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0. INTRODUCTION

The s-transitive groups acting on connected regular graphs
have been studied by several people: W.T. Tutte, A. Gardiner, N. Biggs,
R.M. Weiss, the authors and others. The purpose of this paper is two-
fold. First we establish that the problems about constructing and
existence of such groups have a simple purely group-theoretical formulation
in terms of group amalgams. Second, we determine the group amalgams
associated with the locally regular groups operating on cubic graphs.

In Section 1 we introduce graph-theoretical concepts that we
need and in Section 2 the basic definitions about group amalgams. Section
3 explains the connection between 1-transitive groups and group amalgams.
Section 4 classifies finite simple amalgams of degree (3,2). It is
surprising (Theorem 4) that there are precisely 7 such amalgams. Section
5 expresses some known results about s-transitive groups in the language
of group amalgams. Section 7 explains the connection between locally
l1-transitive groups and group amalgams. The next two sections deal with
the amalgams associated to locally regular groups acting on cubic graphs.

We show that there is essentially only one such amalgam for locally s~
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regular groups s = 1,2,3,4,5, or 7.
We end with two remarks, in the last section, which illustrate
the usefullness of the graph-theoretical method in the study of group

amalgams.

1. GROUPS ACTING ON GRAPHS

Let G be a graph having neither loops nor multiple edges.
Let A be a group and f:A -+ Aut(G) a homomorphism. Then we say that
A acts on G and we write f(a)(x) = a*x for a e A and x a vertex
of G. If f {is injective we say that the action is faithful and in that
case we may consider A as a subgroup of Aut(G).

From now on we consider a pair (G,A) where G 1is a connected

graph and A a subgroup of Aut(G). Recall that an s-arc S of G

is a map

s:{0,1,...,s} > V(G) =V

(V(G) = the vertex-set of G) such that 8(i) and S(i + 1) are adjacent
for 0 <i<s-1 and S(i) #S(i +2) for 0=<1i<s - 2.

We say that A is s-transitive (resp. locally s-transitive)

if given any two s-arcs S1 and 82 (resp. two s-arcs S1 and 82
satisfying Sl(O) = SZ(O))’ there exists o € A such that a o Sl = SZ'
If A is locally s-transitive (s 2 1) then A acts transitively on
the set of edges of G [l1, Lemma 1]. Thus, in this case, A 1is either

s . . . + -
transitive on V or it has precisely two orbits, say V and V , and

G 1is bipartite with partition (V+,V_). In the first case A 1is in
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fact s-transitive.

We say that A 1is s-regular (resp. locally s-regular) if

A 1is s-transitive (resp. locally s-transitive) and for each s-arc
S and o € A the equality a0 S =S implies o = 1.

We shall say that G 1s s-~transitive, locally s-transitive,

étc. if Aut(G) has the corresponding property. If G is s-transitive
(s 2 0) then it is a regular graph, i.e., every vertex of G has the
same &egree (or valence). If G is locally s-transitive (s 2 1) then
it is either regular or bipartite with partition (V+,V-) of V and any
'two vertices in V+ (resp. V_) have the same degree. A regular gfaph
of degree 3 1is also called cubic graph.

We say that A has index s (resp. local index s) if A
is s-transitive (resp. locally s-transitive) but it is not (s+l1)-
transitive (resp. locally (s+l)-transitive). It is well-known {5] that if
G 1is a cubic graph and A has index s (1 < s < ®) then A is s-
regular and s takes one of the values 1,2,3,4,5. We remark that the
corresponding statement is not true for locally s-transitive groups. For
instance if G = K3,3 (the complete bipartite graph on 6 vertices with
three vertices in each part) then Aut(G) has a subgroup isomorphic to
C3 X S3 which has local index 1 and is not locally Il-regular.

We recall that R.M. Weiss [7] has shown that if G 1s a cubic

graph and A 1is locally s-regular (1 < s < ®) then s takes one of

the values 1,2,3,4,5,7.



2. GROUP_ AMALGAMS

A group amalgam is a triple (X,Y;H) where X,Y,H are groups,

H is a subgroup of both X and ¥ and XnY=H. Since X and Y
determine H we shall write sometimes (X,Y) instead of (X,Y;H).
A morphism from an amalgam (xl’Yl;Hl) to the amalgam

(XZ’YZ;HZ) is a pair (fl,fz) of group homomorphisms

fl:x1 > Xz, fZ:Yl -+ Y2

sucﬁ that f1 and f2 coincide on Hl and

£ -1

; @

) = £y (E) = Hy.
We say that an amalgam (X',Y';H'") 1is a subamalgam of the
amalgam (X,Y;H) if X' (resp. Y') is a subgroup of X (resp. Y) and
X' nH=Y' nH=H. We say that this subamalgam is transitive if
X'H=X and Y'H =Y.
Let (X,Y;H) bg an amalgam and a € H. Let fl(x) = axa_1

(x € X) and fz(y) = aya_1 (y € ¥Y). Then (fl’fz) is an automorphism

of (X,Y;H) which is called inner automorphism. Two subamalgams x',Yy")

and (X",Y") of (X,Y) are said to be conjugate if there exists an inner

automorphism (fl,fz) of (X,Y) such that fl(X') = X" and fZ(Y') = Y".

A normal subgroup of (X,Y;H) 1is, by definitiom, a subgroup

N of H which is normal in both X and Y. By Zorn's lemma, there
exists a unique maximal normal subgroup of (X,Y;H) which is called the
core of this amalgam. If the core is trivial (i.e., the identity subgroup)

then we say that the amalgam isssimple.



If K 1is a normal subgroup of (X,Y;H) then (X/K,Y/K;H/K)
is also an amalgam called the quotient of (X,Y;H) wmodulo K. If K
is the core of (X,Y;H) then this quotient is a simple amalgam.

1f (xi’Yi)’ i = 1,2 are amalgams then a morphism

(fl,fz):(xl,Yl) -+ (XZ’YZ) is called an imbedding if both fl and fz
are injective. Two imbeddings (fl’fZ) and (gl,gz) of (Xl,Yl) into

(XZ,YZ) are called equivalent if the subamalgams (fl(Xl),fz(Yl)) and

(gl(xl)’gz(Yl)) are conjugate in (XZ,YZ).

An amalgam (X,Y) is finite if both X and Y are finite
groups. The degree of an amalgam (X,Y;H) 1is the ordered pair (m,n)
where m (resp. n) is the index of H in X (resp. Y).

If (XY) = (X,Y;H) 1is an amalgam then we denote by

X %Y

i
the generalized free product of X and Y amalgamating the subgroup H.

An amalgam is proper if its degree (m,n) is such that m 2 2
and n = 2.

We remark that an amalgam (X,Y;H) may be simple without the

group X % Y being simple. This is always the case if the amalgam is
H

proper and finite.

3. AMALGAMS OF 1-TRANSITIVE GROUPS

We consider pairs (G,A) where G is a connected regular

graph of valence d, and A a subgroup of Aut(G) which is 1l-transitive.
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Fix a l-arc S din G, S(0) = a, S(1) =b; thus {a,b} dis an edge
of G.
Define X = A(a) = the fixer in A of the vertex a. Let
Y be the subgroup of A consisting of all o € A such that
{a(a),o(d)} = {a,b}. Then H=XnY is the fixer in A of the 1l-arc S.
Hence we can associate to (G,A) and S the group amalgam
(X,Y;H). Since A is 1l-transitive this group amalgam is in fact
independent (up to isomorphism) of the choice of S. Indeed, if T is
another l-arc, T(0) =u, T(l) =v and o€ A 1is such that a0 5 =T

then aXa_l = A(a) and aYa-l is the stabilizer in A of the edge {u,v}.

Theorem 1. Let (G,A), S, and (X,Y;H) be as above. Then A 1is
generated by X and Y, the amalgam (X,Y;H) is simple and has degree

(4,2).

Proof: The first assertion follows from [3, Proposition 1]. Let N be a
normal subgroup of (X,Y;H). Thus N < B and since X and Y generate
A, we have N 9 A, Now let x e V = V(G) and choose o € A such that

x = a(a). If B e N then

Ba(a) = aa YBa(a)) = a(a) = x

B(x)

because a_lBa e NcHc A(a). Hence B(x) = x for all x e V and so

B=1 and N

{1}. Thus (X,Y;H) is a simple amalgam.

X

A(a) acts transitvely on the set of d neighbours of a
and H 1is the fixer in X of the vertex b. Therefore (X:H) = d.

Similarly, (Y:H) = 2.



Let (Gi’Ai)’ i = 1,2 be two pairs as (G,A) above. We say

that they are of the same type if the associated amalgams (Xi’Yi;Hi)’
i = 1,2 are isomorphic.

The converse of Theorem 1 is also valid.

Theorem 2. Let (X,Y;H) be a simple amalgam of degree (d,2). Then there
exists a pair (G,A) consisting of a connected regular graph G of
valenée d and a subgroup A of Aut(G) which is l1-transitive such

that the amalgam associated to (G,A) 1is isomorphic to (X,Y;H).

Proof: Let A be any group containing the amalgam (X,Y;H) which is
generated by X and Y and such that

y_IXy nX=H (y e Y, y £ H).

For instance, we can take A =X % Y,
H

Define G as follows: its vertices are the cosets uX, ue A
and its edges are {uX,uyX} for ue A, ye Y,y ¢ H. Since X and Y
generate A, the graph G 1is connected. The group A acts on G by
left translations and it is transitive on V = V(G) = A/X. Therefore, G
is a regular graph. The neighbours of the vertex X in G are the vertices
xyX where x € X and vy é Y\H is fixed. The number of these vertices

is equal to the index of y_IXy nX=H in y_1Xy, Vi.e., it is equal to

(v Ixy:H) = (v lxy:y TRy) = (X:H) = d.

Let S be the 1-arc of G defined by S(0) = X, S(1) = yX.

The subgroup & of A is ghg'gizer of the vertex X ¢ V. Similarly, the



fixer in A of the vertex yX is the subgroup yXy-1 of A. The fixer

of the 1l-arc S 1is the subgroup

Xn yX.y--1 = yHy—l = H. .

Hénce the kernel of the homomorphism A - Aut(G) is contained in H.
Since (X,Y;H) is a simple amalgam we conclude that the action is faithful
and hence we may consider A as a subgroup of Aut(G).

Since X permutes transitively the neighbours xyX (xe X)
of XeV in G, it folloﬁs that A is 1-transitive. Thus we have a
pair (G,A) where G 1is a connected regular graph of valence d and
A < Aut(G) is 1l-transitive. The amalgam associated to (G,A) and the

l-arc S 1s precisely the original amalgam (X,Y;H).

Let (X,Y;H) be a simple amalgam of degree (d,2), d > 3.

Choose x ¢ X\H, y e Y\H and put z = xy. Now define Hl = H,

_ -1 .
Hi+l = Hi n zHiz (iz1).
Theorem 3. Let (G,A) be as before with associated amalgam (X,Y;H). Then
the index of A 1is the smallest integer s (or « otherwise) such that

(HS=HS+1) <4 - 1.

Proof: let S be the 1l-arc used in the construction of (X,Y¥;H) and

S(0) = a, S(1) = b. From our choice of x and ¥y above, we have

x(a) = a, x(b) =c# b, y() =b, y() =c. Thus z(b) = xy(b) = x(a) = a,
z(a) = xy(a) = x(b) = c, i.e., in the terminology of [3], z 1is an A-
shunting.



Let us define a; = b, a =a and in general a;

(1 2 0). Note that H = Hl = A(ao,al) is the fixer of the 1l-arc

(a,,a,). Hence szml is the fixer of the 1l-arc (a,,a,) and consequently
0’1 1°72

4 = 2(ay)

. -1 .
H2 = Hl n zle is the fixer in A of the 2-arc (ao,al,az). In general,

Hi is the fixer of the‘ i-arc (ao,al,...,ai).
Let s be the index of A. For i < s the equality
(Hi:Hi41) = d-1 1is valid since Hi acts transitively on the neighbours

of ai distinct from ai_1 and Hi+1 is the fixer in Hi of ai+l'

Since A is not (s + 1) - transitive, the same argument shows that

(HS:HS+1) <d-1.

In view of this theorem we define the index of a simple amalgam
(X,Y;H) of degree (d,2), d 2 3 to be the smallest integer s such that
(HS:HS+1) < d-1. The subgroups Hi are defined as above and it follows
from Theorem 3 that this s 1is independent of the choice of x and .

If (X,Y;H) is a simple amalgam of degree (d,2), d 23 and
index s and if H_ = {1}, or equivalently the order of H is (d—l)s—l,

then we shall say that this amalgam is s-regular or just regular.

4. TFINITE SIMPLE AMALGAMS OF DEGREE (3,2)

We shall now define seven important amalgams, see [3, Section 71.
We denote by Cn (resp. Dn) the cyclic (resp. dihedral) group of order n
(resp. 2n). The amalgams will be defined by generators and relatioms; it is

to be understood that for each X,Y,H one should use only the relations

which involve only the generatdr% of that group.
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We now list our amalgams:

Am(1') = (XY 3H), X =<a>, Y, =<y>, a =y =1, H, = {1}

<b,y>, H, = <b>,

" = ', - '
Am(2') = (XZ’YZ’HZ)’ Xz <a,b>, Y2

2 =2y’ = 02 = (@)’

]
ot

~ '~
Thus .Xz = D3, Y2 = C2 X CZ’ 2

= <a,b>, Y,

' 2 .2 _ 4
5 <y>, H2= <b>, a" =b =y =1,

Am(2") = (X Y";HZ)’ X

2272 2

y2 = b, (ab)> = 1.

Thus Y'z' =z C

Am(3') = (X33Y ;HB)’ X, = <a,b,e>, Y, = <b,c,y>, H, = <b,c>,

3 3 3 3

y2 = a2 = b2 = c2 = (ab)2 = (bc)2 = (a¢::)3 =1, yby=c.

2]
n

3 ¥ Dgs Y3 =D, HyZCyXCye

' = . = 't = =
Am(l' ) (XA’YASHA)’ XA <a!b’c’d>’ Ya <b’c’d’y>’ H4 <b!c’d>’

y“=a"=b" =c¢" =d" = (ab) =(bc)2‘= (Cd)2=1»

(@2 =b, G)HZ=c, (ad)° =1, a2=1, yby=d.

~ s t o~ ~
Thus X, = 84 (symmetric group), Y, = Dg, and I-I4 = Da.

Am(4") = (XA,Y";HA), X, = <a,b,c,d>, YZ = <b,c,d,y>, H4 = <b,c,d>,

a2=b2=c2=d2

()2 = o) = (ed)? = 1,

2

Thus Yz is the so called quasi-dihedral group of order 16.

()



- 11 -~

Am(5') = (X HS)’ X

5 = <a,b,c,d,e>, Y5 = <b,c,d,e,y>, H. = <b,c,d,e>,

52753 5
y2 = a2 = b2 = c2 = d2 = e2 = (ab)2 = (bc)2 = (cd)2

= (de)? = (a0? = ed)? = (c0)? = 1,

(ad)2 = be, (be)2 cd, (ae)3 =1, yby =-e, ycy =d.

Thus X5 = <a,bec,cd,e> X <¢>, <a,bc,cd,e> = 54, <c> 2 Cz,
Y5 = <b,c,d,e> XN <y> (semidirect product), and
.HS = <h,e> X <c> = <b,e>}l[<d>, <b,e> = D4.

Theorem 4. Every finite simple amalgam of degree (3,2) 1is isomorphic to

one of the seven amalgams listed above.

Proof: Let (X,Y;H) be such an amalgam. By Theorem 2 there exists a
connected cubic graph G and A < Aut(G) which is 1l-transitive such
that (X,Y;H) is the amalgam associated to (G,A). Then A must be s~
regular for some s = 1,2,3,4,5 .and our assertion follows from [3, Prop-

osition 15].

Theorem 5. The number of subamalgams of Am(s') or Am(s") which are

isomorphic to Am(t') or Am(t") is given in the table below.

t 1' 2" 2" 3’ 4' 4" 5'
1' 1 2 2 16 0 - 16
2’ 1 0 1 0 0 0
2" 0 1 1 0 0 0
3’ 1 0 0] 0
4! 1 0 1
4" 0 1 1
5 1 L ) 1
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Proof: This follows from [3, Theorems 3 and 4].

We have shown in [3] that the two subamalgams Am(1') are
not conjugate in Am(2') but they are conjugate in Am(3'). The 16
subamalgams Am(1') in Am(4') split into 2 conjugacy classes, each

of size 8. Inside Am(5') all these 16 subamalgams are conjugate.

5. FINITE SIMPLE AMALGAMS OF DEGREE (d,2), d > 3

Very little is known about such amalgams. We shall summarize
here the most important results.
First we show that there are infinitely many finite simple

amalgams of degree (4,2). Let H be an elementary abelian group of order

2n+1 with a basis ao,al,...,an. Let H' be the subgroup of H generated

by ao,al,...,an_l. We take X to be the semidirect product

-t - 2 2 4
X II‘>Q<an,x> where <a_,x> D,, x =a = 1, (xan) = 1. The

action of a on H' 1is trivial and x acts as follows: xa.,x = a .
n i n-1-1i

(0 <i<n-1). Finally, let Y be the semidirect product Y = HX]<y>

2
C2, y“ =1 and y acts on H as follows yay = a 4

n

where <y>
(0 i <n). Then (X,Y;H) 1s a finite amalgam of degree (4,2) and
it is simple. Indeed, let N c H be a subgroup which is normal in both
X and Y. Then

N cHn xHx = <a ,a .>=H'

0°310 0301

1 1 a—
NcH' nyH'y = <al,a2,...,an_l>.

E
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By repeating this argument we obtain that N = {1}.
The next Theorem we deduce from a result of R.M. Weiss [8].

Theorem 6. Let (X,Y;H) be a finite simple amalgam of degree (d,2)
where d is a prime >3. If X 1is solvable then its order divides

d(cl-—l)2 and consequently the index of (X,Y;H) 1is 2.

Proof: By Theorem 2 there exists a pair (G,A) where G is a connected
regular graph of valence d and A < Aut(G) 1is 1-transitive such that
the amalgam associated with (G,A) 1is isomorphic to (X,Y;H). Now we can

proceed as in the proof of R.M. Weiss of his Satz in [8].

In the next theorem we collect some know pastial results about

amalgams of degree (4,2), d > 3.

Theorem 7. Let (X,Y;H) be a finite simple amalgam of degree (d,2),

d > 3 and index s. Then

]
o

(i) 4if 4 we have s = 1,2,3,4,7;
(ii) if d- 1 is a prime 25 we have s = 1,2,3,4;
(iii) 1if 4 -1 1is a prime 23 and the amalgam is regular we have
s =1,2,3 and if s = 2,3 them d -1 is a Mersenne prime;
(iv) if d = npr +1 where n < p, p a prime, and the amalgam is
regular, then s = 1,2,3,4,5,7.
The parts (i) and (ii) are due to A. Gardiner [4]}, (iii) to

-f it
theYauthor [2], and (iv) to Weiss [61.
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6. AMALGAMS OF LOCALLY 1-TRANSITIVE GROUPS

Let G be a connected bipartite graph, V = V(G) its vertex
set and (V+,V-) the corresponding partition of V. Let A < Aut(G) be
locally 1l-transitive. In order to avoid duplication with the case of 1-

+ -
transitive groups we assume here that A preserves both V' and V.

Thus V* and V  are the two orbits of A in V. It follows that every
+ - -
vertex in V  has the same degree d+ and every vertex in V  has degree d .
A has also twd orbits in the set of all 1l-arcs of G. If Si’

i = 1,2 are two l-arcs then there exists an a € A such that a o S1 = 82

1ff 5.(0) and $,(0) are both in vt or both in V.

Fix a l-arc S such that S(0) = a € V+ and S(1) =b e V.
Let X = A(a) be the fixer in A of the vertex a and let Y = A(b).
Then H=XnY=A(a,b) 1s the fixer in A of S. We associate with
(G,A) and S the group amalgam (X,Y;H). Since A 1is transitive on 1-
arcs T such that T(0) € V+, it follows that this amalgam is independent

(up to isomorphism) of the choice of S.

Theorem 8. Let (G,A), S and (X,Y;H) be as above. Then A is generated

by X and Y, the amalgam (X,Y;H) is simple and has degree (d+,d-).

Proof: Let B = <X,Y>. In order to show that B = A it suffices to prove
that B 1is transitive on v and on V. Let uce¢ v and we shall
prove that there exists o € A such that a(u) = a. We shall prove this
by induction on the distance 6(a,u) =d from a to u. If d=20

then u =a and we can take. a0 = 1. Let d > 0 and assume that our
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claim is true for vertices in V+. whose distance from a 1is less than
d. If d(b,u) =d+ 1 we can choose B e X such that d(b,B(u)) =d-1.
Of course we still have d(a,B(u)) = d. This shows that we can assume
that d(b,u) = d - 1. Then there exists Y € Y such that d(a,y(u)) =d -2
and we can then use the induction hypéthesis. Thus A 1is generated by
X and Y.

Since X acts transitively on the d+ neighbours of a and
H is the fixer in A of b, it follows that (X:H) = d+. Similarly,
(Y:H) = d . Finally, the siﬁplicity of (X,Y;H) follows as in the proof

of Theorem 1.

The converse is also valid.

Theorem 9. Let (X,Y;H) be a simple amalgam of degree (d+,d_). Then
there exists a connected bipartite graph G with the underlying partition
(V+,V_) of V=7V(G) and a subgroup A < Aut(G) which is 1-transitive

and such that the amalgam associated with (G,A) is isomorphic to (X,Y;H).

Proof: Let A be a group containing the amalgam (X,Y;H) which is

generated by X and Y. For instance we can take A =X ; Y.

Define G as follows: its vertex-set V is the disjoint union
of V+ = G/X and V = G/Y and the edges of G are {uX,uY} for u € A.
It is easy to check that uX and vY are adjacent 1ff u—lv € XY. Since
X and Y generate A, G is connected and bipartite with associated
partition (V+,V_). The group A acts on G by left translations and V+

and V  are the two orbits of A in V. Hence any two vertices in V

(resp. V_) have the same degree. The neighbours of the vertex X are
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the vertices xY, x € X. The number of these vertices is equal to the
index (X:X nY) = (X:H) = d'. Similarly, the vertex Y has d_
neighbours.

Let S be the 1l-arc S(0) = X, S(1) = Y. The fixer of the
vertex X (resp. Y) in A is the subgroup X (resp. Y) of A. Hence
the kernel of the homomorphism A -+ Aut(G) is contained in H = X n Y.
Since (X,Y;H) 1is a simple amalgam we conclude that A acts faithfully
on G and hence we may consider A as a subgroup of Aut(G).

Since the group .X (resp. Y) permutes transitively the
neighbours of the vertex X (resp. Y), it follows that A is locally
l-transitive. The amalgam associated to (G,A) and the 1l-arc S is
precisely the original amalgam (X,Y;H).

We continue to use the notation and hypotheses from the beginning’

of this section. Fix an x € X\H and y ¢ Y\H. Then we define vertices

ay by
a0 = a, a1 = b,
a_; x(ai), i=21),
a0 = y(a_i), (i 20)
Define H1+ =H =H
and H:+l = Hi+r1yHi-y_1, i21;
By, =H nxix, 121

Theorem 10. Use the above hypotheses and notation. Then the local index

of A is the smallest integer s (or « if no such s exists) such that

. B
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d -1 if s 1is even,
@eHL, ) <o
d -1 if s 1is odd,

or
d -1 1if s 1is even,

(H :H_,.,) < 1
s stl ¢t -1 if s is odd.

Proof: Note that H is the fixer in A of the 1l-arc (ao,al) = (a,b).

Hence, xl-lx-1 is the fixer of the 1l-arc (a_l,ao) and so H; is the

fixer of the 2-arc (a_l,ao,al). Similarly, H; is the fixer of

(ao,al,az). In general, Hi is the fixer of the i-arc (a_i+l,...,a0,al)
+ .
and Hi is the fixer of the i-arc (ao,al,...,ai).

Let s be the local index of A. If 1 <s then ﬁ; acts

transitively on the neighbours of a, distinct form aj_q° If 1 1is

+ + _+ + . -
even then a; € V'  and so (Hi'Hi+l) =d -1. If i 1is odd then a; € A

+ + -
and so. (Hi'Hi+l) =d -1.

Similarly, we have

d -1 if i is even,

H,:H,, ., ) =
ii+ d+ -1 if i is odd.

(

Since A is not locally (s+1)-transitive, the same argument
shows that for i = s at least one of the inequalities given in the theorem

must hold.

Tn view of this theorem we define the local index of a simple

. _# _
amalgam (X,Y;H) of degree (d ,d ) to be the smallest integer s such
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that one of the inequalities in Theorem 10 is valid. It follows from our
theorem that s is independent of the choice of x and Y.

If (X,Y;H) is a simple amalgam of degree (d+,d-),
d¥ 22, d" 22 and local index s and if H: = n; = {1}, then we shall

say that this amalgam is locally s-regular or just locally regular.

7. FINITE LOCALLY REGULAR SIMPLE AMALGAMS OF DEGREE (3,3).

Let (X,Y;H) be.such an amalgam and let s be its local
index. By Theorem 9 there exists a bipartite connected cubic graph G
with associated partition (V+,V_) of V =V(G) and a subgroup A < Aut (G)
which preserves V+ and V  such that the amalgam associated to (G,A)
is isomorphic to (X,Y;H). Say, X 1is the fixer of a vertex a € V+ and
Y 1is the fixer of a neighbouring vertex b ¢ V.

Since the amalgam (X,Y;H) 1is locally s-regular for some
positive integer s, it follows that the group A 1is locally s-regular
and V+ and V  are two orbits of A in V. It was proved by Weissv[7]

that we must have s = 1,2,3,4,5, or 7.

Theorem 11. For each s = 1,2,3,4,5 there exists precisely one locally
s~regular finite simple amalgam of degree (3,3). For s =7 there are
two such amalgams (X,Y;H) and (Y,X;H) which differ only in the order

of X and Y.

The proof will be given separately for each value of s.
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Case s = 1. The local 1-regularity implies that H = {1} and so

"

X = C3 and Y . C3.

Case s = 2. Now H has order 2, so HZ CZ' If x e X\H then
H; =H n xl—lx—1 satisfies (H:Hz) = 2. Hence X 1is a non—abelian group
of order 6 and the same is true for Y. Thus we have X =Y = D3, H= CZ'

Case s = 3. Let (G,A) be constructed from our amalgam as in the
beginning of this section. Let b be the generator of the fixer A(a,b,c)

of the 2-are (a,b,¢) which is cyclic of order 2, see Figure 1.

oc
. l *~——o
b d

Cc

Figure 1

The element b fixes b and its 3 neighbours and moves each vertex at
distance 2 from b. It is a unique such element in A and hence b
belongs to the center of A(b) = Y, say.

Since 2a(c) = e we have 3¢F = &. Thus (33)2 = €¢ which
implies that ac is conjugate to (33)2. Since (53)3 € A(a,b,c) we have
either (33)3 =1 or A(EE)3 = b. The second case is impossible since 3¢

and (38)2 have the same order. Hence (53)3 = 1.

Thus A(b) = Y = <a,b,e> = <3,2> x <b> = D, X C, & D.

Similarly A(a) = X T D6' Further we have

H=XnY=A(a,b) = <3,b> = €, X Cye

Clearly this determines uniquely our amalgam.

R |
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Case s = 4. The fixer A(b,c) has order 8, see Figure 2.

g
f
t r
Fp ’j ¢S 9
a b c d e

Figure 2

Let a be in the center of A(b,c). We claim that a fixes a and d.
Indeed, say that a(d) = f,. d(e) =g. Let B#1 bein A(b,c,d,e).
Then since o and B commute it follows that B also fixes £ = a(d)
and g = ae). Thus B fixes the 4-arc (e,d,c,f,g) and since A is
locally 4-regular one must have B =1, a contradiction.

Thus o e A(a,b,c,d) and so *he center of A(b,c) is of
order 2 and we shall write o =q where q is the edge {b,c}. The
element q 1is of order 2 and fixes all neighbouring vertices while it
moves every vertex at distance 2 from q. Such an element is defined

for every edge of G.

Since p(q) = q we have Pp3p =q i.e., P and § commute.

On the other hand Pp(r) =t and so pIrp = t.
We have
A(b,c,d) = <q,T> = 02 X C2,
A(a,b,e) = <p,q> = C2 X C2.
Also A(b,c) = <p,q,r> = D,

-2 s ~ ~ ~
because (pr)~ = tr = q. The, gquality tr = g follows from the fact that
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A(b,c,d) = A(b,c,f) =A(f,c,d) = C, X C, and that 4, T, t are the 3
non-identity elements in this group.
Now we have

ACe) = <5,3,5.5.

stace T = (@ = £ FHD = F®) = b, and F®) = FD) = 8 we
have: (53)3 e A(b,c,d). Thus the order of PS is either 3 or 6. But
as in the previous case we have that ps and .(33)2 are conjugate in A,
so that we must have (53)3 =1,

Thus

A(c) = <q,T>>4<p,5>,
<p,s>

<q,r> € C2 % C2’

n
o

and <p,s> acts on <q,r> as follows:

Ao~

Pap = q, PIP = t = 14q,

A~~~ ~ ~~ ~
Sqs = t = Tq, SIs = I.

Hence A(e) = S and similarly, A(b) = §,.

4

Thus in this case Xz Y = S and H 2 DA'

Case s = 5. Let o be in the center of A(ec,d), see Figure 3.

w }
v
u
%3 p o 4 s
y g
z h

Fioure 3
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We claim that o fixes also b and e. Indeed, if a(b) =u and say
a(a) = v then let B # 1 be in A(x,a,b,c,d). Since Q and B
commute it follows that B also fixes u = a(b) and v = o(a). Thus
B fixes a S-arc (x,a,b,c,u,v) and so g=1, a contradiction.

Thus « € A(b;c,d,e) and so the center of A(c,d) has order

Assume that this center has order 2 and let o # 1 be its
generator. Then a(b) = b, —ale) = e but o must move either a or £,
say it moves a. Thus a(a) =y. Let B #1 bé in A(x,a,b,c,d). If
a(x) = z then since o = Ba, it follows that B also fixes ¥y and z.
Thus B fixes all vertices at distance 2 from b and necessarily moves
all vertices at distance 3 from b. Thus B is uniquely determined by
the vertex b and we shall write B = b. Let us say that b € V+. Then
for every vertex t e V+ we have the corresponding involution t.

Let Y # 1 be in A(a,b,c,d,e). We claim that y(v) = w.
Otherwise Yy fixes all vertices at distance 2 from ¢ and moves all
vertices at distance 3. This implies that Yy 1lies in the center of A(c)
and so the center of A(c,d) contains <B,Y> which has order 4, a
contradiction. Thus we have proved that y(v) = w.

It follows that A(c) contains 3 involutions which fix a
4-arc with ¢ as midpoint. We say that any one of these three involutions
is associated to ¢ and will denote one of them by 2. The analogous claim
is valid for every vertex t € v .

Choose ¢ =7y and € so that &(c) = c. Then e(u) =b
and ¢ do not cohﬁute. But (33)2 fixes b,c,d,e,f and so

and so

(ec)” = Therefore <e,c> = A(c,d,e) = D,.
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Since e(b) = u we have ebe = U and so (33)2 = ub. is an

element of order 2. On the other hand g(e) = g, so beb = g and

(83)2 = 8@. But <3,§> = D4 and so 8§ and (gg)2 are elements of order
4., This is a contradiction.

Thus we have proved that the center of A(c,d) must be of
order 4, and so it coincides with A(b,c,d,e). Thus it is an elementary
abelian group of order 4. Let a be the generator of A(a,b,c,d,e).
Since o belongs to the center of A(c,d) it follows that a(u) = u.
Thus o fixes all vertices at distance 2 from c¢ and moves all those
at distance 3. Thus we may write o = T since it is uniquely determined
by c¢. Similarly, we have d which generates A(b,c,d,e,f). Thus for
every vertex t there is a unique involution t associated to it in this
manner.

Now we find that

A(a,b,c,d) = <b,e> 2 C, x C

A(b,c,d) = <b,c,d> & c, X C, % C,.

Since b(e) = g we have beb = g and so be # eb. But (32)2 fixes
b,c,d,e and so belongs to <E,§>. Since (EZ)Z = bu = EZ it follows
that it moves both a and f and so we must have (33)2 = ¢cd.

Thus

A(c,d) <b,c,d,e> = <b,e> x <c>

ne

D4 X C2.

Now ae permutes cyclically the vertices b,d,u and so

~ ~e~ ]
(ae)3 ¢ A(b,c,d). Thus ae has order 3 or 6. The same argument as in
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the previous cases shows that the order must be 3. Hence <3,e> = D3.
We claim that <3,e> normalizes the four-group <bc,cd>. Indeed we have
a(bo)a = be,
3G = c(GH = dad = B4,
and so 3 normalizes this four-group. Similarly, € normalizes this

four-group. Consequently

<Z,SZ,EE,Z> o Sa (the symmetric group)
and
A(c) = <a,b,¢,d,8> = <a,bc,cd,e> x <e>
= S4 X C2.

Similarly, A(d) = SA X C2.

Thus we have in this case

Xzy=s, xC

The case s 7 will be considered in the next section.

8. END OF PROOF OF THEOREM 11

It remains to consider the case s = 7. We may assume that
our amalgam is associated with a pair (G,A) where G 1is a connected bi~
partite cubic graph and A < Aut(G) 1is locally 7-regular. If (V+,V—)
is the underlying partition of V = V(G) then A necessarily preserves

+ -
V. and V since A cannot be 7-regular.
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It follows from local 7-regularity of A that a fixer in
A of a vertex in G has order 3*26, and the fixer of an i-arc

(1 £1i £ 7) has order 27—1. The fixers of some vertices and arcs in

Figure 4 are sketched in Figure 5.

j\
‘Ti;t‘,ea
k i
£ z

Figure 4

e
rh

[0}
=2
Hé

A(a) A(b) A(c) A(d) A(e) A(f) A(g)

A(a?::\\ﬁ<i§

A(a,b,c)\\'\\ ////
Aarbrend)

N4

A(a,b,c,d,e)

A(a,b,c,d,e,f)

A(a,b,c,d,e,f,g)

Figure 5
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Assume first that for every vertex u e V there exists a #1
in A such that o fixes all vertices at distance <3 from u. Then
local 7-régu1arity of A implies that o moves every vertex at distance
4 from u. Clearly o is uniquely determined by the vertex u and we
shall write o =1u. If B e A and B(u) = v then it is clear that
BﬁBfl = ¥, by using the above geometric characterization of the involutions

U. Then (see Figure 4) we have

A(a,b,c,d,e,f,g) = <d> = C,o
A(b,c,d,e,f,g) = <d,&> = €, X Cys
A(b,c,d,e,f) = <2,d,e> = €, x Cy X Cy,

A(c,d,e,f) = <¥,d,8,> ¢, xC xC, xC

2 2 2 2°

n

mQ

because, for instance, ¢(f) = f implies that ofe = ?, i.e., ¢ and

commute.

A~~~

Since D(f) =i and F(b) = j it follows that bfb = i and

P~

fbf = 5. Hence we have (E?)z = if = E? which shows that (g?)z fixes all
the vertices a,b,c,d,e,f,g. and moves the vertex h. This implies that
2 = 3. on the other hand BF e A(c,d,k,8) and A(c,d,k,8) =<c,d,k,E>
is elementary abelian group of order 16. This forces that (g¥)2 =1 and
we have a contradiction.

Thus we have proved that there exists a vertex u € V such

that if o € A fixes all vertices at distance <3 from u then o = 1.

We may assume that u € V‘, and hence every vertex in V has this property.
L }
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Now we claim that A(a,b,c,d) is non-abelian. Otherwise
the fixer of every 3-arc would be abelian. Since A(d) 1is generated
by the abelian subgroups A(a,b,c,d), A(b,c,d,e), A(c,d,e,f), and
A(d,e,f,g) and each of them contains the non-trivial element & of
A(a,b,c,d,e,f,g), it follows that a 1lies in the center of A(d). But
A(d) acts transitively on 6-arcs having. d as midpoint and a fixes
one oﬁ»them. Since o 1s central in A(d) it follows that o fixes
all of these 6-arcs and hence o fixes all vertices at distance <3
from d. But a#1 and siﬁce d is arbitrary this contradicts the
fact established above. Thus we have proved that A(a,b,c,d) 1is non-
abelian.
Let a belong to the center of A(d,e). Then we claim that
o fixes every vertex at distance <2 from the edge {d,e}. 1Indeed,
assume that, say, a(b) = j. Let (x,y,a,b,c,d,e) be a 6-arc and let
B # 1 be an involution in A fixing this 6-arc. Since of = Ba and
a(b) = j, it follows that B fixes the 8-arc (x,y,a,b,c,j,a(é),a(y),a(x)).
This is a contradiction since- B # 1 and A 1is locally 7-regular. Thus,
0 must fix every vertex at distance <2 from {d,e}. Hence the center of
A(d,e) 1is contained in the group A(b,c,d,e,f,g). This latter group has
order 4 and is elementary abelian since it is generated by involutions.
We claim that the center of A(d,e) has order 2. Otherwise
the center of A(d,e) would coincide with A(b,c,d,e,f,g). Let a #1 be
the involution fixing the vertices a,b,c,d,e,f,g. Since a belongs to
the center of A(d,e), an argument which we used earlier shows that a fixes

all vertices at distance <3 fsom d. Similarly, if B #1 1is the
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involution fixing b,c,d,e,f,g;h then it fixes all vertices at distance
<3 from e. This contradicts the fact proved above about vertices in V .
Consequently, we have proved that the center of A(d,e) has order 2.

Let @ # 1 be the central element of A(d,e). Assume that
o moves every fertex at distance 3 from the edge p = {d,e}. Then a
is qniquely determined by this edge and we can write o = P. A similar
statement is then valid for every edge of G since A is transitive om
the edges of G. If B e A and B(p) = q then we have 838—1 =q,
because of the geometric description of the involutions P. Since (see

Figure 6)

Figure 6

;G fixes all vertices at distance <2 from the edge q and ;G #1, it
follows that Eﬁ = a. Now, we have ;(t) = s and :(p) = u and conseqg-
uently

o~~~ ~

ptp = s and tpt = u.

;

~

Thus (;E)z = st = q, and we have a contradiction

[+

r and (;E)z =p
since r # E.

Hence we have proved that o must fix at least one vertex at
distance 3 from {d,e}. Say, we have a(h) = h. Then o 1is the invol-
ution in A which fixes the 6-arc (b,c,d,e,f,g,h). Since o is central

]

in A(d,e), the usual argument shows taat o fixes every vertex at
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distance <3 from e. Thus o is uniquely determined by the vertex e
and we shall write o = e. Consequently, we have e ¢ V+ and for every

u € V+ there is an associated involution U. We repeat that every vertex
aﬁ distance <3 from u is fixed by U and every vertex at distance 4
from u is necessarily moved by 1.

For each 6-arc S let S be the unique involution in A
which fixes S. If the midpoint S(3) = u is in V+ then we know that
s = 1.

Now assume that S(3) = u € V_l. Then we claim that S has

the form described on Figure 7 where the double arrows indicate the vertices

which are interchanged by S.

Figure 7
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Indeed, let v = S(0), w = S(1). Then, say, v(S(4)) = x,
Y(S(5)) =y, V(S(6)) = z. Now, Vv belongs to the center of A(v,w)
and S e A(v,w). It follows that 'VS = Sv and consequently S also

~

fixes x,y,z. Since u e V-, S cannot fix all vertices at distance 3

from u. Say S interchanges s and t. If s' =7%(s) and t' = V(t)

then S must also interchange s' and t'. Let 2Z(s) =s" and Z(t) = t".
Since 23 = Sz, it follows that S also interchanges s" and t". The
remaining pairs of vertices indicated by arrows on Figure 7 must be inter-
changed by S because A is locally 7-regular and S # 1. Thus our

claim about S is proved.

It is clear from Figure 7 that there are 4 different involutions

S such that S(3) u where ue V.

From now on we shall use the notation from Figure 4. The
. . +
.vertices a,c,e,g are in V and hence we have canonical involutions

~

Z,Z,S,E. Let d be the involutioh fixing vertices a,b,c,d,e,f,g.

We have
A(a,b,c,d,e,f,g) = <d> 2 CZ’
A(b,c,d,e,f,g,h) = <&> 2 C2.

~
and e commute. Hence

(=74

Since d(e) = e we have dad = e, i.e.,
A(b,c,d,e,f) = <d,e> 2 C. % C,.

Similarly,

A

A(b,c,d,e,f) = <c,d,e> Z C, X C, x C

since, for instance, ¢(e) = ¢ implies that T and e commute,
O
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Let % ¢ A be the involution fixing c,d,e,f,g,h,m. Since

3% fixes the vertices c,d,e,f,g, we have that (&%)2 fixes also b

and h. Therefore (d%)2 is either 1 or €. But %(b) = j implies

AAN

that  fdf moves a and so fdf # 3, i.e., (3%)2 # 1. This pfoves that

(3%)2 = €. Hence

A(c,d,e,f,g) = <3,E,§> = <3,§> o D4°

Since f(c¢) = ¢, the involutions € and % commute. Thus

A(c,d,e,f) = <¢,d,e,f> = <3,§‘,§> x <¢&>

Since &(g) =n and g(c) = k we have CgC = i and 38 = k.

% -5 =

which shows that (E§)2 fixes the vertices b,c,d,e,f,g,h. Since also

Cgc =0 # § we have (EE)Z # 1 and consequently (E§)2 = e.

<<, D4 and
A(d,e,f) = <&,d,8,5,8 2D, ®D,
where (® denotes central product of groups (see [9, p. .
Let g ¢ A be the involution fixing the vertices
We have g(f) =i and f(b) = j, and put i-= ﬁ%ﬁ, 5 = $bf.

E(g) = n and g(a) # a, it follows that the element

GH?2 = it = b3

Thus

y,X,a,b,c,d,e.

Since

AA zm . .
fixes b,c,d,e,f and moves a and g. Hence (bf) ce fixes the vertices

a,b,c,d,e,f,g and so it is equal to 1 or d. But b and f fix k
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and move £. Hence bf fixes k and £ and consequently (bf)2 fixes
all vertices at distance 2 from k. The same is true for e and con-

sequently for (bf)ZEE. This fact and the description of elements S on

Figure 7 show that (G%)ZEZ # d. Therefore we have (Q%)Z = Ce. Hence

A

Alc,d,e) = <b,3,d,8,8>

is a group of order 32. Omitting tildes and hats we have the following

defining relations for this group:

¢ and e are central,

w2 =c, @WHl=e, ®H = ce.

We Lave, say, b(g) =z and g(b) = £. Thus gg = Z and we

put £ = EAE. Then £ fixes k,d,e and we have

AA

5?2 = 3% = L.

It follows from here that (ﬁg)z fixes the vertices c,d,k,e,f,i and moves
the vertices g,z,L,b. The element (Gg)ZEE fixes the vertices b,c,d,e,f,g
and moves z. Therefore, it belongs to <3,3> and since it moves 2z, Wwe
conclude that

~ 2~AA

(b3) “Tfd € <e>.
By replacing £ by fe (if necessary) we may assume that
Ao 2 ~
(bg) " = cdef.
Thus we have

A(d se) = <b 9’5 ,d ’E’f’§>

with defining relations the same as for A(c,d,e) plus the following:
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g = (gf)” = (ge)” = (gd)2 =1, (gc)2 = e, (bg)2 = cdef.

The element 3g permutes cyclically the vertices c¢,e,k. Thus
(§§)3 is in A(c,d,e) and so the order of ag is 3,6, or 12. But
(3§)2 = 3% where u = g(a) and so it is conjugate in A to 3dg. There-

fore ag has order 3. Hence
A(d) = <z’b,z’d’g’f,§>
with defining relations the ‘same as those for A(d,e) plus the following:

a2 = ()2 = (a0)? = (ad)? = (ap)> = 1,

(ae)2 = c, (af)2 = bede.
Let h € A be an involution fixing a 6-arc (e,f,g,h,m,...).
Then we have again (Gﬁ)3 =1, by a similér argument. Hence
A(e) = <b :Eaa’g,%9§’ﬁ>
with defining relations the same as those of A(d,e) plus the following:

n? = (he)? = (hg)? = (mb)> =1,

(dh)z = eg, (fh)2 g, (ch)2 = defg.

Only the last relation needs justification. We have
A 2~AA ~
(th)“gfd ¢ <e>,

A2

proved in the same way as (ﬁg)ZEES € <&>. Thus either (¢h)” = ﬁz%g or
h'.

(Eﬁ)z = 3%5. In the second case we need only replace ﬁ by ﬁg = Indeed,

we then have

@2 - chgehg = chcgehg
= &% = dets.
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This completes the proof in the case s = 7.

We summarize the result by giving the amalgam (X,Y;H) in

terms of generators and defining relatioms.

Thus
X = <a,b,ec,d,e,f,g>,
Y = <b,c,d,e,f,g,h>,
H=XnY = <b,c,d,e,f,g>,

2 2 2 2 2 2 2 2

A =pb =" =d =" = =g =0" =1,

(@)% = ®e)? = (c)? = (@)% = (en? = (g% = (@) = 1,
(ac)? = (ce)? = (eg)? = 1, |

)2 = c, @H%=e, ()’=g,

(a)? = be)? = (en)? = (dp)? = (em? = 1,

(ae)2 = c, (cg)2 = e,
(bf)2 = ce, (dh)2 = eg,
2 2 2
(af)” = bede, (bg) = cdef, (ch) = defg,

(bh)3 = 1.

~
[
2]
~
w
il

9. SOME REMARKS ABOUT AMALGAMS

Let (X,Y;H) be a simple amalgam and let (X',Y';H') be a
transitive subamalgam of it (see section 2 for the definition). Then we
claim that the only subgroup of H which is normalized by both X' and
Y' is {1}. 1In particular, the subamalgam (X',Y';H') is simple.

The proof is easy:‘ By Theorem 9 we may assume that (X,Y;H)

is the amalgam associated to (G,A) where G 1is a connected bipartite
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graph, with underlying partition (V+,V-) of V=V(G) and A is a locally
1-transitive subgroup of Aut (G) preserving V+ and V. Say X = A(a)
and Y = A(b) where {a,b} 1is an edge of G, ae V+, beV. Let A'
be the subgroup of A generated by X' and Y'. By hypothesis A’ is
transitive on V+ and on v. If NsSH is normalized by both X' and
Y' then N fixes a and b and also every vertex z(a) and z(b) for
zZ € A'. Since V+ and V  are two orbits of A' and a ¢ V+, beV,
it follows that N fixes every vertex of G. This implies tha; N = {1}
because A < Aut(G).

We leave to the reader to find 2 purely group-theoretical proof
of this result, which is not difficult.

Second remark is about finite simple amalgams (X,Y;H) of degree
(d+,d—). We claim that if this amalgam is proper and a prime p divides
the order of H then p < d+ or p < d . Indeed, then we héve (G,A) as
in the first remark.

If o e H is an element of order p and if p 2 d+ and
P2 d~ then since o fixes the vertices a and b these inequalities imply
that o must fix all neighbours of a and b, etc. Thus o = 1 and we

have a contradiction.
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