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Abstract

We study the performance of linear solvers for graph
Laplacians based on the combinatorial cycle adjustment
methodology proposed by [Kelner-Orecchia-Sidford-Zhu
STOC-13]. The approach finds a dual flow solution to
this linear system through a sequence of flow adjust-
ments along cycles. We study both data structure ori-
ented and recursive methods for handling these adjust-
ments.

The primary di�culty faced by this approach, up-
dating and querying long cycles, motivated us to study
an important special case: instances where all cycles are
formed by fundamental cycles on a length n path. Our
methods demonstrate significant speedups over previous
implementations, and are competitive with standard nu-
merical routines.

1 Introduction

Much progress has been made recently toward the
development of graph Laplacian linear solvers that
run in linear times polylogarithmic time [16, 17, 18,
21, 24, 9, 15]. These methods use a combination
of combinatorial, randomized, and numerical methods
to obtain algorithms that provably solve any graph
Laplacian linear system in time faster than sorting to
constant precision.

Linear solvers for graph Laplacians have a wide
range of applications. They can be used to solve prob-
lems such as image denoising, finding maximum flows
in a graph, and more generally solving linear pro-
grams with an underlying graph, such as, minimum
cost maximum flow and graph theoretic regression prob-
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Figure 1: Performance profile of cycle-toggle time. The
relative performance ratio of a method is its cycle-toggle time
/ best cycle toggle time for a single problem. This plot shows
the fraction of problems that are within a distance from this
relative performance ratio. The faster a method converges
to 1 on this plot, the better its performance relative to the
others.

lems [5, 30, 8, 11, 20, 23, 22, 7, 19]. Many of these appli-
cations stem from the following connection through op-
timization: solving linear systems is equivalent to mini-
mizing `

2

norms over a suitable set. Many applications
can in turn be viewed as solving a problem based on
a di↵erent norm, such as `

1

or `1. The gap between
these norms can be addressed through iterative schemes,
leading to algorithms that repeatedly call linear system
solvers.

Laplacian linear solvers can be divided into pri-
mal solvers, which solve for a set of vertex potentials,
and dual solvers, which solve for a set of edge flows
that minimize energy. The theoretically fastest known
solvers are primal solvers which use recursive precondi-
tioned Chebyshev iterations [9]. On the other hand, the
near-linear time algorithm with the simplest description
works in the dual space [18]. We believe that the fastest
solver will be one that combines both a potential and
flow based approach. The goal of this paper is to empir-
ically better understand flow based methods in order to
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facilitate their integration into primal-dual algorithmic
schemes.

Our main contribution is an experimental investiga-
tion of di↵erent cycle-toggling implementations and an
examination of the resulting performance implications.
To that end we introduce a class of synthetic, weighted
graphs that are both simple enough to reason about the-
oretically, and rich enough to yield interesting behavior
for cycle-toggling implementations. One of the imple-
mentations we use is a novel divide-and-conquer tech-
nique which we describe. We end with a comparison of
cycle-toggling implementations to conjugate gradient.

2 Background

2.1 Definitions Symmetric diagonally dominant
(SDD) matrices and M matrices can be reduced to
Laplacian matrices asymptotically quickly, so the
fastest SDD solvers rely on Laplacian solvers. Lapla-
cians are equivalent to graphs, which we define as
G = (V,E,w) where V is a vertex set, E a set of edges,
and w a set of edge weights. The Laplacian is given by

Li,j =

(
deg(i) if i = j

�w ij otherwise
,

where deg(i) is the weighted degree, or sum of incident
edge weights on vertex i. The problem of interest is to
solve Lx = b for x given b.

There is a useful electrical network interpretation
of

x

T
Lx =

X

uv2E

wuv (xu � x v)
2

where xu � x v can be viewed as voltages [13], and
wuv represents the inverse of resistance in terms of
energy dissipation. This definition of resistances gives
a corresponding electrical flow interpretation, which
forms the basis of the Kelner et al.s algorithm [18],
which we will call KOSZ. In this flow interpretation
the problem translates to finding a flow f that meets
demands given by b, and minimizes

P
e ref

2

e.

2.2 Existing Methods The underlying algebraic
operations of theoretically fast graph Laplacian solvers
can be viewed as either directly manipulating the po-
tential vectors, or the dual flows. To date, empirical
studies of these solvers have focused on the dual flow
based algorithms, leading to mixed results [3, 14, 4],
most of which are not directly competitive with numer-
ical methods such as conjugate gradient (CG) [26] or
multigrid [6], and instead bound iteration count. In
this paper, we study these dual algorithms with ad-
ditional insights obtained during the study of vector

based primal algorithms. We show that the dual ad-
justment stages can be unraveled in ways similar to re-
cursive steps in vector solvers. This allows us to both
improve the dual adjustment routine, as well as having
it interact with classical iterative methods such as con-
jugate gradient. Our main experimental results are on
improving the performance of both data structural and
recursive approaches, and comparing their performance
to conjugate gradient.

Crucial to the performance of these dual flow solvers
is the cycle adjustment process: here most of the cy-
cles are long, thus cost-prohibitive to adjust in nearly-
linear time. To obtain nearly-linear performance, these
updates are restricted to fundamental cycles of a tree.
This restriction allows updates to be processed using
tree data structures. These structures are based on
“virtual tree” representations of trees that allow each
path to be broken down into O(log n) subtrees. Updat-
ing cycles is then done by accessing and modifying the
corresponding labels. Handling these updates e�ciently
has proven to be directly related to the performance of
implementations of this algorithm [18].

2.3 KOSZ overview The KOSZ algorithm [18] ran-
domly selects cycles and adjusts the flow along a cycle
to bring it to the minimum energy state, while main-
taining a feasible flow. These cycles are formed by first
picking a spanning tree T . Then each o↵-tree edge forms
a cycle, known as a fundamental cycle with respect to
T . Collectively these cycles form a fundamental cycle
basis which spans the cycle space of the graph.

Given a cycle of length k with flows f

1

. . . f k

oriented in the forward direction, our goal is to find
a change in flow � that minimizes the updated flow
energy

X

i

r i (f i +�)2

=

 
X

i

r i

!
�2 + 2

 
X

i

r if i

!
�i +

X

i

r if
2

i .

This is minimized by setting

� = �
P

i r if iP
i r i

.

The choice of cycles to update is dictated by the
stretch of the o↵-tree edges. Conceptually, the stretch
of an edge is the length of the detour that must be
traversed in the tree if the edge is removed. This
removal “stretches” the edge across the new path. Here
length is measured in terms of resistances, or inverse
edge weight 1

we
. For an edge e, let the (unique) simple
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path between its end points in tree be PT (e), then

str(e) = we

X

e02PT (e)

1

we0
.

The main result of [18] is:

Theorem 2.1. Given a tree with total stretch S, re-
peatedly sampling the edges randomly with probability
proportional to 1 + str(e) and bringing the correspond-
ing cycle to its minimum energy state gives an 1 + ✏-
approximate answer in O((m+ S) log(1/✏)) iterations.

3 Implementing Cycle Toggling

Cycle-toggling methods require many cycle updates
for energy minimization, necessitating quick update
operations. We need to support the following operations
on a tree T , where each edge e is associated with a fixed
resistance re and a flow f e:

1. Query: Compute sums of re and ref e along a path
in T .

2. Update: Increment all the flows on a path in T by
�.

Although these updates are not adaptive, the re-
sult of each update does depend on all previous updates
that interact with the path. This creates fundamental
restrictions on cycle-toggling speed. This is especially
true when considering any possible parallelism of up-
dating multiple cycles simultaneously.

In the rest of this section we consider two di↵erent
schemes for achieving fast cycle updates. The first uses
data structures similar to the ones used by the KOSZ
algorithm to update each cycles in O(log(n)) time. The
second is a divide-and-conquer approach we introduce,
which contracts the path based on preselected cycle
updates.

3.1 Reduction to Balanced BSTs We hope to
provide the reader with a brief overview of our data
structure approach along with the approach used by
KOSZ [18]. The KOSZ data structures are based on
top-down partitions of trees. Our implementations are
based on a variant of this that uses binary search trees as
building blocks. To help explain this, we first consider
the easier case in which T is just a path, where we
can solve the problem by building a static balanced
binary search tree (BST) [10]. Any subtree in the BST
corresponds to an interval in the path, which can be
decomposed into a disjoint union of at most 2 log n
subtrees and nodes in the BST. To support our query
and update operations, we add two pieces of information
at every node v:

1. The sum,
P

i rifi where i 2 the subtree containing
v

2. A lazy tag t, denoting the pending changes of flow
in this subtree, caused by updates to parents.

The BST can answer the interval queries by adding up
the sum fields of the corresponding subtrees. Note that
this requires the lazy tag fields of all ancestors of the
nodes added to be 0. This can be handled by ‘pushing
down’ such fields as we access the BST. The updates
involve modifying the lazy tag and sum fields of the
subtrees correspondingly. This gives us a O(log n) per
operation algorithm for the case where T is a path.

1 10
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(a) Heavy path re-rooted at
separator vertex

1
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3

22

2
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(b) Virtual tree where heavy
path is represented by the
BST that stores it

Figure 2: One step of a heavy-light decomposition. Triangles
are subtrees labeled with size.

A classic way to generalize the path case to a tree
is to use a heavy-light decomposition (HLD) [27]. Here,
one first arbitrarily roots the tree. Then for every vertex
u, we denote v as the child of u whose subtree has the
largest size (i.e. contains most vertices). We mark every
edge (u, v) as heavy and say that all edges not marked
heavy are light. An unextendable path of heavy edges
is called a heavy chain. This decomposes the tree into
heavy chains and light edges.

The key fact about this decomposition is that
for any vertex v, its path to the root intersects at
most O(log n) heavy chains and O(log n) light edges.
Therefore, to support query and update operations on
a tree, it su�ces to handle the light edges and support
these operations on heavy paths. For the latter, this
is exactly the special path case and we can use BSTs
described above. This leads to a theoretical time bound
O(log2 n) per operation, but a quite good running time
experimentally.

This method is connected to the data structures
used in KOSZ via virtual trees. Such a tree contains
all the BST edges for heavy chains along with light
edges. An example of creating a virtual tree from a HLD
is shown in Figure 2. We can further optimize cycle
updates by reducing the virtual tree height. A path
between u and v in the original tree can be decomposed
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into the disjoint union of left-subtrees of nodes in the
path between u and v in the virtual tree. In HLD, this
virtual tree has height O(log2 n) (since each BST has
height O(log n) and there are at most O(log n) heavy
chains encountered in any path), so the time bound is
O(log2 n).

A better virtual tree can be constructed in a recur-
sive manner. Consider the heavy chain starting from
the root of T . Using the properties of heavy chains, one
can prove that there exists a node v in the heavy chain,
whose removal splits T into subtrees which have size at
most half of the original tree size. We use v as the root
of the BST for this heavy chain, and construct recur-
sively. The virtual tree satisfies the property that any
child has at most half the size of its parent, so it has
height at most log n. This gives us a O(log n) per oper-
ation algorithm. Compared to the recursive-separator
based routine from [18], this scheme fixes the heavy path
in addition to the root of the virtual tree. While this
only changes the constants in the analysis, in terms of
implementation it allows us to directly use the binary
tree routine for paths mentioned above.

3.2 Recursive Divide-and-Conquer The other
main approach that we explore is a recursive divide-and-
conquer scheme. The KOSZ solver treats cycle updates
as an online process, a cycle is sampled, then updated,
before another cycle is sampled. We consider the poten-
tial of an o✏ine approach where we preselect N cycles,
and use knowledge of this set to speed up the update of
the set as a whole. This method recursively divides the
N cycles in half until the subsets are each of size less
than n. The cycles in the last level of the recursion are
then updated in their preselected order.

The speedup of this approach lies in the fact that
we can reduce the problem to only the part of the
graph involved in our preselected updates. We can
further reduce the size of the graph by path contraction,
condensing two edges if they are only updated when the
other is updated. An example of this reduction and
contraction is shown in Figure 3. This process results
in several smaller graphs, where the cycles are updated,
before pushing the cycle update information back up the
recursive subgraph hierarchy. As this process resembles
the recursive subgraph hierarchy of multigrid methods,
we borrow the terms restriction and prolongation to
describe the transfer of flow information up and down
the hierarchy. This process is more formally captured
in the following lemma.

Lemma 3.1. Given a tree on n vertices, and N cycle
updates, we can form a tree on 3N vertices, perform the
corresponding cycle updates on them, and transfer the
state back to the original graph. Furthermore, both the

1

2
3

4 5

(a) Original Graph

1

4

(b) Subgraph 1,4

2
3

5

(c) Subgraph 2,3,5

1

4

(d) Contraction of(b)

2
3

5

(e) Contraction of(c)

Figure 3: Illustration of graph reduction and contraction in
divide-and-conquer. 5 cycles are preselected in the original
graph(a) and divided into two groups, cycles (1,4) and
(2,3,5). These cycles induce subgraphs (b,c) which only
include edges and vertices of the relevant cycles. These
subgraphs are then path contracted (d,e) to further reduce
size.

reduction and prolongation steps take O(n) time.

This procedure is identical to the greedy elimina-
tion, or partial Cholesky factorization steps from the
ultra-sparsification routines [29]. Recursively dividing
the cycle set yields a recurrence of the form:

T (N) = O(N) + 2T (N/2),

which solves to T (N) = O(N logN). If we set the size
of our preselected cycle set to O(n), then updating the
entire set takes O(n log n) work, leading to a cost of
O(log n) per update.

Unfortunately, the divide-and-conquer scheme does
not parallelize naturally: the second recursive call still
depends on the outcome of the first one. Furthermore,
the bottleneck of this routine’s performance is the re-
striction and prolongation steps, which unlike multigrid
can not be reused when we resample another set. A
large part of the expense is that vertices and edges must
be relabeled as the graph is reduced. Doing this in ran-
dom order leads to random access of vertex and edge
labels. We try to optimize this by either compressing
the memory of the graph storage, or by reordering the
updates within each batch. In the case that the tree is
just a path, much of the vertex and edge labeling can
be done implicitly, reducing the overhead.
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4 Heavy Path Graphs

Here we introduce a class of model problems that we
will use to test and analyze di↵erent cycle-toggling ap-
proaches. These graphs are constructed by adding edges
between vertices on a path graph. Edge resistances
are selected so that the low-stretch spanning tree of
the resulting graph is always the underlying path. As
a consequence the edges on the path have larger edge
weights than the o↵-path edges, so we refer to this class
of graphs as heavy path graphs. An example of such a
graph is shown in Figure 4.

Figure 4: An example of a heavy path graph. The solid path
edges are the low-stretch spanning tree of the graph.

Our interest in these problems does not come from
any real world application. Instead we believe these
are natural models to consider when studying KOSZ
and other cycle-toggling algorithms. We believe that
this model can be tuned to have various stretch proper-
ties along with spectral and graph separator properties,
though we do not explore that in this paper. Further-
more they allow us to explore very fundamental ques-
tions about data structures and cycle-toggling imple-
mentations.

This model simplifies many of the implementation
issues associated with dynamic trees, as the paths
are easier to handle than more general tree layouts.
Specifically, we can use a static, perfectly balanced
binary tree for the path. This likely has the least
data structure overhead as the optimum separator of
an interval is implicitly the middle. Furthermore, this
allows us to store the tree in heap order, which means
the tree paths can be mapped to a subinterval using
bit operations, and the downward/upward propagations
can be performed iteratively.

4.1 Example Models There are many possible sub-
classes that belong to the heavy path graph model. We
introduce several subclasses here for experimentation.

(1) Fixed Cycle Length-1k: These graphs are com-
posed of a tree path with random resistances be-
tween 1 and 10,000, combined with o↵-tree edges
between every pair (i, i + 1000), e.g. an edge be-
tween vertices 1 and 1000, between vertices 2 and
1001, and so on.

(2) Fixed Cycle Length-2: These graphs are com-
posed of a tree path with random resistances be-
tween 1 and 10,000, combined with o↵-tree edges
between every pair (i, i+ 2), e.g. an edge between

vertices 1 and 3, between vertices 2 and 4, and so
on.

(3) Random Cycle Length: These graphs are com-
posed of a tree path with random resistances be-
tween 1 and 1000, combined with n randomly se-
lected o↵-tree edges, where n is the number of ver-
tices.

(4) 2D Mesh: These graphs embed a tree path in
a 2D mesh. The tree path resistances are chosen
randomly between 1 and 1000.

(5) 3D Mesh, Uniform Stretch: These graphs are
similar to (4) but with a 3D mesh.

We then consider two di↵erent ways of setting
resistances on the o↵-tree edges on all of the models
above.

1. Uniform Stretch Resistances of o↵-tree edges are
chosen so that stretch is 1 for every cycle.

2. Exponential Stretch Resistances of o↵-tree edges
are chosen so that cycles have stretch sampled from
an exponential distribution.

5 Experiments

5.1 Experimental Design We now describe empir-
ical evaluations of the cycle-toggling implementations
from Section 3 on the class of graphs described in Sec-
tion 4. As we only experiment on these path models, we
can use cycle-toggling methods that will only work on
a path, but we also employ their more general versions
that will work on any graph. The four cycle-toggling
implementations are as follows:

1. BST-based data structure for general graphs
2. Path-only BST decomposition
3. Recursive divide-and-conquer for general graphs
4. Path-only recursive divide-and-conquer

Additionally we implement a preconditioned con-
jugate gradient with diagonal scaling to compare
against the cycle-toggling methods. We imple-
mented all of these in C++ and also have a
Python/Cython implementation of the general recursive
method. All algorithm implementations, graph gener-
ators, and test results for this paper can be found at
https://github.com/sxu/cycleToggling. We also experi-
mented with Hoske et al.’s [14] implementation of cycle-
toggling.

We use all of the generators described in Section 4.1
to create di↵erent heavy path graphs with a varying
total stretch. We use vertex sizes of 5⇥104, 105, 5⇥105,
and 106. For the fixed cycle length generators, we set
hop = 1000, and for the random cycle length generators,
we set the number of o↵-tree edges to 2n. To get an idea
for the various stretch properties of these graphs, we list
the total stretch for size 106 in Table 1.
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Uniform Exponential
Fixed Length-1k 1.01e6 1.12e6
Fixed Length-2 2.00e6 1.04e7
Random Length 2.00e6 1.30e7
2D Mesh 2.00e6 1.08e7
3D Mesh 3.82e6 2.27e7

Table 1: Total stretch for all graph models of size 106.
For each of the model problems in 4.1, this table shows
the total stretch of cycles formed by adding edges to the
underlying path. The models were generated with weights
to create cycles with uniform stretch (all cycles with stretch
1), and exponential stretch(cycles with stretch chosen from
an exponential distribution).

We also generate right hand side vectors b in two
di↵erent ways to obtain both local and global behaviors.

1. Random: Randomly select x and form b = Lx ,
2. (-1,1): Pick b to route 1 unit of electrical flow from

the left endpoint of the path to the right endpoint.

Experiments were performed on Mirasol, a shared
memory machine at Georgia Tech, with 80 Intel(R)
Xeon(R) E7-8870 processors at 2.40GHz. Problems
were solved to a residual tolerance of 10�5.

5.2 Experimental Results We first examine the
asymptotic behavior of the cycle-toggling methods on
all the test graphs. Figure 5 shows the number of cycles
required for convergence as a function of total stretch.
This figure only involves solves using the 0-1 right hand
side as this was always a more di�cult case.

��3 ��4 ��� ��� ��� ���

Total Stretch
��3

��4

���

���

���

���

C
yc

le
s

lo
g
��

1

Figure 5: KOSZ asymptotic dependence on tree stretch. The
number of toggles required by KOSZ is shown as a function
of tree stretch. The reasonable slope indicates a lack of large
hidden constants in KOSZ complexity.

We omit results from the Hoske et al. implemen-
tation because we found its performance to be slower
by a factor of 50 than our cycle-toggling implementa-
tions. Their initialization costs are much higher than
solve costs, making it prohibitively expensive to run on

all of the test graphs in our set.
To visualize the comparison of cycle-toggling imple-

mentations on all the di↵erent test graphs, we utilize a
performance profile plot shown in Figure 1. A perfor-
mance profile [12] calculates, for some performance met-
ric, the relative performance ratio between each solver
and the best solver on every problem instance. In our
case the metric of interest is the average cycle-toggle
time, so for each method and every graph, the relative
performance ratio is the method’s average cycle-toggle
time divided by the lowest average cycle-toggle time
over all methods. Then to capture how a method fares
across the entire problem set, the performance profile
shows the fraction of test problems (on the y-axis) that
are within a distance (on the x-axis) from the relative
performance ratio. This plot contains all the di↵erent
model problems at every problem size tested.

Weak scaling experiments, measuring cycle-toggle
performance as graph size increases, are useful for pre-
dicting performance on larger problems. The scaling
behavior was relatively similar across the model prob-
lems so we only show one example in Figure 6 for the
3D Unweighted Mesh with exponential stretch.

��4 ��� ���

Path Length

����

����

����

Av
er

ag
e

To
gg

le
Ti

m
e(

s)

Path-only
BST Decomposition
BST-Based

Path-only
Recursive
Recursive

Figure 6: Weak scaling of cycle-toggle performance of all
methods on unweighted 3D mesh model problems with
exponential stretch. Average cycle-toggle time is shown as
a function of problem size where an upward slope indicates
decreased performance with larger problem size.

We examine how much time the recursive method
spends restricting and prolonging flow in the recur-
sive hierarchy, and how much time is spent doing
cycle-toggles in Figure 7. Results are shown for the
FixedLength-1k model with a slightly wider range of
problem size than the other experiments. The solve
time in this plot includes the sum of the other oper-
ation timings, along with memory allocation. We did
this profiling with our Python/Cython implementation,
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but we believe the C++ performance is comparable.
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Figure 7: Weak scaling of cycle-toggle performance for the
recursive solver on FixedLength-1k model problems. Aver-
age cycle-toggle time is shown along with its most expensive
sub-components: restriction, solve, and prolongation. Up-
ward slopes indicate decreasing performance with problem
size.

Figure 8 shows BST-based cycle-toggle timing re-
sults relative to PCG results. Points below the line in-
dicate cycle-toggling was faster, while points above the
line are slower. This plot only includes size 106 problems
using the 0-1 right hand side. A random right hand side
plot is omitted for space as these problems were much
easier for both solvers, though slightly relatively easier
for PCG.
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Figure 8: Comparison of BST-based data structure cycle-
toggling to PCG by graph type. Points under the line
indicate cycle-toggling method outperformed PCG.

5.3 Experimental Analysis In Figure 5 the cycle-
toggling methods’ asymptotic dependence on tree
stretch is near constant with a slope close to 1. Note
that this plot would be linear even without the log axes.
Concerning KOSZ practicality, it is highly important to
see that there is not a large slope, which would indicate
a large hidden constant in the KOSZ cost complexity.
This plot tells us that with a combination of low-stretch
trees and fast cycle update methods, dual space algo-
rithms have potential. This figure also helps illustrate
the range of problems we are using for these experi-
ments. The stretch and resulting cycle cost both vary
between four to five orders of magnitude.

The performance profile in Figure 1 indicates that
the data structure based cycle-toggling methods per-
formed the best using our implementations. For the
path-only BST decomposition, the fraction of problems
is already at 1 for a relative performance distance of
1, meaning that this was always the fastest. The path-
only recursive method was slower, but still typically per-
formed better than the general implementations, being
half as fast as the path-only BST method on 60% of the
problems. Comparing the two general implementations,
the tree data structure is within a factor 4 of the best
on 80% of the problems, whereas the recursive method
is only within a factor of 4 on 40% of the problems.
A distance of 10 indicates performance within the same
order of magnitude, which the general recursive method
achieved on 80% of the problems, indicating that these
methods are competitive with one another.

The weak scaling experiments shown in Figure 6 do
indicate a decrease in cycle-toggle performance as graph
size increases. However, this plot is fairly optimistic, the
largest performance decrease is about 2.5⇥ as the graph
size increases two orders of magnitude. The non steady
plot for the general recursive solver probably indicates
that the batch sizes were not scaled appropriately.
Again, this plot is only for one of the graph models,
but most of them looked very similar to this.

Figure 7 helps identify the performance bottlenecks
of the recursive method. The actual time spent updat-
ing cycles is less than the restriction and prolongation
time. The restriction time is by far the most expen-
sive, as it also includes time for relabeling edges and
vertices. The scaling of this plot shows a stable up-
date cost, with increasing restriction and prolongation
costs. This method was designed to keep the update
costs stable while increasing problem size, which seems
to be case. Unfortunately the restriction and prolonga-
tion overhead costs are large and growing with problem
size. Still, these operations are not highly optimized,
and we wonder if we can borrow techniques from the
multigrid community to speed them up.
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The PCG experiments in Figure 8 indicate that
cycle-toggling can outperform PCG on these heavy
path models, using the 0-1 right hand side. This
class of problems had a wider performance gap for
PCG than for the cycle-toggling routines, by about an
order of magnitude. Furthermore, the graph property
that causes di�culty for the solvers is di↵erent in
each case; cycle-toggling has trouble on the graphs
with exponential stretch, while PCG has di�culty with
the fixed cycle length problems (FixedLength-2 with
uniform stretch even failed). These results suggest that
heavy path graphs are a good direction to explore while
searching for problems which could benefit from cycle-
toggling methods.

6 Discussion and Conclusion

We studied two approaches for implementing cycle-
toggling based solvers, data structures and recursive
divide-and-conquer. Using the heavy path model, we
experimented on problems that are are conceptually
simple, but provide a range of solve behavior through
varying graph structure and stretch. The recursive
cycle-toggling was not as fast as the data structure
approach, but was still competitive, being in the same
order of magnitude on most problems. method to
general graphs, exhibited competitive behaviors. Also
both methods scaled reasonably with problem size.

While these experiments are a good start, there
are several directions we hope to continue this work.
The recursive update approach is outperformed by the
BST-based data structure approach in timing exper-
iments. We hope to complement these results with
floating point operation measurements. We don’t claim
to have optimized the graph contraction, flow restric-
tion/prolongation, or cycle updates. Measuring the
number of operations the recursive solver spends on
these would help indicate fundamental performance.

The heavy path graphs are a great model problem
for seeing the e↵ect path resistances have on solver be-
havior. They also allow us set aside the issue of finding
a low stretch spanning tree to focus instead on the cost
per cycle update. We plan to continue modifying these
path resistances and initial vertex demands to find in-
teresting test cases. However, for these methods to be
useful in practice we must extend them to more general
classes of graphs.

Dual cycle-toggling Laplacian solvers have until now
been considered mainly in the realm of theory. Our
comparisons of these methods to PCG indicate that
there are problems for which the dual methods can be
useful. In the future, we plan to combine primal and
dual methods, trying to get the best of both worlds.
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tion software with performance profiles, Mathematical
Programming, 91(2) (2002), pp. 201–213.

[13] P. G. Doyle and J. L. Snell, Random walks and electric
networks, Mathematical Association of America, 1984.

[14] D. Hoske, D. Lukarski, H. Meyerhenke, and M.Wegner,
Is nearly-linear time the same in theory and practice?
A case study with a combinatorial Laplacian solver,
SEA, Paris, FRA, 2015, pp. 205–218.

[15] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and
D. A. Spielman, Sparsified Cholesky and multigrid
solvers for connection Laplacians, Computing Research
Repository, 2015, http://arxiv.org/abs/1512.01892.

[16] I. Koutis, G. L. Miller, and R. Peng, Approaching op-
timality for solving SDD systems, SIAM J. on Comp.,
43(3) (2014), pp. 337–354.

[17] I. Koutis, G. L. Miller, and R. Peng A Nearly-m log n
time solver for SDD linear systems, IEEE FOCS, Palm
Springs, CA, 2011, pp. 590–598.

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

40

D
ow

nl
oa

de
d 

09
/1

7/
17

 to
 7

1.
11

2.
17

1.
13

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



[18] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu,
A simple, combinatorial algorithm for solving SDD
systems in nearly-linear time, ACM STOC, Palo Alto,
CA, 2013, pp. 911–920.

[19] R. Kyng, A. Rao, and S. Sachdeva, Fast, provable al-
gorithms for isotonic regression in all `p-norms, NIPS,
Montreal, QC, 2015, pp. 2701–2709.

[20] Y. T. Lee, S. Rao, and N. Srivastava, A new approach
to computing maximum flows using electrical flows,
ACM STOC, Palo Alta, CA, 2013, pp. 755–764.

[21] Y. T. Lee and A. Sidford, E�cient accelerated coor-
dinate descent methods and faster algorithms for solv-
ing linear systems, IEEE FOCS, Berkeley, CA, 2013,
pp. 147–156.

[22] Y. T. Lee and A. Sidford, Path finding methods
for linear programming: solving linear programs in
Õ(
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