(p;) = 0 and by induction:

m(p;) = m(pi—1) + \/da(s,pi) — da(s, pi_1)e, (4)

where the vectors e; are the standard basis vectors in R™.

Lemma 3.1. For all p;,p; € P, we have
(i) lIm(p;) —m(p)|| = /Ida(s, p;) — da(s, pi)], and
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(i) [Im(s) —m(p)|I* < [lm(p)|| + [m(p:) — m(p;)|1*.
Proof. Proof of (i). Without loss of generality, let i < j.

J

Z \/d2(svpk) - d2(57pk—1)€k

Im(p;) —m(pi)|| = [from the definition of m]

k=i+1
J
= Z (da(s, pr) — da(s, pr—1)) [expand the norm|
k=i+1
= \/dg(s,pj) —da(s, pi)- [telescope the sum]
Proof of (i1). As m(s) =0, it suffice to observe that
Im(p)|I* = da(s, p;) [by (i)]
< da(s,p;) + |da(s,p;) — da(s, pi)| [basic arithmetic]
= [[m@a)|I* + lIm(p:) — m(p;)|? [by (i)]

We can now show that m has all of the desired properties.

Proposition 3.2. Let P C R? be a set of n points, let s € P be a designated source point,
and let m : P — R"™ be the map defined as in (4). Let A’ denote the edge squared metric for
the point set m(P) in R™. Then,

(i) m is 1-Lipschitz as a map between Fuclidean metrics,
(i) m maps the points of P to the vertices of a box, and

(iii) m preserves the edge squared distance to s, i.e. d'(m(s), m(p)) = da(s,p) for allp € P.

Proof. Proof of (i). To prove the Lipschitz condition, fix any a,b € P and bound the distance
as follows.

[m(a) — m(b)|| = v/|ds(s, a) — da(s,b)] [Lemma 3.1(i)]
< y/ds(a,b) [triangle inequality]
< |la — b [dg(a, b) < |la — b||* by the definition of d}

Proof of (ii). That m maps P to the vertices of a box is immediate from the definition. The
box has side lengths ||m; —m;_ 1| for all i > 1 and p; = S0, |lme — me_1 | ex-

Proof of (). We can now show that the edge squared distance to s is preserved. Let
Qo, - - -, qx be the shortest sequence of points of m(P) that realizes the edge-squared distance
from m(s) to m(p), i.e., go = m(s), g = m(p), and

d'(m(s), m(p)) = Z lm(gi) = m(gi—1)1*.

7



If £ > 1, then Lemma 3.1(ii) implies that removing ¢; gives a shorter sequence. Thus, we
may assume k = 1 and therefore, by Lemma 3.1(i),

d'(m(s), m(p)) = [|m(s) — m(p)||* = da(s, p). 0

3.0.3 The Lipschitz Extension

Proposition 3.2 and the Kirszbraun theorem on Lipschitz extensions imply that we can
extend m to a 1-Lipschitz function f : R? — R™ such that f(p) = m(p) for all p € P
[47, 71, 18].

Lemma 3.3. The function f is also 1-Lipschitz as mapping from R? — R™ with both spaces
endowed with the nearest-neighbor geodesic distance.

Proof. We are interested in two distance functions rp : R = R and r spy - R™ — R. Recall
that each is the distance to the nearest point in P or f(P) respectively.

ryp)(f(x)) = i lg — f(2)]] [by definition]
= min || f(p) — f(2)] [a = £(p) for some p]
peEP
< min Ip— || [f is 1-Lipschitz]
=rp(x). [by definition]

For any curve v : [0,1] — R? and for all ¢ € [0, 1], we have ||(f o) (®)|| < [|[7/(¢)]]. It then
follows that

1

5’(fov)=/0 rf(P)(f(v(t)))H(fOv)’(t)lldtS/0 rp(yO)IY (B)lldt = €(v),  (5)

where (' denotes the length with respect to ryp). Thus, for all a,b € P,

dy(a,b) = 4ﬁ/€p2il{1hf(a ) () [by definition]
> i !
>4 it (o) by 5)
>4 if O b o~ € path(f(a), f(b
e . () [because f o~y € path(f(a), f(b))]
=dy(f(a), f()). [by definition]

We now restate Theorem 1.4 for convenience, and prove it.

Theorem 3.4. For any point set P C R, the edge squared metric d and the nearest-neighbor
geodesic distance dy are identical.



Proof. Fix any pair of points s and p in P. Define the Lipschitz mapping m and its extension
fasin (4). Let d’ and d’y denote the edge-squared and nearest-neighbor geodesic distances
on f(P) in R™.

dsy(s,p) = d'(m(s), m(p)) [Proposition 3.2(iii)]
= dy(m(s),m(p)) [f(P) are vertices of a box]
<dn(s,p) [Lemma 3.3]

We have just shown that d < dy and Lemma 1.3 states that d > dy, so we conclude that
d = dy as desired. O

3.1 Persistent Homology of the Nearest-neighbor Geodesic Dis-
tance

In this section, we show how to compute the so-called persistent homology [33] of the nearest-
neighbor geodesic distance in two different ways, one ambient and the other intrinsic. The
latter relies on Theorem 1.4 and would be quite surprising without it.

Persistent homology is a popular tool in computational geometry and topology to ascribe
quantitative topological invariants to spaces that are stable with respect to perturbation of
the input. In particular, it’s possible to compare the so-called persistence diagram of a
function defined on a sample to that of the complete space [24]. These two aspects of
persistence theory—the intrinsic nature of topological invariants and the ability to rigorously
compare the discrete and the continuous—are both also present in our theory of nearest-
neighbor geodesic distances. Indeed, the primary motivation for studying these metrics was
to use them as inputs to persistence computations for problems such as persistence-based
clustering [25] or metric graph reconstruction [1].

The input for persistence computation is a filtration—a nested sequence of spaces, usually
parameterized by a real number o > 0. The output is a set of points in the plane called a
persistence diagram that encodes the birth and death of topological features like connected
components, holes, and voids.

The Ambient Persistent Homology Perhaps the most popular filtration to consider on
a Euclidean space is the sublevel set filtration of the distance to a sample P. This filtration
is (F,)a>0, where

F,:={x €¢R*|rp(z) < a},

for all @ > 0. If one wanted to consider instead the nearest-neighbor geodesic distance dy,
one gets instead a filtration (G4)a>0, where

Go = {z € R | mindy(z,p) < a},
pelP
for all o > 0.

Both the filtrations (F,) and (G,) are unions of metric balls. In the former, they are
Euclidean. In the latter, they are the metric balls of dy. These balls can look very different,



for example, for dy, the metric balls are likely not even convex. However, these filtrations
are very closely related.

Lemma 3.5. For alla >0, F, = Gy,2.

Proof. The key to this exercise is to observe that the nearest point p € P to a point x is also
the point that minimizes dy(z,p). To prove this, we will show that for any p € P and any
path v € path(z,p), we have £(y) > irp(z)%. Consider any such z, p, and . The euclidean
length of v must be at least rp(z), so we will assume that ||| = rp(x) and will prove the
lower bound on the subpath starting at x of length exactly rp(x). This will imply a lower
bound on the whole path. Because rp is 1-Lipschitz, we have rp(y(t)) > (1 —t)rp(z) for all
t € [0,1]. Tt follows that

1) = [ eI Ol = vl [ (1= it = Feate)

The bound above applies to any path from x to a point p € P, and so,

dy(z,p) =4 inf > 2rp(x).

w(@,p) vepath(z,p)(y) — P2)
If p is the nearest neighbor of x in P, then dy(x,p) = 2rp(x), by taking the path to be a
straight line. It follows that minyep dy(z, p) = 2rp(x). O

The preceding lemma shows that the two filtrations are equal up to a monotone change
in parameters. By standard results in persistent homology, this means that their persistence
diagrams are also equal up to the same change in parameters. This means that one could
use standard techniques such as a-complexes [33] to compute the persistence diagram of
the Euclidean distance and convert it to the nearest-neighbor geodesic distance afterwards.
Moreover, one observes that the same equivalence will hold for variants of the nearest-
neighbor geodesic distance that take other powers of the distance.

Intrinsic Persistent Homology Recently, several researchers have considered intrinsic
nerve complexes on metric data, especially data coming from metric graphs [2, 36]. These
complexes are defined in terms of the intersections of metric balls in the input. The vertex
set is the input point set. The edges at scale o are pairs of points whose a-radius balls
intersect. In the intrinsic Cech complex, triangles are defined for three way intersections,
tetrahedra for four-way intersections, etc.

In Euclidean settings, little attention was given to the difference between the intrinsic and
the ambient persistence, because a classic result, the Nerve Theorem [17], and its persistent
version [24] guaranteed there is no difference. The Nerve theorem, however, requires the
common intersections to be contractible, a property easily satisfied by convex sets such as
Euclidean balls. However, in many other topological metric spaces, the metric balls might
not be so well-behaved. In particular, the nearest-neighbor geodesic distance has metric
balls which may take on very strange shapes, depending on the density of the sample. This
is similarly true for graph metrics. So, in these cases, there is a difference between the
information in the ambient and the intrinsic persistent homology.
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Theorem 3.6. Let P C R? be finite and let dy be the nearest-neighbor geodesic distance with
respect to P. The edges of the intrinsic Cech filtration with respect to dx can be computed
exactly in polynomial time.

Proof. The statement is equivalent to the claim that dy can be computed exactly between
pairs of points of P, a corollary of Theorem 3.4. Two radius « balls will intersect if and only
of the distance between their centers is at most 2a. The bound on the distance necessarily
implies a path and the common intersection will be the midpoint of the path. O

4 Fast, Sparse Spanner for the Edge-Squared Metric

Now we outline a proof for Theorem 1.5, which shows that one can construct a (1 +¢) edge-
squared spanner of size O(ne=%?) in time O (n logn + ne~%?1og (é)), for points in constant
dimensional space. The full proof is in Appendix A. By Theorem 1.4, this spanner is also a
good spanner of the nearest-neighbor geodesic distance. Note that this spanner is sparser and
faster in terms of epsilon dependency than the best spanner for Euclidean distances known
to the authors , which has O (¢7%) edges and runs in O (nlogn + e %nlog (1)) time [20]. We
rely extensively on well-separated pair decompositions (WSPDs), and this outline assumes
familiarity with that notation. For a comprehensive set of definitions and notations on well
separated pairs, refer to any of [21, 12, 20, 11]. Our proof consists of three parts.

1. Showing that connecting a (1+0(§?%))-approximate shortest edge in a 1/ well separated
pair for all the pairs in the decomposition gives a 1+ O(5?) edge-squared spanner. The
processing for this step takes O(nlogn + §~9n) time.

2. Previous work contains an algorithm computing 1 + O(§?)-approximate shortest edge
in a 1/0 well separated pair for all the pairs in a WSPD, and takes O(1) time per pair.
The pre-processing for this step will be bounded by O(6~%nlog (%)) time. The log (%)
factor goes away given a fast floor function. This procedure was first introduced in [21].

3. Putting these two together, and setting ¢ = §2 gives us a 1 + € spanner with O(e~%?n)
edges in O(nlogn + € %?n) time.

Full details of this proof are contained in Appendix A

4.1 Lower Bounds for Sparsity of Euclidean Spanners

Theorem 4.1. For constant d and any fived €, there exists a set of points such that any
(14 ¢€) Euclidean spanner in R? needs Q (ne=l21+1) edges.

Here, we show that our edge-squared spanner is about as sparse as the theoretically
optimal Euclidean spanner with the same approximation quality. The set of points is chosen
adversarially for a given e.
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Proof. (of Theorem 4.1) Take points spaced at least 4e apart on the surface of the unit ball
on the first d/2 dimensions. Then, take points spaced at least 4e apart on the surface of
the unit ball on the remaining d/2 dimensions. Let the first set of points be A, and the
second set of points be B. You can pack ©(s~%2*!) points into both A and B this way.
Each distance crossing from A to B has Euclidean distance exactly equal to 2. Therefore,
any edge from A to B must be in a (1 + ) spanner of the Euclidean distance. We have
constructed a set P := AU B with ©(~%2*!) points, whose (1 + ¢) Euclidean spanner
must have at least ©(¢~%*2) edges. This construction can have arbitrarily many points n,
by duplicating ne?/?~! copies of P arbitrarily far away from each other. The result has n
vertices, and must have at least Q(ne=%2*!) edges in any (1 + ¢) Euclidean spanner. O

By substituting 1/ for € in the construction, we can additionally show a lower bound for
the sparsity of an edge-squared spanner.

Lemma 4.2. For constant d and any fized €, there exists a point set where a (1 + €) edge-
squared spanner must have at least §2 (ns‘td/‘uﬂ) edges.

The point set is chosen adversarially for a given . By setting d = 4 and ¢ = %, our

construction gives:

Lemma 4.3. There exists a 4-dimensional set of points, such that any 1-spanner of the
edge-squared metric has Q(n?) edges.

5 Exact-spanners of Edge-Squared Metrics in the Prob-
ability Density Setting

Theorem 1.6 states that for k = O(2%logn), the k-NN graph of n points drawn i.i.d from
a nicely behaved probability distribution is a 1-spanner of the edge-squared metric. Theo-
rem 1.6 is impossible for general point sets: Lemma 4.3 gives an example where a 1-spanner of
the edge-squared metric in 4 dimensions requires €2(n?) edges. This result is also impossible
for Euclidean distances, whose 1-spanner is the complete graph almost surely. Our theo-
rem implies any off-the-shelf k-nearest neighbor graph generator can compute edge-squared
metric. In this section, we outline a proof and defer the analytical details to Appendix B.

First, let us assume that the support of our probability density D has the same dimension
as our ambient space. This simplifies our calculations without changing the problem much.
Then, we note that as our number of sample points get large, the density inside a k-NN ball
around any point x (the ball with radius k"*-NN distance, center at z) looks like the uniform
distribution on that ball, possibly intersected with a halfspace. The bounding plane of our
halfspace represents the boundary of our density D.

For simplicity in the outline, let’s suppose that D is convex. If we condition on the radius
of the k-NN ball, then the k& — 1% nearest neighbors of z are distributed roughly according to
the above distribution, described by the ball intersected with a halfspace. For any other point
pin D, we project p onto the k-NN ball to point p’, and show that the ball p’z contains a k"
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nearest neighbor w.h.p, when & = O(2¢logn). This implies ball with diameter pz contains a
k" nearest neighbor of z, and thus px is not necessary in any 1-spanner of the edge-squared
metric. Then we take union bound over all . A rigorous proof of Theorem 1.6 requires
careful analysis, and is contained in Section B. Our proof can be tweaked to show:

Theorem 5.1. Given a Lipschitz distribution bounded above and below with support on
conver set C C RY, the k-NN graph is Gabriel w.h.p. for k = O(2%logn).

6 Relating the Edge-Squared Metric to Euclidean MSTs,
Euclidean Spanners, and More

The edge-squared metric on a Euclidean point set, as we recall, is defined by taking the
Euclidean distances squared and finding the shortest paths. We could have taken any such
power p of the Euclidean distances. We will soon see that taking p = 1 gives us the Euclidean
distance, and finding spanners of the graph as limp — oo is the Euclidean MST problem.
Let the p-power metric be defined on a Euclidean point set by taking Euclidean distances to
the power of p, and performing all-pairs shortest path on the resulting distance graph.

Theorem 6.1. For all ¢ > p, any 1-spanner of the p-power metric is a 1-spanner of the
q-power metric on the same point set

Proof. A 1-spanner of the ¢g-power metric can be made by taking edges uv where

PO=U,...pE=0,k#1

min N |lpi = pical[4 > [Ju— o[ (6)
k

If Zf:1 |[pi = pi—a[|? > [|lu — v]|? for any points pi, ... py, then Zf:l |lpi = pical[? > [[u— vl
for any ¢ > p. Thus, for all such edges uv satisfying Equation 6:

min Z e P> u = vl [P,
PO=U,...pE=0,k#1 . ||pl Pi 1|| || ||

Such edges uv must be included in any 1-spanner of the p-power metric. O

Corollary 6.1.1. Let P be a set of points in FEuclidean space drawn i.i.d. from a Lipschitz
probability density bounded above and below, with support on a smooth, compact manifold
with intrinsic dimension d, bounded curvature, and smooth boundary of bounded curvature.
Then the k-NN graph on P when k = O(2%logn) is a 1-spanner of the p-power metric for
every p > 2, w.h.p.

This follows from combining Theorem 1.6 and Theorem 6.1.
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6.1 Relation to the Euclidean MST problem

Definition 6.2. Let the normalized p-power metric between two points in RY be the p-
power metric between the two points, raised to the % power. Define the normalized co-power
metric as the limit of the normalized p-power metric as p — oo.

Lemma 6.3. The Euclidean MST is a 1-spanner for the normalized oo-power metric.

This lemma follows from basic properties of the MST. The normalized p-power metrics
give us a suite of metrics such that p = 1 is the Euclidean distance and p = oo gives us the
distance of the longest edge on the unique MST-path. Setting p = 2 gives the edge-squared
metric, which sits between the Euclidean and max-edge-on-MST-path distance. Theorem 6.1
establishes that minimal 1-spanners of the (normalized) p-power metric are contained in each
other, as p varies from 1 to co. The minimal spanner for a general point set when p =1 is
the complete graph, and the Euclidean MST is the minimal spanner for p = co. Thus:

Theorem 6.4. For points in R?, every 1-spanner of the p-power metric on that set of points
contains every Fuclidean MS'T.

Corollary 6.4.1. Every 1-spanner for the edge-squared metric and/or Nearest Neighbor
Geodesic contains every Fuclidean MS'T.

6.2 Generalizing Single Linkage Clustering, Level Sets, and k-
Centers clustering

If our point set is drawn from a well-behaved probability density, then the normalized edge-
power metrics converge to a nice geodesic distance detailed in [45]. When p = 1, clustering
with this metric is the same as Euclidean metric clustering (k-means, k-medians, k-centers),
and when p = oo, clustering with this metric is the same as the widely used level-set
method [76, 41, 35, 10]. Thus, clustering with normalized edge-power metrics generalizes
these two very popular methods, and interpolates between their advantages. Definitions of
the level-set method and a full discussion are contained in Appendix C

7 Conclusions and Open Questions

We examined a graph-based distance on Euclidean point sets, showed it equaled a special
density-based distance, and built sparser and faster spanners on this metric than is known
for Euclidean distances. Such sparse data structures may be surprising given that the metric
can have high doubling dimension. Many problems remain open.

Is there a generalization of Theorem 1.4 to p-power metrics? This would require defining
a new version of the nearest-neighbor geodesic distance. Separately, are the proof techniques
for Theorem 1.4 of use for computing or approximating other density-based distances? Can
non-spanner data structures for clustering with the edge-squared metric be computed effi-
ciently? Such data structures include core-sets and distance oracles [13, 62, 68].
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Can we efficiently compute o(logn)-spanners of the p-power metric in high dimension
with a nearly linear number of edges?” The existence of such spanners has been studied
for Euclidean metrics in [42], where the stretch obtained is /logn. Good constructions
for (1 + ¢)-spanners of the normalized co-power metric are known: many (but not all)
approximate Euclidean MST constructions are (1 + ¢)-spanners of this metric [21, 77]. Can
high-dimensional approximate Euclidean MST algorithms [5, 77, 9] be adapted to create
efficient p-power spanners? Any spanner for high-dimensional edge-squared metrics must
give the same quality spanner for negative type distances [59, 31|, which include I and [;.

Does computing k-NN graphs with approximate nearest neighbor methods give 1-spanners
of the edge-squared metric with high probability? Approximate nearest neighbors have been
studied extensively [52, 26, 32], including locality-sensitive hashing for high dimensional
point sets [7] and more [48]. Recent work by Andoni et. al. [8] showed how to compute
approximate nearest neighbors for any non-Euclidean norm. Perhaps there is a rigorous
theory about density-sensitive metrics generated from any such norm? Similar to how the
edge-squared metric is generated from the Euclidean distance.

It remains an open question how well clustering or classification with edge-squared metrics
and nearest-neighbor geodesic distances performs on real-world data. Experiments have been
done by Bijral, Ratliff, and Srebro in [16]. Theorem 1.6 implies that future experiments can
be done using any k-nearest-neighbor graph.
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A Proving Faster and Sparser-than-Euclidean Approx-
imate Spanners

In this appendix, we finish the proof of Theorem 1.5 based on the outline given in Section 4.

A.1 1+ O(6?) spanners can be generated from a 1/6 WSPD

Definition A.1. Let e be a critical edge in a shortest path metric on any graph if the
(possibly-not-unique) shortest path between the endpoints of e is the edge e.

Lemma A.2. The set of critical edges on any graph forms a 1-spanner of the shortest path
metric.

The above lemma is known in the literature.

To check that any graph H is a (1 + O(6%) spanner of any graph G, it suffices to prove
that all critical edges in the edge-squared metric have a stretch no larger than 1+ O(§?).
Let G be the edge-squared graph arising from points P C R?. Build a well-separated pair
decomposition on P, with pairs given as {A;, B1}, {As, Bo}, ... {A,, B} Create a spanner

22



H as follows: for each pair {A;, B;}, connect an edge {a,b},a € A;;b € B; such that the
Euclidean distance between a and b is a (1 + ¢d?) approximation of the shortest distance
between point sets A; and B;, for some constant ¢ independent of . This can be accomplished
in O(1) time assuming a preprocessing step of O(6~¢log (%) time, as noted in Callahan’s
paper on constructing a Euclidean MST [21]. Do this for all 1 <i < m.

For each critical edge (s,t), consider the well-separated pair {A, B} that (s,t) is part
of. Let s € Aand t € B. Let (a,b) be a (1 + cd?)-approximate shortest edge between A
and B (a € A,b € B). Scale ||a — b||2 to be 1. A and B have Euclidean radius at most
0, by the definition of a well separated pair. By induction on Euclidean distance, H is an
edge-squared 2-spanner of the edge-squared metric for all points in A and B and all points
in B (assuming sufficiently small §).

Lemma A.3.
disty(s,t) < disty(s,a) + disty(a,b) + disty (b, t) < 1+ O(6?)
Proof. We know disty(a,b) = 1 by our scaling, and
disty(s,a) < 2- (distg(s,a)) <2-|s — al|* < 862

The first inequality follows by the inductive hypothesis that H is a 2-spanner of G in A. The
third inequality follows since both s and a are contained in a ball of radius J.

The same bound applies for disty(b,t). O
Lemma A .4.
(1 + c6%)(distg(s,t)) > distg(a,b) =1
. 1
= distg(s,t) > 5o

Lemma A.4 follows from the fact that (a,b) is a (1 + ¢d?) approximate shortest distance
between A and B.
Therefore

h <———=<(1+1 1 =1
stretchy (s, t) < Jisto(s.0) = (1+1656°)(1+ cd?) + 0(67) (7)

Thus we have proven that H is a 1 + 1662 spanner. Now set ¢ = 62, which completes
proof of Theorem 1.5.

B Spanners in the Probability Density Setting: Full
Proof

Through this section, we assume that D is a probability density function with support on
smooth connected compact manifold with intrinsic dimension d embedded in ambient space
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R?, with smooth boundary of bounded curvature. This probability density function is further
assumed to be bounded above and below, and to be Lipschitz. For simplicity, we assume
that s = d, and we can prove all our results when s > d by taking coordinate charts from the
manifold into Euclidean space. We will show at the end of the section that if the distribution
is supported on a convex set of full dimension in the ambient space, then the k-NN graph is
Gabriel for the same k. It is not difficult to see that Gabriel graphs are 1-spanners of the
edge-squared metric [63].

Lemma B.1. Let M be a compact object in R?, whose boundary is a smooth manifold of
dimension d — 1 with bounded curvature. Let B be any ball with sufficiently small radius rg
with center in M, that intersects the boundary of D at some point x. Let H be the halfspace
tangent to M at x containing the center of the ball.

For any point Q € M, let Q' be the point in B closest to Q. If d(Q',H)/rp > ¢ for
arbitrary constant ¢, then d(Q, H) > ¢ for some constant c'.

This is a basic fact about the smoothness and bounded curvature of the boundary.

Lemma B.2. Pick n points from D. W.h.p, any two points in Support(D) with Euclidean
distance > (1) have nearest-neighbor geodesic distance of o(1).

This is implicit in [45].

Lemma B.3. For any ball B with center O and any point Q)" on the boundary of B, let Bgo
be the ball with diameter Q'O. Let H be any halfspace containing O. If d(Q', H)/rp < ¢ for
some constant ¢ possibly depending on the dimension d, then Vol(BgoNH) > 12_;:, Vol(BNH)
for some constant ¢, where ¢ goes to 0 as ¢ goes to 0.

Proof. First, let us consider the case where d(Q'H) = 0, that is, )’ is contained in halfspace
H’. In this case, dilating Bgo N H by a factor of 2 about point ()’ gives a superset of
BN H, as Bgo maps to B and H maps to a halfspace strictly containing H. In this case,
Vol(Bgio N H) > 57 Vol(B N H) as desired. The case when d(Q', H)/rp is bounded follows
in a straightforward manner. O

This leads us to our following theorem:

Theorem B.4. For any n point set P picked i.i.d from D, consider any point O. Let B be
the k-NN ball of O. Let Q) € Support(D) be any point outside B, and let the closest point to
Q in B be Q'. For a point x inside B on the boundary of D (assuming such a point exists),
let H be the tangent halfplane containing the center of B.

Then: either d(Q', H)/rg < ¢ for some constant ¢’ or there exists a constant ¢ where
|QO| > c. Here, ¢ and ¢ are independent of the number of points chosen, and ¢’ can be set
arbitrarily small.

In the latter case, w.h.p. QO is not in the edge-squared 1-spanner. In the former case,
setting ¢’ to be a very small constant € lets us say:
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Vol(Boio N H) > ~—<Vol(B N H), (8)

9d
or equivalently:
]PD [LL’ c BQo‘SL’ c B] (9)
> ]PD [[L’ c BQ10|ZL' S B] (10)
1—¢e—o(1)
T (11)

Expression 10 > Expression 11 follows from Equation 8, and the fact that the radius of
the k-NN ball goes to 0 as n gets large, and thus the probability density of sampling = from
D conditioned on x being in B approaches the uniform density in B N Support(D). Also,
BN H approaches B N Support(D) as the radius of B goes to 0.

Expression 9 > Expression 10 since Boo D Bgo. (Here, the k-NN ball B w.r.t. point
O is defined as the ball centered at O with radius equal to the distance of the k' nearest
neighbor to O).

Note that the k — 1 nearest neighbors of O, conditioned only on the radius of B, are
distributed equivalently to & — 1 i.i.d samples of D conditioned on containment in B. It
follows that for any point @ outside B and in the support of D, where |QO| < ¢:

. . ( 1—c- o(l))’“
P [QO is not Gabriel wr.t. PIQ¢ B]>1—(1— ———— (12)

P~DF 2d

Thus, setting ¢ = 0.1 and & > O(logn/2%), and factoring in the case where |QO| > c,
then w.h.p.:
P [QO is not critical w.r.t. P|Q ¢ B|

P~D¥
Here, we recall that an edge AB is Gabriel with respect to a point set P if and only if Bup
does not contain any points in P. Note that every non-Gabriel edge is non-critical, where a
critical edge is an edge that must be in the 1-spanner (as in Definition A.1). Thus taking the
union bound over (),0 € P gives us that no edge outside the k-NN graph is critical w.h.p,
and thus the k-NN graph contains all critical edges and is a 1-spanner w.h.p.

This proves Theorem 1.6 when the support of D has the same intrinsic dimension as the
ambient space. If the support of D has dimension d < d’ (where d’ is the ambient dimension
of the space), simply take coordinate charts from D onto R? and the previous arguments
will still carry through . We should note that if no point x inside B on the boundary of D
exists, then we can ignore H and all the steps of the proof still follow.
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C Edge-Power Metrics relate to Single Linkage Clus-
tering, Level Sets, and k-Centers clustering

Many popular clustering algorithms, including k-centers, k-means, and k-medians clustering,
use Euclidean distance as a measure of distance between points in R%. These methods are
useful when clusters are spherical and well-separated. However, it is believed by practitioners
that density-sensitive distances more accurately capture intrinsic distances between data [4].

The celebrated single-linkage clustering algorithm [41, 77], which is clustering based on
an MST, is a widely used tool in machine learning, and gets around many of the problems
of the FEuclidean distance clustering. In single-linkage clustering, two points are considered
similar if the maximum length edge on the path between them in the MST is small. This
turns out to be equivalent to computing the normalized oco-power metric between the two
points. Therefore, single linkage clustering can be seen as clustering using the normalized
oo-power metric. Generally, normalized p-power metrics can be seen as an intermediary
between Euclidean distances (1-power metrics) and Euclidean MST-based clustering.

Clustering with p-power metric relates to another popular clustering method in machine
learning, known as level-set clustering. Loosely speaking, level set clustering involves finding
an estimate for the probability density that points are drawn from, finding a cut threshold
t, and then taking as clusters all regions with probability density > t. Level set clustering
has appeared in many incarnations [76, 64, 65], including the celebrated and widely used
DBScan method [35] and its considerable number of variations [10]. It is known that level-
set clustering is related to single-linkage clustering, as the latter is an approximation of
the former [76, 65]. Level-set methods have the advantage that they can find arbitrarily
shaped clusters [35], but can cause two points that are very close in Euclidean distance to
be considered far apart.

Clustering with the p-power metric incorporates the advantages of both Fuclidean dis-
tance clustering and level set clustering, as it is both density-sensitive and takes into account
overall Euclidean distance between two points. Here, p can be toggled to change the sen-
sitivity of the metric to the underlying density. As the number of samples drawn from our
probability density grows large, it has been proven that the behavior of normalized p-power
metrics converges to a natural geodesic distance on the underlying probability density [45].
Clustering with this geodesic distance for p = 1 is exactly Euclidean clustering, and for
p = oo is exactly the level set method. Thus, clustering with p-power metric converges to
a clustering method that smoothly interpolates between Euclidean-distance clustering and
level set clustering.
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