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Abstract

We present an efficient algorithm for solving a linear
system arising from the 1-Laplacian of a collapsible
simplicial complex with a known collapsing sequence.
When combined with a result of Chillingworth, our
algorithm is applicable to convex simplicial complexes
embedded in R®. The running time of our algorithm
is nearly-linear in the size of the complex and is
logarithmic on its numerical properties.

Our algorithm is based on projection operators
and combinatorial steps for transferring between
them. The former relies on decomposing flows into
circulations and potential flows using fast solvers for
graph Laplacians, and the latter relates Gaussian
elimination to topological properties of simplicial
complexes.

1 Introduction

Over the past two decades, substantial progress has
been made in designing very fast linear system solvers
for the case of symmetric diagonally dominate sys-
tems. These solvers have been shown to substantially
speedup the worst case times for many problems with
applications to image processing, numerical analy-
sis, machine learning, and maximum flows in graphs.
These problems reduce to approximation algorithms
for solutions to a graph Laplacian. Progress in finding
fast solvers for general symmetric systems has been
more elusive; see related work below. In this paper,
we consider solving a natural generalization of the
graph Laplacian: the 1-Laplacian.

Recall that an undirected graph G = (V,E)
with n vertices and m edges can be viewed as a
one-dimensional complex; that is, it consists of zero-
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simplices (vertices) and one-simplices (edges). There
is a natural map from each oriented edge to its
boundary (two vertices). This gives an n by m
boundary matrix, which we denote by J;, where
each row corresponds to a vertex and each column
corresponds to an edge; see Figure 5 in the Appendix.
The (i, j) entry is 1,—1, 0 if the " vertex is a head,
tail, or neither of the j*" edge, respectively. The
weighted graph Laplacian is defined as 0; W07 . We
use Ay = 910{ to denote the unweighted graph
Laplacian, also known as the 0-Laplacian.

Suppose the K5 is a two-dimensional complex,
i.e., a collection of oriented triangles, edges, and
vertices. The (signed) weighted sum of k-simplices
is a k-chain. For edges, one interpretation of the
weights is electric flow, where positive flow is in the
direction of the edge and negative flow is in the
opposite direction. We then compute the boundary of
the k-chain, which is a (k—1)-chain. For example, the
weights on triangles induce weights on edges via the
boundary operator 0o, and weights on edges induce
weights on triangles via the co-boundary operator 07 ;
see Figure 1. Weights on edges induced from weights
on triangles can be interpreted as a flow along the
boundary of the triangle. Weights on tetrahedra
induced from weights on triangles can be interpreted
as a flux in the perpendicular direction to the triangle;
see Figure 2.

This paper focuses on solving the 1-Laplacian
corresponding to a restricted class of two-complexes.
Letting K5 be a two-complex, and d; be a one-chain
in Ko, we define the central problem addressed in this
paper:

Problem 1.1. Approximate the solution f; to the
following system of equations:

Ay f1 = dy,
where Ay = 0,08 + 00, is the 1-Laplacian.

For convenience, we define the operators AI = 8265
and AT = 979,



Figure 1: We add the face circulations in order
to obtain the cumulative circulation around the
boundary of the region shown in dark pink; here,
the flow on the internal edge cancels. Algebraically,
this is equivalent to applying the boundary operator
to a two-chain.

Figure 2: A unit weight on the oriented triangle
induces a flux in the direction perpendicular to the
triangle, as indicated above.

A key observation used in this paper is that the
spaces im(AT) and im(AY) are orthogonal. Further, if
K has trivial homology, these two subspaces span all
one-chains (i.e., all flows). We use the term bounding
cycle to refer to the elements of im 0y, which in our
case is equal to im AI. The space of bounding cycles
coincide with the space of circulations if the homology
is trivial. We will also use the terms co-bounding
chain and potential flow for im 07, which is the same
subspace as for im A%; see Section 3. As we will
see later, this decomposition is part of the Hodge
decomposition.

In order to solve 1-Laplacians, we split the
problem into two parts:

(1.1) Alfr = 0207 f1 = d”

and

(1.2) Atp=olof =dP,

where dgc) and dgp) the projections of d; onto the
boundary (circulation) subspace and co-boundary (po-
tential flow) subspace, respectively. We reduce (1.2)
to the graph Laplacian, and focus the majority of this
paper on handling (1.1). Note that we do not find

the exact decomposition of d; into dgc) and dgp ), due

to the fact that known fast graph Laplacian solvers
use iterative methods. Thus, the error analysis is an
important contribution of this paper.

Our approach to solving (1.1) is to decompose
the problem into two steps:

1. Find any solution fs to Oz fo = dgc).
2. Solve the system 0 f; = fo for f;.

Step one is extremely easy in one lower dimension,
i.e., when solving d; fi = dy were dy is orthogonal to
the all-ones vector. Given a spanning tree, the initial
value at an internal node n is uniquely determined
by the initial values of the leaf nodes or the subtree
rooted at n. The process of determining these values
is precisely back substitution in linear algebra.

On the other hand, step one seems to be much
more intricate when we look for a two-chain to
generate the given one-chain d(lc). Restricting the
input complex allows us to apply results from simple
homotopy theory [Coh73]; see Section 5. In higher
dimensions, collapsible complexes seem to be the
analog of the tree that we used in graph Laplacians.

Finally, step two can be solved for the case of
a convex three-complex using duality to reduce the
problem to a graph Laplacian.

Paper Outline. In the rest of this section,
we briefly survey related results to solving discrete
Laplace equations. We continue by presenting some
basic background material in Section 2. In Section 3,
we present orthogonal decompositions of one-chains
and describe the related fast projection operators. An
algorithm, which exploits the known collapsibility of
the input complex, is described in Sections 4 and 5.
Finally, extensions of the current paper are briefly
discussed in Section 6.

1.1 Motivation and Related Results. In this
subsection, we present an overview of some related
work of solving linear systems and their applications.

Solvers. More than 20 years ago, Vaidya [Vai9l]
observed that spanning trees can be used as good
preconditioners for graph Laplacians. This obser-
vation led to Alon et al. [AKPW95] to use a low
stretch spanning tree as a preconditioner. The long
history of solvers for the graph Laplacian matrix
(and, more generally, for symmetric diagonally dom-
inant matrices) culminated with the first nearly-
linear time solver [Spi04]. More recently, significant
progress has been made in making this approach prac-
tical [KMP10, KMP11, KOSZ13, LS13].

Strong empirical evidence over several decades
shows that most linear systems can be solved in
time much faster than the state of the art worst-
case bound of O(n*) for direct methods [Will2] and



O(nm) for iterative methods [HS52], where n and
m are the dimension and the number of nonzero
entries of the matrix, respectively. The important
open question here is whether ideas from graph
Laplacian solvers leads to fast solvers for a wider
classes of linear systems. A glance at the literature,
e.g., [Axe94, BCPTO05, Dai08], shows that the current
nearly-linear time solvers exist for only small class of
matrices (namely, those with a small factor-width),
while a vast number of systems of interest do not have
nearly-linear solvers.

Applications. Using solvers for inear systems
as subroutines for graph algorithms has led to state
of the art algorithms for a variety of classical graph
optimization problems in both the sequential and
parallel setting [BGK ™13, Dai08, KM09, CKM™11].

Further, they have motivated faster solvers for ap-
plications in scientific computing such as Poisson equa-
tions [BHV08] and two dimensional trusses [DS07].
We believe this work can be considered as a first step
towards solving vector Poisson equations in a similar
asymptotic running time.

Discrete Hodge decomposition of the chain spaces
has found many applications in literature, including
statistical ranking [JLYY11], electromagnetism and
fluid mechanics [DKTO08]. Friedman [Fri98] used the
idea of Hodge decomposition in computing Betti
numbers (the rank of homology groups) that, in
general, reduces to linear algebraic questions such
as computing the Smith normal form of boundary
matrices [Mun30] and requires matrix multiplication
time [EP14]. The special cases that can be solved
faster are for embedded simplicial complexes in
R3 [Del93, DGIS, Epp03] and for an output-sensitive
result [CK13]. In this paper, we only work with
a special case of Hodge Decomposition,the discrete
Helmholtz decomposition, where the underlying space
has trivial homology.

2 Background

In this section, we review background from linear
algebra and algebraic topology. For more details,
we refer the interested reader to Strang [Str93] and
Hatcher [Hat01].

2.1 Matrices. An n x m matrix A can be thought
of as a linear operator from IR" to IR™. A square
matrix A is positive semidefinite if for all vectors
x € R"™ we have 27 Az > 0. Let A be any matrix
realizing a linear map X — Y. With a slight abuse
of notation, we let A denote both the linear map and
the matrix. It is known that Y is decomposed into
orthogonal subspaces im(A4) and null(AT); indeed,
this fact is widely known as the Fundamental Theorem

of Linear Algebra. The identity of im(AAT) and
im(A) as well as the following projection lemma are
significant implications of this decomposition that we
use repeatedly in this paper.

Lemma 2.1. Let A: X — Y and let y € Y. Then,
the projection of y onto im(A) is A(ATA)t ATy,
where M T denotes the pseudo-inverse of M.

In our analysis, we bound errors using the 2-norm
and matrix norms. The A-norm of a vector v € R"
is defined, using a positive semidefinite matrix A, as
[lv]|a = VT Av. The two-norm of a vector v € R"
is defined as |[v||2 = |[v]|r = VvTv, where I is the
identity matrix. Also, the two-norm of a matrix A is
max, o ([[27A|l, / ).

We use k(A) to denote the condition number of A,
which is the ratio of the maximum to the minimum
singular values of A. Much of our error analysis relies
on a partial order between matrices. Specifically, we
use A = B to denote that B — A is positive semi-
definite. 'We make repeated use of the following
known fact about substituting the intermediate term
in symmetric product of matrices.

Lemma 2.2 (Composition of Bounds). Let
a>1. For any matrices V, A, B, with VAVT
and VBV7T defined, if A = B = aA, then
VAVT < VBVT <aVAVT.

2.2 Simplicial Complexes. A k-simplex o can be
viewed as an ordered set of k41 vertices. For example,
a simplex o can be written as o = [vg, ..., vx]; in this
case, we write dim(c) = k. A face 7 of o is a simplex
obtained by removing one or more of the vertices
defining 0. A simplicial compler K is a collection
of simplices such that any face of a simplex in K is
also contained in K and that the intersection of any
two simplices is a face of both. The dimension of
a simplicial complex is the maximum dimension of
its composing simplices. In this paper, we use the
term k-complex to refer to a k-dimensional simplicial
complex.

Our systems of equations are based on simplicial
three-complexes that are piecewise linearly embedded
in IR®. Such an embedding maps a zero-simplex to a
point, a one-simplex to a line segment, a two-simplex
to a triangle and a three-simplex to a tetrahedron.
An embedding of a simplicial complex is convez if the
union of the images of its simplices |K| is convex. We
use the phrase convex simplicial complex to refer to a
simplicial complex together with a convex embedding
of it. If |K| is homeomorphic to a topological space
X, then we say that K triangulates X. In particular,
we will often assume that K triangulates a three-ball;



that is | K| is homeomorphic to the unit ball, given by
{x:2 e R3,||z]]2 < 1}.

2.3 Chains and Boundary Operators. We de-
fine a function f: K — IR, which assigns a real
number to each k-simplex of K; we can think of this
as a labeling on the k-simplices. The set of all such
functions forms a vector space over IR that is known as
the k-(co)chain group, and is denoted by Cy = Cx(K).
In this paper, we are interested in solving a linear sys-
tem of the form Axj = by, where x; and b, are both
k-chains and xj is unknown.
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Figure 3: Theorem 3.1 states that every one-chain
(e.g., the labeling given in black) can be decomposed
into two parts: im(92) (the labeling with blue boxes)
and im(97) (the labeling with pink ovals). Here, we
see such a decomposition.

A linear boundary map 0 : Cy — Ck_1 can be
defined based on a global permutation of the vertices.
The columns and rows of Ji correspond to k-simplices
and (k — 1)-simplices, respectively. Given a k-simplex

o = [vg,v1,...,vx], the column of J; contains k + 1
non-zero entries. The i*® of these corresponds to the
face [vo,...,Di,...,v] obtained by removing the v;

from o. In particular, we write:

k

SoRl) = (=1)[vo, -

=0

(23) 8k([vo,.. ,@i,...,vk].

See Figure 5b for an example. When k = 1, each row
of the corresponding matrix represents a vertex and
each column represents an edge. There are exactly
two nonzero entries in each column, since an edge
is incident to exactly two vertices. Applying the
boundary operator twice results in the trivial operator:

(2.4) Ok—10 () = 0;

that is, zero is obtained if the boundary operator
is applied twice to a k-simplex xj. The images of
O, and O] have special names; we call them the

boundary cycles and cobounding chains, respectively.
Furthermore, in our setting, the kernel of Jy is called
the cycle group.

2.4 Combinatorial Laplacian. The k-Laplacian
of a simplicial complex A : Cy — Cf is defined as:

(25) A = 8k+18kT+1 + 8gak

As discussed in the introduction, the special case of
Ao = 0,07 is commonly referred to as the graph
Laplacian. This paper focuses on Ay, which has two
parts by (2.5): Al = 9,07 and A} = 078;, which we
refer to as the up and down operators, respectively.
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Figure 4: A one-chain (a flow) x; is labeled in black,
its coboundary (the flux) %'z is labeled inside the
triangle, and, finally, the boundary of 92 z; gives the
residual flow Alz; labeled in blue.

The operators Jx and Ay have a physical inter-
pretation as electric flow if & is small. For & = 0 (the
graph Laplacian), consider the system of equations
Agxg = bg. If ¢ is interpreted as voltages on the ver-
tices, then 91 () is the current on the edges induced
by the voltages, and Agxg is the residual voltage on
the vertices. When we solve the system of equations,
b is known and we solve for zj. For this reason, we
refer to the k-chain by as demands and the k-chain
T as potentials.

There are efficient algorithms to solve linear
systems envolving graph Laplacians (Ag). The
following Lemma describe a slightly generalized class
of solvers.

Lemma 2.3 (Approximate Solver).

[Spi04, KMP10, KMP11, KOSZ13, LS13] Given
a n-by-n symmetrically diagonally dominant linear
system A with m non-zero entries and an error param-
eter g, there is a linear operator SOLVEZEROLAP(A, €)
such that for any vector b, SOLVEZEROLAP(A, €) can
be evaluated in time O(mlog(1/¢)) and:

(1 —¢e)A" < SOLVEZEROLAP(A,e) < AT,



More specifically, [KMP11] runs in time
O(mlogmloglogmlog(1l/e)) in the exact arith-
metic model.

The solver algorithm can be viewed as producing
in O(mlogmloglogmlog(l/e)) time a sequence of
O(mlogmloglogmlog(l/e)) addition and mutiplica-
tion operations without branches. This sequence of
operations gives the procedure SOLVEZEROLAP(A, ¢),
which can also be viewed as an arithmetic circuit of
similar size. In the absence of round-off errors, run-
ning this procedure leads to the bound in the lemma
above. The time to generate SOLVEZEROLAP is domi-
nated by that of finding a good spanning tree [AN12],
and is a lower order term that we can omit.

The exact runtime of the solver depends on
the model of round-off errors. The result estab-
lished in [KMP11] assumes exact arithmetic. Re-
cently, the numerical stabilities of solver procedures
were analyzed in settings close to fixed-point arith-
metic [KOSZ13, LS13, Penl3]. This is not consid-
ered here as this paper also works in the exact arith-
metic model.

2.5 Collapsibility. Collapsibility was first intro-
duced by Whitehead [Whi39]. Later, Cohen [Coh73]
build the concept of simple homotopy equivalence as
a refinement of homotopy equivalence based on the
collapsing and expansion operations.

Let K be a simplicial complex. A k-simplex
o € K is free if it is properly contained in exactly one
simplex 7. In this case, an elementary collapse of K
at o gives the simplicial complex K/ = K —7—0. An
elementary collapse at o is a dim(o)-collapse.

A simplicial complex K collapses to a simplicial
complex L if there is a sequence of simplicial complexes
K =Ky D Ks D -+ D Ky = L such that K;
is obtained from K;_; by a collapse at ¢;. In this
case, we call ¥ = (01,09,...,0) a (K, L) collapsing
sequence and write L = K \( 2. A simplicial complex
is called collapsible if it collapses to a single vertex.
The following theorem of Chillingworth [Chi67, Chi80]
relates collapsible and convex simplicial complexes.

Theorem 2.4 (Collapsing the Three-Ball). If
K is a convex simplicial complex that triangulates
the three-ball, then K is collapsible. Furthermore,
a collapsing sequence of K can be computed in
linear time.

A pair (0,,04), with 1 <p < ¢ <k, is flipped if
dim(o,) < dim(o,). A (K, L) collapsing sequence is
monotone if it has no flipped pair. In this case, we say
that K monotonically collapses to L. The following
lemma allows us to assume that ¥ is monotone.

Lemma 2.5 (Monotone Collapse). If K col-
lapses to L, then K monotonically collapses to L.
Furthermore, a monotone collapsing sequence can be
computed from any collapsing sequence in linear time.

Proof: Let ¥ = (01,09,...,0%) be a (K, L) collaps-
ing sequence. We proceed by induction.

Suppose there is exactly one flipped pair (o, 0511)-
Necessarily, this flipped pair appears consecutively in
Y. Let K' = K \( (01,...,0;_1). Then, we know
that o; is free in K'. Also, 0441 is free in K’ \ 0;.
Since dim(o;) < dim(o;41), we have that o, is also

free in K'. Tt follows that K N\, (o1,...,0i11,0;) =
K N\ (o1,...,04,0i41) = K’ Thus, the sequence
¥ = (01,02,...,0i41,0i,...,0k) is a proper (K, L)-

collapsing sequence.

We now assume that any (K, L)-collapsing se-
quence with less than n flipped pairs, can be modified
to a monotone (K, L)-collapsing sequence by trans-
posing exactly n pairs. If there exists n flipped pairs,
let (0;,0:4+1) be the first flipped pair, and find a new
sequence Y1 as before. Since X has exactly n — 1
flipped pairs, we can obtain a monotone collapsing
from 3 sequence by transposing n — 1 pairs by our
induction hypothesis. O

3 Decomposition via Projection

Recall from (2.4), which gives us that applying the
boundary operator twice is the trivial operator. As
a consequence, the images im(9x+1) and im(9}) are
orthogonal. In the present paper, we assume that
K is homeomorphic to a three-ball; thus, we can
assume im(Jx+1) = null(9;) and by the Fundamental
Theorem of Linear Algebra, im(dy4+1) and im(9})
span the space of k-chains; that is:

Theorem 3.1 (Decomposing the Laplacian).
Any k-chain zy, with 0 < k < 2, of a simplicial
complex with trivial k-dimensional homology (for
example, the triangulation of a three-ball) can be
uniquely decomposed into two parts: xp = xl =+ xt,
where xl € im(0;+1) and xt € im(d7).

Let H£ and Ht be the corresponding projection

operators so that for any k-chain xj, we have xi =

Hl,gcck and xt = Htxk, where 9:2

and xt are given
as in Theorem 3.1. Lemma 2.1 implies Hl =
D1 (OF 1 D1+ OL, y and T1f = O (9,0 )* 0.

In particular, Theorem 3.1 leads to the discrete
Helmholtz decomposition, which decomposes a one-

chain z; into a cobounding chain (potential flow)

zf = H%xl = 07 g



and a bounding cycle (circulation)
o:llr = Hle = ObXo;

see Figure 3 for an example. A further generalization
of this decomposition, where a third null space exists,
is known as the Hodge decomposition [Hod41].

Here, we show that the operators HI and H% can
be approximated in nearly-linear time. Throughout
the rest of the paper, we denote the the approximated
operators up to & accuracy by HI(E) and Hf(a).

Lemma 3.2 (Projections of One-Chains). Give
a graph Laplacian with m edges and any € > 0, there
exist operators 111 (¢) and II}(¢), each computable in
O(mlogmloglogmlogm/e) time such that:

(3.6) (1—ol =< i) =< 1,
(3.7) (1—olf = Ii(e) = I

Proof: Define
IT} (¢) = 0T SOLVEZEROLAP (6,07, )o1

where SOLVEZEROLAP is the solver given in
Lemma 2.3. Hence, also by Lemma 2.3, we have:

(1 —)(0:0F)T < SOLVEZEROLAP(9,07 , ¢)
=< (0101)*.

Applying Lemma 2.2 allows us to compose this
bound with the 9 and &; on the left and right,
respectively, obtaining:

(1—¢) T (8,07) 0, < Tk () < 0T (8,0T)* oy
(1—e) I < Ij(e) < T0f.

Proving (3.7) is more intricate. For a spanning
tree T of the one-skeleton of K, we define a non-
orthogonal projection operator Il that takes a flow
and returns the unique flow using only edges from 7
satisfying the same demands. We note here that both
II+ and H;- can be computed in linear time. Since
I1! returns a cycle (circulation), we have TIII1 = 0,
which implies:

(I = Top) I} (1 = Ti) " =10,

We define the approximate projection operator, based
on this equivalent representation of HI and the fact

that Il = I — II}:

Ml(e) = (1= &) (1 =11y (1 = Tif(e/m?)) (1 = 117)".

Note that a smaller value of € could add a logarithmic
factor to the runtime; however, as we already need to

set € to ﬁ, it only multiplies the total runtime by
a constant. Manipulating the bounds in (3.6) proven
above gives:

(L—e/m)My 2 Thi(e/m?) =10y
ml<7- ﬁ%(s/mQ) <M +e/m?I.

Then applying Lemma 2.2 to all inequalities in this
bound gives:

(I = Top)T (1 —Top)"
(1 =Tir) (1= Tk (e/m®)) (1~ 11p)"
(I =TI (I = Tp)" +&/m*(I = Ty )(I - T7)"

IA

A

Multiplying both sides by (1 — €) and applying the
definition of II}, we obtain:

(1— o)} <10} (e)

< (1= )] +&/m?(I — ) — 11p)7),

Therefore it remains to wupper bound
e/m2(I —1I7)(I — I7)T spectrally by HT. Note II+
maps each off-tree edge to all tree edges generated
by its fundamental cycle, and diagonal entries of I+
are non-zero when the edge is on the tree. Therefore,
each matrix element of I — Il has absolute value at

most one. This allows us to bound the spectral norm
of (I - HT)T(I - HT)Z

(I =T7)"(I —1r) < m’I.

Applying Lemma 2.2 again, with HI as the outer
matrix, gives:

(I — ) (I — )T < 10} (m21) 10}
= mQHT.
The last relation follows from I commuting with HI
and 1] being a projection matrix.

Since I — Il returns a cycle (circulation), we
have:

(I —117) = I — Tt
We multiply each side by its transpose to obtain:
I} (I = T7)(I = Tp) "I} = (I = T7)(1 - Ti7)".

Hence we have (I —II7)(I — I17)T < m2I1}. Putting
everything together gives the desired bounds on HI:

(L-oT] = Ij(e) X (1—e)(I] +¢/m”-m’I})
< (1—e)(1+e)I]
Il

BN



As a result of the above theorem, HI and H%
are approximations of HT and H‘lL, respectively. We
can obtain similar approximating operators for Hg
and Hé by observing a duality in the complex. The
dual graph that we use here is the one-skeleton of the
dual cell structure [Hat01, Ch. 3], initially introduced
by Poincaré.

Duality. Let K be a three-complex homeomor-
phic to a three manifold. We define the dual graph
of K, denoted K*, as follows: for each tetrahedron
t € K, we define a dual vertex t* € K*. There is
an edge between two vertices t7,t5 € K* if the corre-
sponding tetrahedra t; and ¢y share a triangle in K.
We extend this definition to a three manifold with
boundry by adding a special vertex ¢* in K* called
the infinite verter and connecting o* to every t* € K*
that is dual to a tetrahedron containing a boundary
triangle; a boundary triangle is a triangle which is
incident on at most one tetrahedra. The vertices and
edges of K* correspond to the tetrahedra and trian-
gles of K, and o* corresponds to S*\ K. We note
here that this is the same duality that exists between
Delaunay triangulations and Voronoi Diagrams.

The duality defined above and the fact that
K represents a three manifold imply the following
correspondence. Three-chains of K correspond to
zero-chains (vertex potentials) in K*, where zero is
assigned to 0. Two-chains of K correspond to one-
chains (flows) in K*. Thus, we obtain:

Lemma 3.3 (Projection of Two-Chains). Let
K be a triangulation of a three-ball and let Hg
and H% be as defined above. Then, for any € > 0,
the operators ﬁ;(e) and ﬁ%(e) can be computed in
O(mlog mloglogmlogm/e) time such that

(1— o)} < I (e) < T,
(1— )T} < I (e) < T13.

4 Algorithm for Solving the 1-Laplacian

In this section, we sketch our algorithm to solve the
linear system Ajx; = by for a simplicial complex K
of a collapsible three-ball with a known collapsing
sequence.

4.1 Flow Decomposition. Recall from the dis-
cussion following (2.5), that the Laplacian can be
decomposed into two parts: A; = Al + A, We
are interested in solving the following problem: given
a one-chain by, find another one-chain x; such that
Ajx1 = by. The following lemma enables us to decom-
pose the equation into two different equations through

a set of projections; Lemma 3.2 provides efficiently
computable operators for such projections.

Lemma 4.1 (Splitting the Flow). Let K be a tri-
angulation of a three-ball and let by be a one-chain.
Consider the systems of equations Ayxq = by, ATyl =
bl, and Atz = bl. Then, the following holds:

T = yI—l—zf

Proof: Recall that im(AI) and im(A%) orthogonaly
decompose im(A). Thus, we have y],z] € null(A})
and yt, 2t € null(Al), which gives us:

(AT +AD ] + 1)

= (AIyI + AIZ%) + (Afyf + A%Zf)
= Aly +Arn

= bl +b

Ar(y] + =)

The third equality holds since ATy}, ATz}, Atyl and
Atz are trivial. O

4.2 Down Operator. Now that we have divided
the problem into two parts, Aly; = bl and Atz = b,
we begin with Af. As Al is defined as 879, it
is helpful to remind the reader the combinatorial
interpretation of 0;. Given one-chain (a flow) f1, 01 f1
is the residue of the flow at all the vertices. On the
flip side, given zero-chain (vertex potentials) pg, 9% pg
is a potential flow obtained by setting the flow along
each edge to the potential difference between its two
endpoints. This interpretation also plays a crucial role
in the electrical flow based Laplacian solver [KOSZ13].
However, as we will see, both recovering potentials
from a flow, and finding a flow meeting a set of
residuals are fairly simple combinatorial operations.
Solving A%xl = bf is a simpler operation than solving
a graph Laplacian. The following lemma provides a
linear operator (A¥)* to solve Atz; = b}: we highlight
the assumption that b} € im(A?),

Lemma 4.2 (Down Solver). Let K be any graph
and suppose A%xl = le’ has at least one solution.
Then, a linear operator (AY)t exists such that
AY(ADTbY = b, Furthermore, (AY)* and (AT)Tbt
can be computed in linear time.

Proof: Recall A% = 07'0,. We first find zp = > Civi
such that 87 zy = b¥, then we will find 2 that satisfies
8121 = Z0-

Without loss of generality, we assume that K
is connected; otherwise, we can solve the problem
for each connected component separately. Pick an



arbitrary spanning tree 7 of edges in K. The one-
chain zy can be written as the weighted sum of vertices:
Z;L:O c;v;, where ¢; € IR and n is the number of
vertices in K. or any edge (vj,v;) of T, knowing ¢;
implies a unique value for ¢;. Letting vy be a root of
T, we set ¢g = 0. Then, we can uniquely determine
all values ¢; by traversing the edges of T.

By Theorem 3.1, we know zg = zo—zé . Since K is
connected, we have 9y = 17. Consequently, ]szg =0
and sz = c1 for some constant ¢ € IR. Overall,

0=1720 =17 (20— cl) =172 — 171

Thus, we can compute Zé (and zg ) by computing ¢ by
finding the unique ¢ such that 172y — c171 = 0.

It remains to find 27 such that 9121 = zg . This
is equivalent to finding a flow that meets the set of
demands given by zg at each vertex. Again, we pick
a spanning tree 7 of the one-skeleton of K. Knowing
the demand on any leaf of 7 uniquely determines the
value of z; on its only incident edge. Hence, we can
compute z; recursively in linear time.

It is straight forward to put the used operations
together to get the linear operator (A%)*. In fact,
the whole process can be seen as collapsing forward
(and expanding backward) the spanning tree 7. The
process of finding a sequence of Gaussian elimination
steps that corresponds to this collapse is very similar
to the argument presented in Section 5. (]

4.3 Up Operator. Our algorithm for solving
AIyl = bI proceeds similarly. Ideally, we want a
two-chain by such that a solution y; exists satisfying
Ooby = bI and 0y, = by. Having such a bs, we can
solve the equation dy; = by to obtain y;. Given
any two-chain y, such that 0oy = b{, we observe in
Lemma 4.3 that by = yg has the desired properties.

Surprisingly (compared to the lower dimensional
case), solving doys = bl to find any solution 1, is
not straight forward. In Section 5 we describe an
algorithm for the special case where K is collapsible
and the collapsing sequence is known. Lets call the
operator to solve the equation under this condition 8;
(see Theorem 5.2), and recall the projection operator
1’[‘2L of Theorem 5.2. The following lemma describes a
linear operator to solve AIyl = bI.

Lemma 4.3 (Up Solver). Let K be a triangulation
of a three-ball and let (ATt = (9)TILS0F. If
ATz, =b! has at least one solution, then (Al)*b]
is a solution.

Proof: By Theorem 5.2, the two-chain y, = a;bI is
a solution to dxys = bI. Consider the decomposition

Yo = yg + y%’ We have:
bl = Doy = a(y + y3) = ays.

The last equality follows from the facts yg € im(0s)
and 9,03 = 0.

Since y3 € im(d7), there exists a y; such that
0Ty, = yﬁ . Applying Theorem 5.2 again, we obtain
y1 = (03)*ys. Since yj = Ty, and y, = 05 by, the
statement of the lemma follows from Theorem 3.1. [

The first and last steps are solving Osys = bI
and 01y, = y% (equivalently, computing 05 ). Recall
that to solve a similar set of equations in a lower
dimension, we exploited the structure of a spanning
tree; see the proof of Lemma 4.2. Spanning trees
are especially nice because they form a basis of the
column space of the boundary matrix, and, more
importantly, they are collapsible. On the other hand,
it is not necessarily true that a set of independent faces
in higher dimensions is collapsible. Our algorithm,
described in Section 5, assumes that a collapsing
sequence of the simplicial complex is known in order to
compute a cheap sequence of Gaussian eliminations.

Lemma 3.3 and Theorem 5.2 enable us to compute
(within an approximation factor of ¢) the parts of
(AI)"‘ as in Lemma 4.3. Then, the following lemma
is immediate using Lemma 2.2.

Lemma 4.4 (Pseudoinverse of Up Operator).
Let K be a collapsible simplicial complex that
triangulates a three-ball with m simplices and a
known collapsing sequence. For any 0 < € < 1, the op-
erator SOLVEUPLAP((AI)"‘, K, ¢) with the following
property can be computed in 6(m log1/e)) time.

(1—e)(AD)T < SoveUPLaP((AD)F, K, ) < (AD)T.

4.4 Summing Up. Lemma 4.1, Lemma 4.2 and
Lemma 4.3 imply that A7 = IIF(ADTIF +
I (AT *1I] is an operator to solve one-Laplacians.
The following lemma finds application in approximat-
ing this operator:

Lemma 4.5. Let A: Cy — C} be a symmetric linear
operator, Il be an orthogonal projection and II be a
linear operator that satisfies —eIl < II — IT < ell.
Then, we have:

(1 — 3ex™(A))ITAIL < ITAII < (1 + 3ex" (A))ITAIL

where k'J is the condition number of A restricted to
the subspace of the image of II.

Proof: The proof first establishes a matrix norm
bound. This follows from the triangle inequality and



the fact that [|II]|, <1 (as II is a projection matrix).

In particular, we have:
s HAHH2

- HﬁAﬁ — TTAII + TIATI — HAHH
2

< HﬁAﬁ—ﬁAHH +HﬁAH—HAHH

2 2
< || ety = ] 4 5 ] ey
< 3eAmax(4)

The spectral bound property of Il implies that Mis 0
for vectors in the nullspace of II, and always outputs
vectors in the image of II. The same then must hold
for ITAII. This, combined with the matrix norm just
proved, means that

—3eAL (AT < TIAIT — TTATI < 3eA,(A)IT
But
3 A hax (A)TT = BeAL . (A)TIITI
II
Sy
= 3ex!(A)IAIL
This gives

—3ex(A)IAIL < TIAII — ITAII < 3ex" (A)IIAIL
(1 — 3ex" (A))ITAII < TIAIIL < (1 + 3ex" (A))ITAIL
as desired. Il

Now, we are ready to state and prove the main
theorem of this section.

Theorem 4.6 (Collapsible Complex Solver).

Let K be a collapsible simplicial complex that
triangulates a three-ball with m simplices and a
known collapsing sequence. For any 0 < € < 1, the
linear operator SOLVEONELAP(A1, K,e) and the
vector SOLVEONELAP(Ay, K, €) - by for any one-chain
by can be computed in O(mlogmloglogmlogk/e))
time, where k is the maximum of the condition
numbers of the up and down Laplacians, such that

(1 —e)AT < SOLVEONELAP(Aq, K, ) < Af

Proof: In this proof we write the projection operators
of the form II¥(¢') more concisely as II} by dropping
the parameter ¢’.

Consider the operator

SOLVEONELAP(A4, K, ¢) =
(1 —¢/2)TIy(e/6rk) (A) T} (e /6K) +

The error between this operator and the exact inverse
can be measured separately for each summand. For
the first one Lemma 3.2 and Lemma 4.5 imply:

(1 —e/2)T (AD) VI =TIy (AY) I} < (1 + ¢/2)TTH (A7) Ty
(1 — )T (A) Iy < (1 —e/2)Ty(AY) I} < Ty (A}) T
The up Laplacian can be bounded similarly,
with additional error from the difference between
SoLvEUPLAP(AT, ) and (AT)*.
(1 —e/3)T(AD*TT]
< IISoveUPLAP(AT, e/3)II]
< mja)*]

(1 —2¢/3)I] (A]) 1]

< IIlSowveEUPLAP(AD, &/3)II]
< (L+e/3)M(AD)TI]
(1 - eI} (A])* I
< (1 —¢/3)I}SovEUPLAP(A], ¢/3)IT]
=R N
The first chain of inequalities follows from

Lemma 4.4 and the second from Lemma 4.5. |

In general, finding a collapsing sequence for a
simplicial complex efficiently is difficult. Recently,
Tancer [Tanl2] has shown that even testing whether
a simplicial complex of dimension three is collapsible
is NP-hard. It is not known whether the collapsibility
problem is tractable for special cases of embeddable
simplicial complexes in IR?, or even for topological
three-balls. However, Theorem 2.4 provides a linear
time algorithm to compute a collapsing sequence of a
convex simplicial complex, which in turn implies the
final result of this section.

Corollary 4.7 (1-Laplacian Pseudoinverse).
Let K be a convex simplicial complex that triangu-
lates a three-ball with m simplices. For any 0 < € < 1,
the linear operator SOLVEONELAP(Aq, K, ¢) (and the
vector SOLVEONELAP(A1, K, ¢) - by for any one-chain
b1) can be computed in O(mlogmloglogme/e) time,
where k Is the maximum of the condition numbers of
the up and down Laplacians, such that

(1 —¢)A} < SOLVEONELAP(A, K, &) < AT

5 Collapsibility and Gaussian Elimination

In this section, we solve the linear system doxo = by for
a collapsible simplicial complex K given a collapsing
sequence X of K. The key insight is to view the
Gaussian elimination operators as simplicial collapses

(1 —¢/3)I} (¢/9k)SOVEUPLAP(AD, £ /3)II] (¢ /9k)in K.



By Lemma 2.5, we can assume without loss
of generality that ¥ is monotone. Therefore, X
may be expressed as Y - 31 - Xg, where X; is the
ordered sequence of i-collapses. We draw a parallel
between the collapses of the leaf nodes in the proof
of Lemma 4.2 and collapsing the triangles incident to
exactly one tetrahedron. In this light, the removal
of such triangles does not decrease the rank of Js,
and therefore does not affect the solution space.
In terms of linear algebra, collapsing triangles is
equivalent to setting the corresponding coordinate
of zo to zero. The remaining triangles in ¥, are
removed with edge collapses. Given a one-chain,
each edge collapse uniquely determines the value
associated the triangle that it collapses. Furthermore,
collapsing edges is equivalent to Gaussian eliminations
of rows with exactly one nonzero member in Jy. This
means that the triangles and edges in the collapsing
order describes the operations needed to solve the
linear system Osxo = b;. The collapsing order
allows us to compute the inverse of d via an upper-
triangular matrix.

We clarify some notations before proceeding into
the formal statements. For a subsequence ¥/ of X,
we denote by F(X') to be the ordered set of edges
that are collapsed in Y'; note that these edges may
collpase as a result of either vertex-edge collapses or
edge-triangle collapses. Similarly, we denote by V(X')
and F(X') the ordered sets of vertices and triangles,
respectively, that are collapsed in X'.

Lemma 5.1 (Collapsing Sequence).

Let ¥ =3%5-%;-%y be a monotone collapsing
sequence for K. Let ¥ denote the reverse of the
sequence Y. The submatrix of Js induced by the rows
E(X1) and the columns F(X;) is upper triangular.

Proof: The effect of elementary collapses on E(X;)
can be viewed as removing the rows in a bottom up
order in the submatrix of E(3;) and F(3;), while
the fact that each collapse is elementary guarantees
that when a row is removed, no triangles incident to
it remains. Thus, all the non-zero entries in each row
are to the right of the diagonal, as the columns are
arranged in order of the triangles removed. (]

So, we write Oy as follows:

F(3%1) F(¥2)
E(%)
(5.8) L
EC)| o 4
0 0 +1

This upper-triangular permutation allows us to
obtain a solution to 0;x2 = by using back substitution
after setting some of the coordinates of z2 to zero.

Theorem 5.2 (Recovering 83 ). Let K be a col-
lapsible simplicial complex of size m and Osxo = by
(respectively, 03 x1 = by) be a system of equations
with at least one solution. Given a collapsing sequence
of K, we can find, in O(m) time, a linear operator
05 (respectively, 95") such that 0205by = by (re-
spectively, 03 0F Ty, = by ). Furthermore, the solu-
tion 05 by (respectively, Oy by) can be evaluated in
O(m) time.

Proof: Lemma 2.5 implies that a monotone collaps-
ing sequence Y of K can be computed in linear
time. Lemma 5.1 allows us to rearrange the rows and
columns of 0, as in Equation 5.8 so that the edges and
triangles involved in ¥; are in upper triangular form.

The elementary collapses involving columns cor-
responding to F(35) does not decrease the rank of 9y,
so the submatrix induced by the columns in F(X;)
still has the same rank. Therefore it suffices to invert
the submatrix of d; involving E(3;) and F(X;). Let

this invertible matrix be Q, then 5 can be written as:

E(Zy) E(X1)

F(3) 0 Q!
FE)\ 0 0
Although Q! can be dense even when @ is sparse,
evaluating @~ 'b be done by back substitution in
reverse order of rows in linear time; see e.g., [Str93]
for more details. Also, Q7 is a lower triangular matrix,
so Q@ Tb can also be evaluated in linear time.

Thus, any 95 by satisfying b; = 927, is a solution

for Ooxo = by. In other words, for any vector Ta,
we have:

o =

D2(0b1) =by
O 8;“ O T1 =097

As T; can be any vector, 828; O and O, are the same
matrix. Similarly, it can be shown that 03 957 93 and
OF are identical. O

6 Discussion

In this paper, we have presented a nearly linear
time algorithm for computing the 1-Laplacian arising
from a particular class of two-complexes with trivial
homology. This is the first paper attempting to solve
the 1-Laplacian optimally.

Weighted Laplacian. There is a natural gener-
alization from the Combinatorial (1-Laplacian) to the



weighted Combinatorial Laplacian. Let K be a two-
complex and 0; and 9 the corresponding boundary
matrices. Given weight matrix Wy and Wy (on faces
and edges, respectively), the weighted Combinatorial
Laplacian is the following operator:

All/v = 82W232T + 3§FW081

The techniques presented in this paper can be gener-
alized to incorporate unit diagonal weights. However,
the case of a general weight matrix is an open question.
Perhaps handling more general weight matrices will
look like the methods used in [BHVO0S].

Extending Input. The input complexes that
we handle in this paper are convex three-complexes.
A natural next step is to find fast solvers for Lapla-
cians arising from more general complexes. As we
mentioned in the introduction, collapsible complexes
seem to be the analog of the tree that we used in
graph Laplacians. An interesting open question sur-
rounds the idea of generalizing the notion of tree to
higher dimensions. In other words, can we define a
class of complexes, which we call frames, so that we
can always find a subcomplex which is a frame, find
the solution on the frame, then extend the result to
the entire complex?
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A An Example

In Figure 5, we step through the construction of the
graph Laplacian matrix. Consider the graph G given
in Figure 5a. The boundary matrix for G, denoted 0y
and given in Figure 5b, is the matrix corresponding
to a linear operator that maps one-chains to zero-
chains. The corresponding graph Laplacian Ag, given
in Figure 5c is given by the formula: Ay = 9p97,
mapping zero-chains to zero-chains.



(a) A graph from which a boundary
matrix dp and Laplacian Ay can be
defined. Notice that this graph has
a cycle: e; + e2 + es.
O | eo e1 ex e3 e
v | —1 0 0 0 0
V1 1 -1 0 0 0

vg | 0O 1 1 0 -1
vs | O o -1 1 0
vg | O 0 0o -1 1

(b) The corresponding boundary
matrix which, as an operator, takes
one-chains and maps them to zero-
chains.

Ao Vo (%1 (%) U3 V4
v| 1 -1 0 0 0
nl -1 2 -1 0 0
() 0 -1 3 -1 -1
vs| 0 0 -1 2 -1
vg | O o -1 -1 2

(c) The corresponding graph Lapla-
cian matrix which, as an operator,
takes zero-chains and maps them to
zero-chains.

Figure 5: Given the graph on the left, we give
both the corresponding boundary matrix ¢y and the
corresponding graph Laplacian Ag.
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