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Abstract

We present a randomized parallel algorithm for finding a
gimple cycle separator in a planar graph. The size of the
separator is O(+/n) and it separates the graph so that the
largest part contains at most 3 -n vertices. Our algorithm
takes T = O(log?(n)) time and P = O(n + f11¢) processors,
where n is the number of vertices, f is the number of faces
and ¢ is any positive constant. The algorithm is based on
the solution of Lipton and Tarjan [8] for the sequential case
which takes O(n) time. Combining our algorithm with the
Pan and Reif [12] algorithm, enables us to find a BFS of pla-
nar graph in time O(log®(n)) using ,%i;}- processors. Using
a variation of our algorithm we can construct a simple cycle
separator of size O(d - 1/f) were d is maximum face size.

1 Introduction

Many problems can be performed fast in parallel. Probably
one of the easiest to explain is how to construct the transitive
closer of a matrix using matrix multiplication and doubling-
up. As a consequence of this, one can construct the BFS
of a graph in O(log?(n)) using n® processors'. Since BFS
of a graph can be performed in O(n + m) time sequentially,
where m is the number of edges, it is not clear that BFS
a8 deacribed above will ever be of practical value. The goal
of this paper is to find a fast parallel algorithm which use
a minimal number of processors. A related problem to the
BFS of a graph problem is that of finding separators of a
graph:

A subset of vertices B is a separator if the remaining
vertices can be partitioned into 2 sets A and C such that
there are no edges from A to C, and |A[,|C| < 3 - n. The
sets A, B, C form a partition of V.

A useful method for solving many problems is “divide-
and-conquer®. This method has been used to design sequen-
tial as well as parallel algorithma. In graph problems (and

*This work is supported by National Science Foundation grant
DCR-8514961

1The complexity of BFS of a directed graph was improved to
the complexity of matrix multiplication over the integers [5).
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related problems), we usually need to find a separator in the
graph in order to apply “divide and conquer”.

Finding 2 small separator can be used to solve problems
such as layouts for VLSI [6] [16], nested dissection [7] in
numerical analysis, and for efficient message routing [2]. In
particular Pan and Reif [12] showed how to solve the BFS
problem given a family of small separators.

The simplest class of graphs with small separators is
trees. Trees have separators of size 1. We will use this fact
throughout this paper. Another important class of graphs
with small separators is the planar graphs. A planar graph
is a graph G(V, E) that can be drawn on the plane, so that
there are no edges crossing. Many problems in VLSI layout
and Numerical Analysis are posed for planar graphs.

Lipton and Tarjan [8] showed that for every planar
graph we can find a separator B of size /8- n. Note that
their result is optimal up to multiplicative constants in the
worst case, since there exist planar graphs for which the
smallest separator is of size O(\/n). The /n X /n grid is an
example.

In a planar graph every simple eycle separates the
graph to the “inside” and the “outside® of the cycle. A
simple cycle separator is useful in “divide and conquer”® when
we unite partial solutions; and for communication problems
[2]. The second author proved that in every planar graph we
can find a simple cycle separator of size V8- d - n [10].

1.1 Previous Results

In 1979 Lipton and Tarjan [8] presented a sequential algo-
rithm for finding a separator of size \/8n for planar graphs.
Their results were improved in 1981 by Djidjev [1], to get a
separator of size 1/6n. The first author [3] improved the size
of the separator to I -1/n. In 1984 the second author showed
that a simple cycle separator, as defined in [10], exists and
can be found efficiently.

All these algorithme require a BFS? of the graph as
input. In particular, given a BFS of a planar graph a sim-
Ple cycle separator can be found in time O(log(n)) using an

2A BFS of a graph with respect to some vertex s is a labeling of
the vertices such that the label of a vertex v is the distance from
8 to v,



optimal number of processors [10]. However the algorithm
assumes that a planar embedding and a breadth first search
of the graph are given. Thus, one has reduced the problem of
finding a small separator to the BFS problem. But all known
parallel implementations of BFS use matrix multiplication
and thus a processor-time complexity, P- T of O(n® - log(n)).
Although the complexity of the BFS was improved recently
by us [5] to P = M(n) processors® and T = O(log?(n)) time,
the processor-time complexity is at least O(n?), which is the
trivial lower bound for Matrix Multiplication.

In 1985 Pan and Reif [12] gave a reduction of BFS
to the problem of finding a family of separators. They
showed that given a family of /n separators, they can
compute the BFS of a graph in T = O(log®(n)) time and
P=0( 102‘%) PTOCEssoTS.

Recently we [4] showed that a small separator of a pla-
nar graph can be found in 1/n - log(n) time using Y7y pro-
cessors, without requiring the BFS of the graph as input.
Although this result gives optimal processor-time it is not a
polylogarithmic time algorithm. But, because the constant
in this algorithm are very small we recommend it for actual
implementation.

In this paper we present 2 quite different algo-
rithm for finding a separator. Qur new algorithm
uses T = O(log?(n)) time, and P = O(n + f*<) processors,
where ¢ is any positive constant. Combining our algorithm
with the Pan and Reif’s algorithm [12], we can also compute
BFS of a planar graph in O(log®(n)) time using O( 1'::—;) pro-
cessors. The same algorithm, with same complexity, can be
used for solving single source shortest paths problem with ar-
bitrary weights on the edges, as well as, solve linear systems
which possess an underling planar graph, see [13].

1.2 Informal Description

In this section we give an informal description of our algo-
rithm to find a simple cycle separator in a biconnected planar
graph. In the following discussion n will denote the number
of vertices, f the number of faces, and d the maximum face
size. Recall that a 2-connected planar graph has a simple
cycle separator of size v/8d - n[10]. Note that the number of
vertices in a biconnected planar graph is at most f-d/2, since
every face has at most d vertices, and every vertex belongs
to at least two faces. Using this fact we can rewrite the sim-
ple cycle separator theorem in terms of faces as 2-d - \/J. *
The new formula is the basis of our algorithm. We want to
reduce the number of faces without increasing the maximal
face size too much.

3In the rest of the paper M(n) will denote the number of op-
erations required to multiply matrices size n? over the ring of
integers. The best known result is M(n) = n?-36¢

iWe can prove
that the separator size is O(1/ pec8ize of face F)2), but we

do not need this stronger result.
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Our idea is to repeatedly union adjacent faces, until
their number is emall enough, so that we have enough pro-
cessora to perform BFS using matrix multiplication. In this
process, we have to take care that at most 2/3 of the origi-
nal graph is contained in any face, that the size of the faces
does not increase too much and the remaining graph is still
2-connected. When the number of faces is emall enough, we
find a BFS of the faces [10] and then use Miller’s algorithm
to find a simple cycle separator.

To keep track of what we have removed from the graph
to form a face, we will assign weights to the faces as in [10].
The advantage is that when we union faces, the weight of the
new face is the sum of the weights of the faces, vertices and
edges inside the new face. Thus, our algorithm and Miller’s
algorithm differ from previous methods in that the weights
are on faces, vertices and edges, rather than only on vertices,
and the sum of all the weights is 1.

The main problem in our algorithm is how to umion
the faces in such a way that the new faces will not have long
boundaries. The naive approach of choosing at random some
adjacent face and uniting with it may yield a long boundary.
Our idea is to union a “neighborhood” of faces. For that we
need to find the neighbors of every face. We define neighbors
by number and not by distance. That is, we want the k
nearest neighbors of each face. Note that they can have a
distance k in a long and narrow graph or 1 in a wagon-wheel
graph. These k-neighboring faces are united together. We
can perform BFS on their union and, as we later show can
find some BFS layer which is small and close to the boundary.
The method is similar to Lipton and Tarjan [8].

We pick a maximal disjoint subset of the k-
neighborhoods as the bases of our construction. That is, we
define a graph G° in which vertices are the k-neighborhoods,
and two vertices share an edge sff the k-neighborhoods they
represent share a face. Finding a mazimal independent set in
this graph, enables us to find a small set of k-neighborhoods,
such that every k-neighborhood is close in the number metric
to some member of that set.

1.3 The Algorithm - A General Outline

Let G(V, E) be an embedded planar graph, n the number
of vertices, f the number of faces, d the maximal face size
of any face, P = F't< the number of processors for some
positive constant € and k = n%/3., We will show that the
while loop of the algorithm below will be execuied 2 finite
number of times.

The Algorithm

Let Reduce-G(G(V, E), k) be an operation that reduces the
planar graph G(V, E) into another embedded planar graph
G'(V',E') such that G’ is a subgraph of G and the number
of faces in G’ is O(f/k). We describe this operation in detail
later.




Our algorithm is:
1. Go(Vo, Eo) « G(V, E);i « 0;
2. while P < M(f;-) do
ft—i+1; ke« [\/%J
Gi(Vi, E;) « Reduce-G(Gi—1(Vi-1, Ei-1), k);

3. Find a face BFS of the faces G;.

4. Find a simple cycle separator in G; (using Miller’s al-
gorithm [10]).

2 DBasic Parallel Algorithms

In this section we present several parallel algorithms which
we will use later. The first finds the k nearest neighbors
of each face. We will call these the k-meighborhoods.
This algorithm also gives us a BFS in faces within each
k-neighborhood of every face. The second algorithm finds
a maximal set of k-neighborhoods such that each pair of k-
neighborhoods are face disjoint, The third algorithm, using
the results of the first and second algorithms, finde a face
BFS of the graph from the boundaries of the independent
set of k-neighborhoods. This gives us a set of larger disjoint
neighborhoods of G. Between each layer of faces we also get
a layer in G of edges. We divide each layer of edges into
simple cycles and get a tree. We compute the weight in-
side and outside each cycle. We call the boundaries between
faces that belongs to different of these larger neighborhoods
the Voronoi Diagram of the graph. The fourth algorithm
generates a Voronoi Diagram of the graph.

2.1 Finding k-neighbors

This section is based on Miller’s [10] Breadth-First Search in
planar graphs. We define a new graph &(V, £) such that ¥
is the set of the faces of G, and there is an edge between two
faces iff they share a vertex in G. The distance between two
faces is the length of the minimal path between them in &.
Note that (¥ is not necessary planar.

To find the k nearest neighbors of each face, we want to
find for every face F' a set of k faces, such that the distance
from F to every face outside its set is greater than or equal
to the distance from F to every face in the set. Note that
the k nearest neighbors are not unique. We call any such set
the k-neighborhood of F, denoted by C(F).

Choose k such that P > f.k? where P is the number
of processors and k = /2, In this algorithm we assign k2
processors per face, and for each face F' we create C(F) -
a subset of faces of size k that form a sub-connected com-
ponent, such that F is the center. Using the “doubling up”
technique, we can complete this step in O(log(n)) time.

Assume that for every face F we have:

1. C(F) - a vector of length k, which represents the sub-
component of F.
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2. W(F) - a k x k matrix, used as a working space.

Each element of C(F) and W(F) is a pair (face, distance),
Initially C(F) contains only the immediate neighbors of
(distance 1).

Note that a face may have a large number of lleighbors,
go that naively collecting all its neighbors may take O(n?),
The solution is that every vertex v, with degree more than
two, computes a list of its neighbors (if there are more than
neighbors, then just use the first k). Using this information,
every face can union the lists of all its neighbors, and drop
duplicates using sort. The complexity is O(log(d - k)). (We
assume that k > d. If the assumption is wrong, we can check
first those faces that share an edge).

After every face has a list of its neighbors we iterate
at most log(k) times to obtain a k-neighborhood. In each
iteration, for every F' ¢ C(F), we copy G(F*) into a distinct
row W(F) (updating the distances), then sort W(F), remove
duplicates so that for each face in W(F) we keep only the
shortest distance from F found so far. Then copy the first
non-nil elements (up to k elements) back into C(F).

procedure Find-k-Neighbors(G(V, E), k)
for every face F € G in parallel do
C(F) « {(F',1)|F' and F share a vertex};
for i:=1 to [log(k)] deo
for every face FE G, 1 <4,j < k in parallel do
Copy the neighbors of every face in C(F)
into W(F). Compute their distance from F.
SORT(W(F)) to drop duplicates.
SORT(W(F)) by distance.

Copy the first (up to k) elements of W(F) to C(F).

end Find-k-Neighbors

Definitions
1. Let C*(F) denote C(F) before the i** iteration.

2. Let distance(F, F') be the minimal distance (in faces)
between F and F .

Lemma 2.1 Vi,VF € G,
|C(F)| = min(k, |{F'|distance(F,F') < 2°}])

Proof: The proof will be given in the full version of the
paper. a

Lemma 3.2 Assuming that the graph is connected and k <
f, after the algorithm Find-k-Neighbora every face F knows

all the distances to its k nearest neighbors (which belong to
C(F)).

Proof: Since the graph is connected and k < f, there are
at least k faces a distance k or less from F. After [log(k)]
iterations C(F) contains k vertices by Lemma 2.1. o

1
|




a 2.8 The algorithm takes T = log?(n) time and n+
1.k space using P = MAX(n, f - k?) processora.

Proof: Using k2 processors we can set the elements of W(F)
in one stepP, and sort k? in O(log(k}] time (and quite et
fciently, since we can use integer gorting). Removing du-
plicate clements can be done in constant time, compressing
W (F) (to remove null elements) in O(log(k)) time, and copy-
ing the first non-nil (upto k) elements into C(F) can be made
in constant time. We need n processors and O(log(n)) time
for the distance 1 list. We use O(k?) space per vertex, 8o
O(n - k*) space total. O

9.2 Finding an Independent Set

In this subsection we find a maximal set of k-neighborhoods,
MIS, such that each pair of neighborhoods contain a disjoint
get of faces. Recall that each k-neighborhood is a set of k
faces. Thus, the number of neighborhoods in MIS is at most
f/k. The idea is to define a new graph G°(V°, E°) such that
V° is the set of Taces of G, and in which two faces F, F' share
an edge in E° iff their neighborhoods C(F), C(F') share a
face. MIS is an independent get in this graph.

Let G(V, E) be a planar graph such that every FeG
has a vector C(F) of length k containing the k nearest ver-
tices and the distances from F to them. C(F) was computed
by the Find-k-N eighbors algorithm described in the previous
gection.

Note that G° is an inferseciion graph. That is, a graph
in which the vertices are sets of elemente, and there is an
edge between two gets §ff they have a common element. In
our case, the sets are the k-neighborhood of each face. Our
goal is to find a maximal independent set for this graph.

Luby [9] hase presented an algorithm to find 2 maximal
independent set in O(log(n)) time with O(m+n) processors,
where m is the number of edges. However, G* is not neces-
garily a planar graph, and may have a very large number of
edges. For example, consider a star: For k > 2 the center
face will belong to all subcomponents, 80 G° iz actually a
clique. Since we have only P =n- k? processors, we may not
have enough processors. We will give a general algorithm for
finding a maximal independent set in an intersection graph,
where P is equal to the input size (which is the sets descrip-
tion), and T is O(log(n) - log(log(n))) for the CRCW model
and O(log?(n)) for the EREW model. The same algorithm
can be used for other intersection graph problems such as
maximal matching, with the same processor and time com-
plexity which were mentioned above.

The following algorithm is Luby’s independent set [9)]
algorithm.

procedure Luby-Independent-Sef( G(V, E))
MIS— 0;
while V # 0 do
Each vertex picks a random number of gize (1,n%)
for all v € V in parallel do
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1f v has a number greater then all its neighhbors
then add v to MIS;
remove v and its neighbors from V; i
fi
od
od
end Luby-Independent-Set

Luby proved that with high probability this algoxrithm will
halt in O(log(n)) iterations.

We wish to compute 2 maximal independemt set for
G*(V*, E°), but since we do not have enough Processors to
do it directly, we instead compute for every face F the list
L(F) of all F’ such that F € C(F'). We show that finding
» maximum of the lists of all vertices in F’s subcomponent
is equivalent to finding the maximum in the set of meighbors
of F in G°. We will call this set MIS.

The procedure Find- Containing-Components finds, for
every F, the list L(F) = {F'|F e C(F)}.

procedure Find-Co ntaining-Components(G(V, E))
Create an array LL of length f - k;
for every face i€G, 0< <k in parallel do
LL[k - i+ j] + the j** neighbor of face i.
od
Sort LL in lexicographic order;
for every i € V in parallel do
use binary-search on LL to find where L(%) begins;
use binary-search on LL to find where L({) ends;
od
end Find-Containing-Components

Lemma 3.4 Procedure Find-Containing-Components takes
O(log(f)) time with O(f - k) processors.

Proof: Since for every face F, |C(F)| = k, we can set the
array LL in constant time using f - k processors. Both the
SORT and the SEARCH on an array of length f - k takes
O(log(f - k)) = O(log(n)), by the definition of k.

If we try to run Luby’s algorithm we have to solve two
problemas:

1. How to check if a face is greater than all it neighbors.

9. How a face can notify its neighbors that it is in the
independent set.

We will use the L’s we computed in the previous algorithm as
acommunication centers”. Every set of processors that was
assigned to some list L will check which is the maximum and
if it is unique. After the maximum is found, all the processors
of the smaller elements of the set notify their faces that they
are not in the set. If a face does not get such a message, this
face is in the set.

The second problem is solved in a similar way. If a face
is in the independent set, all its k& neighbors notify their L
get to delete the face they belong to from the graph.




Lemma 3.5 The complezity of the algorithm in the CRCW
model is O(log(n) - log(log(n))) with O(n - k) processors.

Proof: In his paper [9] Luby proves that with high
probability O(log(n)) iterations are suffice. Each itera-
tion can be implemented in O(log(log(k))) £ O(log(log(n)))
time, since the max operation requires O(log(log(k))) time
in CRCW model [15], and all other operations take constant
time in the CRCW model. o

Lemma 2.6 The algorithm applied on G(V, E), computes a
mazimal independent set for the graph G°(V°, E°).

Proof: The proof will be given in the full version of the
paper. O

Lemma 2.7 MIS contains at most f/k k-neighborhoods

Definition 2.8 An I-set is any region oblained from a k-
neighborhood in MIS by removing the last layer if it is not a
complete layer of s

Since each I-set consists of full layers in the BFS in &

their boundary can be written as nonnesting simple cycles,
see [10].

2.3 Computing planar graph layering

In this section we compute the distance of each face not in
an I-set to the nearest I-set boundary. We will then use
this information to find a noncrossing BFS spanning forest
of the faces not in any I-set. We can then combine this BFS
with each I-get BFS spanning tree obtaining a BFS spanning
forest for all of &¢. We start by constructing for each face
not in an I-set the distanceto the boundary of an I-set. We
present the algorithm in procedure form, see Figure 1.

Procedure: Find-layers

1. Mark every face in an I-set level 0.

2. Mark every face level 1 that shares a vertex with an
I-aet boundary and is not marked.

3. In parallel for each face F not marked compute the
distance d(F) to the nearest face in its k-neighborhood
which is marked 1.

4. For all unmarked faces mark them 1 + d(F).

Figure 1: Finding the Distance to Your Nearest I-set.

To see that the algorithm marks all face we must show
that every k-neighborhood contains a face marked 1. We
state this as a lemma:

Lemma 2.9 Every k-neighborhood which is not in I-sets con-
tains a face marked 1.
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Proof: Since MIS is a maximal independent set all k-
neighborhoods must contain a face from some set in MIS.
It will suffice to see that for each set § in MIS all faces are
marked 0 or 1. But every face in § is either in the I-set of
S or sharing a vertex with it. a

Lemma 2.10 The Procedure Find-layers uses O(log(k))
time and n + f - k processora.

Prooft We can check if the last layer is full or not in
O(log(k)). Finding level 1 can be made in time O(1) by
every vertex checking if any of its faces are in level 0; and
then every face checks its vertices if any touch a face in level
0. Every face can check its component in log(log(k)) time
[15]. O

Using the layering of the faces that we have just com-
puted we want a BFS spanning forest from the boundaries
of the I-sets. The spanning forest is in the face-incidence
graph G, But & need not be planar. We will construct the
forest such that it is noncrossing:

Definition 2.11 We say a subgraph H of the face-incidence
graph & of G is noncrossing if no two edges of H cross, that
i8, there do not ezist four faces A, B,C, D of G that share a
vertez z in the order (A, B,C, D) and A is connected to C in
H via z and B is connecled to D in H wia z.

We say that T is a BFS (spanning) forest from a
subset S of the vertices of G if T is a (spanning) forest and
every component of T contains exactly one vertex from S
and the paths to this vertex are shortest paths to 5.

Procedure BFS-Forest

1. If a face F of mark ¢+ 1 shares an edge with a face of
mark ¢ then pick such face F' and set the parent of F
to F'.
Else pick the face F' with mark 1 and smallest index
which shares a vertex with F and set the parent of F
to F'.

Lemma 3.12 Procedure BFS-iree generales a noncrossing
BFS spanning forest of (3 from I-set boundaries.

Later we will break every I-sets component into layera
by their distance from the center. This is easy to do because
we have the BFS tree of every component.

2.4 Computing Induce Weights on a
Set of Cycles

In this section we consider the problem of given G and a
collection of simple cycle Ci,...,C: find the interior and
exterior weight of each cycles. We could always solve the
problem for each cycle separately but this would give us an
algorithm which uses O(¢-n) processors. We will describe an
algorithm which uses only O(n + 2:=1 aize(C;)) processors
for the case when no two cycle interlace.



Definition 2.18 Two simple cycles A and B interlace in a
planar embedded graph G if there ezist two edge of B one in
the interior of A and the other in the ezterior.

If the cycles Cy,...,C: are vertex disjoint then no pair
of cycles interlace. We get a natural tree defined by the
regions of G with respect to these cycles.

Definition 2.14 The regions formed
by the cycles Ci,...,C: are the equivalence classes of faces
defined by the relation:

F = F' if no cycle C; separates F from F'

The definition is not trivial when the cycles share edges
because regions may not be connected, see Figure 2. In the
figure the “inside” and the “outside” are the same region.

Figure 2: An Example of a Disconnected Region.

The region-cycle tree has a vertex for every region
formed by the cycles and an edge for each cycle. A region
vertex is adjacent to a cycle edge in the tree if the cycle shares
an edge with the region. It follows that each region forms a
connected subgraph in the geometric dual. Using this fact
we can compute each region and its weight. The weight of
a region does not include the weight on it boundary. The
weight of a tree vertex is the weight of its corresponding
region and the weight of a tree edge is the weight of its
corresponding cycle. Thus we can determine the tree and
its weights. We can then use either the Tree-Tour [14] or
the Parallel Tree Contraction [11] to find the weight on the
interior of each cycle and thus the exterior weights, see [10].

If the cycles C1, . - -, Ct are not disjoint then the problem
is slightly more complicated. In this case the regions may no
longer form connected components in the geometric dual G°.
If we want the regions and cycles to form a tree we must even
introduce empty regions. Finally the weight of cycle vertices
in the region-cycle tree is not well defined since several cycles
may share vertices and edges. In all the applications in this
paper the unweighted region-cycle tree is either given or easy
to construct. We have found an algorithm to find this tree
which we will present in the full paper. Assume for this
paper that the unweighted region-tree is always given.

Our idea is to use Parallel Tree Contraction to both find
the regions and compute the induced weights on the cycles
simultaneously. In O(logn) time we can remove all edges
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of G which do not belong to any of the cycles. Notice now
that the leaves of the region-cycle tree are simply those faces
whose boundary is one on the cycles C;. Thus the RAKE
operation is straightforward. If a face F is a region and its
boundary is a cycle C; then we remove Ci from the list of
cycles remove F and C; from the tree, and remove the mark
that indicates that edges of C; belong to the cycle C;. The
COMPRESS operation is slightly messier. Here each cycle
determines if it is of degree 2 in the region-cycle tree by in-
spection of the tree. Using the deterministic Parallel Tree
Contraction algorithm, a constant fraction of these cycles
which are independent in the tree remove themselves. Be-
tween phase of the Parallel Tree Contraction we remove all
edge which do not belong to any cycle. During the expansion
phase the induced weights on the cycles which were remove
by COMPRESS can be evaluated.

Lemma 2.15 Given an embedded planar graph G and a set
of noninterlacing cycles C1,...,Ce one can compute the in-
duced weight on the exterior and interior of each cycle in
O(log? n) time using at most n + Y iz, 832¢(C) processors.

Tt it well known that every tree has either an edge which
is a separator or a vertex whose removal decomposes the tree
into subtrees of size at most 1/3 of the weight of the original
graph. In our application we view a planar graph as a tree
where the vertices correspond to regions and the edges cor-
respond to simple cycles. Since the cycles may share vertices
and edges we cannot view our tree as simply weighted.

Lemma 2.16 IfG is a weighted 2-connected embedded planar
graph and Ci,...,C: is a collection of noninterlacing simple
cycles, then either one of these cycles is a separator of G or
one of the regions formed by the cycles has all its induced face
weights at most 1/3.

Proof: The Lemma follows from the two facts: (1) the
region-cycle graph is a tree and (2) the interior weight plus
the exterior weights of any simple cycle is at most one. 0O

2.5 Voronoi Diagrams

Using Procedure BFS-Forest wecan find a spanning forest for
&. In this subsection we define and compute the boundary
between the trees in this forest as a subgraph of G. This
subgraph has a strong analogy between it and the Voronoi
diagram for geometric objects in the planar. We shall givea
graph theoretical definition of Voronoi Diagrams.

Definition 2.17 We say that a subgraph H = (V',E') of G
ia the Voronol Diagram of G with respect to a noncrossing
(spanning) forest T of the face-inei dence graph G if the edges
E' of H are those edges ¢ such that the two faces common to
¢ belong to different components of T. The vertices V' are the
vertices induced by E'. If T does not span & then we add to
E' those edges such one of its faces belong to T and the other



does not. Thus H contains boundary edges between faces in T
and those not in T'. These edges can be decomposed into a aet
of nonnesting simple cycles which we call boundary cycles.

To continue the analogy between Voronoi Diagrams for
geometric objects and topological objects, let S be a set of
faces of G such that every face is contained in exactly one tree
of T. We call H the Voronoi Diagram of S with respect
to T. This definition can be extended from a set of faces
to any set of nonnesting cycles where T is a forest created
by from the cycles. We call these the base cycles of the
(spanning) forest as well as the base cycles of the Voronoi
diagram. Note that we often pick T to be a BFS forest from
the base cycles.

In the case of a single source BFS searches of &, the
boundary between layers were always very nice. They de-
composed into nonnesting simple cycles in a very natural
way. Here we must be a little more careful. We do not want
the decomposition into cycles to cause cycles to cross an edge
of the forest T. Thus we want the boundary of a region to
be decomposed into cycles as long as the cycles do nof par-
tition a region. We will simply call this “the boundary of
the region decomposed into cycles®. We discuss this fur-
ther in the full paper. A planar graph G (in solid lines) and
spanning forest (in thin lines) are shown in Figure 3. The
boundary of the larger tree decomposed into cycles creates
the two cycles: (a,b,¢,d) and (e, f, 9, k,4,5,k,1). By making
two virtual copies of the vertex v, one common to the edges
f,g and the other common to j,k, all the vertices of these
two cycles are of degree 2, so we can think of both cycles as
simple. We call these the virtual vertices of the Voronoi
Diagram.

Figure 3: An Example of the Boundary of a Region
Decomposed into Cycles.

Lemma 2.18 The virtual Voronoi Diagram described above
is a planar graph and the boundary of every face is a set of
nonnesting simple cycles .

Proof: The proof will be given in the full version of the pa-
per. O
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2.8 Creating a spanning tree

In this algorithm we want to take the faces BFS tree of faces
and create a spanning tree of vertices. The distance between
vertices of the same face is at most d/2. Therefore we expect
the radius of the spanning tree of vertices to be at most the
radius of the BFS tree of faces multiply by d/2, see figure
below.

Definition 2.19 Level(F) is the level of face F in the faces-
BFS tree.

Definition 2.320 A linkage vertex is a verlez that belongs io
two faces in different levels.

procedure Build-spanning-tree(G(V, E)),
for every face F in parallel do
Give every vertex in F the value & - Level(F)
plus the distance to the nearest linkage vertex.
od
for every vertex v in parallel do
Give v the minimum of values it got in the
previous step. Link every vertex to its neighbor
with the lowest value.
od
end Build-spanning-iree

Lemma 2.21 For every vertez v such that dist(v) > 0, there
is some vertez u, dist(v) > dist(u).

Prooft For some face F,
dist(v) =DIST(u, F) = § -Level(F)+distance(v, u) where u is
a linkage vertex. Then there is a neighbor w € F such that
distance(v, u) > distance(v, w), so dist{v) >disf{w). u}

Lemma 2.22 The complezily of the algorithm is O(log(n))
time using n processors.

Proof: The algorithm uses doubling up on the vertices
around every vertex and every face, so the processors com-
plexity is bound by the number of edges. (]

3 Reduction Step

In this section we present our algorithms that takes a planar
graph and returns a subgraph such that it still contains a
emall simple cycle separator. This separator will be a sepa-
rator for the original graph. In particular we show:



Theorem $.1 There exist a parallel algorithm which takes an
embedded weighted 8-connected, planar graph G with [ faces,
each face of size at most d, and no face weight > 2/3 and
returns o subgraph H that s 2-connected with at most 3f/k
faces, each of size at moat 5 - d - VE, and no induced face
weight > 2/3. This algorithm will use O(log® n) time and
n - k? processors.

The algorithm in Theorem 3.1 is the same as the operation
Reduce-G described in section 1.3. We will call this algo-
rithm Reduce-G.

We will assume that the graphs G and H have the fol-
lowing compact representation: Each chain - a maximal sim-
ple path with internal vertices of degree two, has been re-
placed by an edge plus a number indicating the length of the
original chain. Onward this section let G = (V, E) be an
embedded weighted 2-connected planar graph with f faces,
each of size at most d, and no face has weight > 2/3.

3.1 Finding a base cycle for each I-set

In Section 2 we found the k-neighborhoods of each face of
G and a maximal independent set of these neighborhoods.
In this subsection we reduce the general planar separator
problem to the case where all I-sets have spanning trees of
diameter O(dv/k) we allow the size of the face which is the
center of the BFS to be of size O(dvk). We call this cycle
the base cycle of the I-set. Note that after running proce-
dure Find-Base-Cycle the boundary of an I-set need not be
a simple cycle. We will use the fact that each I-set has a
base cycle in Subsections 3.2. In Subsection 3.3 we address
the issue of the boundaries not being simple. We next give
the main procedure, Find-Base-Cycle, in Figure 4.

If procedure Find-Base-Cycle has not found a separator
then it has constructed a subgraph R of G. Note that the
original BFS of § and its layering restricted to R is now
a BFS and layering of B from the face C. This fact follows
gince C is in the old layering of §. Note also that the number
of levels in R is at most vk. One must show that Miller’s
algorithm in step 7 will return a separator of size O(dVE).

Lemma 8.2 We can find a layer inside every I-set such that
the layer size plus twice the distance in (faces between) cycle
and boundary plus is at most 2 - VE.

Proof: The proof is similar to Lipton and Tarjan (8].
We give every layer a value the consist of it size plus twice
the distance to the boundary and find a minimum. O

3.2 Finding a small diameter spanning
forest
In the last subsection we show how to reduce the general

case to the case where the boundary of each [-set is a simple
cycle. In this section the goal is to find a spanning forest and
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procedure Find-Base-Cycle
IN Parallel for each I-set § do

1. Compute the layers of the neighborhood § up to the
last complete layer.

2. Divide each layer into simple nonnesting edge disjoint
simple cycles.

3. Compute the interior and exterior weight of each sim-
ple cycle. If any cycle is a separator return this cycle,
we are done.

4. Find the size of each layer. Compute for every layer
a2 value, it size plus twice the distance from the last
layer.

5. Find the layer L with the lowest value.
6. Use this layer to separate G into regions.

7. Pick a region R such that the induced weight on each
of its faces is at most 1/3.

8. If the region R contains the center face of the I-set S
then apply Miller’s algorithm to R using the BFS from
S.
Else Let C be the only simple cycle of L common to
to R. Return R with base cycle C, and the BFS tree
of 3 restricted to R.

Figure 4: Finding a Base Cycle for each I-set.

its Voronoi diagram of these cycles satisfying the following
four conditions:

1. The size of each base cycle or boundary cycle is

O(avR).
2. The induced weight on a base cycle is at most 1/3.

3. The number in base cycles of the diagram is at most
flk.
4. The radius of the spanning forest is O(d - VE).

Note that to maintain these conditions the base cycles
will not necessarily be the boundaries of the I-sets. We give
the algorithm in procedure form, Figure 5.

Lemma 3.8 If a face F is in distance § > Vk from the near-
est L-set boundary then there is a small cycle (size d - VE)
between it and the boundary.

Proof: Assume not. Between every two layers we have
at least 2 - vk faces (to “give” enough edges to two layers
with dv/E edges each). Therefore we have cycles of 2 - vk
faces each. k faces in these cycles are in distance vk from
every face in the top; (By going down to a layer, and then
VvE/2 to each side). That proves that the k-neighborhood of
this face does not contain an independent set face, in con-
tradiction to the way we built the I-sets. O
The previous Lemma proves that we can always find a small



procedure Generale-the- Voronoi-diagram

1. Using the distances computed by procedure Distance-
to-I-set compute the layers of the BFS and decompose
each layer into noninterlacing edge disjoint simple cy-
cles.

2. Find all the simple cycles above of size at most dv/k.
Add to this set of cycles the base cycle each I-set com-
puted by procedure Find-Base-Cycle.

3. For each simple cycle compute its interior and exterior
weight.

4. If one of the cycles is a separator then return it and
quit
else Find a region R with all induced face weights at
most 1/3.

5. Using the natural partial order on the simple cycles
in R given by the BFS forest, set the base cycles for
R equal to the minimal cycles, (from step 2) of this
order.

6. Construct the spanning forest T from the base cycles
using procedure BFS-Forest. Use this forest to com-
pute Voronoi diagram.

Figure 5: Finding Voronoi Diagrams

cut that separates the graph. near an i-set boundary If the
heavy part is outside the cycle, we will use this cycle later to
create new faces size O(d - vk). If most of the weight is in
the outside we know (from previous chapter) that the radius
of the spanning tree of the Iset is at most v/k. If most of
the weight is inside the cycle we will go into the cycle, and
drop the outside. The figure below demonstrates this case.
The top cycles are near the I-sets, and the bot cycles are
small cycles that separates small Portlons of the graph. The

\\\ \\\\\\\\\"\\

Lemma 8.4 Every cycle is in distance, in both directions®,
of at most \/k from the nearest boundary or a small cycle.

Prooft The proof is similar to the previous Lemma,
and we will leave it to the reader. O
That means that when we go inside we still have small cycles
inside near to each other.

5“ingide” the cycle and “outside® the cycle
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Lemma 3.5 The BFS tree of R return in step T has radius
of at most 2-d - k.

Proof: The radius of the tree inside the I-set is at
most /k (see previous section). And the distance from the
boundary to the small cycle outside is at most 1+ V& O

3.3 Mesa partition

After applying algorithm Generating the Voronoi Diagram
on the graph G, we have found at most O(f/k) base cycles,
discarded their interiors and found a Voronoi Diagram for
them from a spanning forest of the base cycles in & of di-
ameter at most O(v'k). Each region of the Voronoi diagram
contains exactly one base cycle but the boundary of the re-
gion need not even be a connected subgraph of G. In this
subsection we show how to reduce the problem to the case
when all the boundaries are (virtually) simple and form a
2-connected subgraph of G. Let R be one of the regions, C
its base cycle, and B4, ..., B; the boundary of R decomposed
into cycles described in previous section.

Even though it is not necessary we give our intuitive
picture of R. We think of R as a relief map with boundary
C. The contour lines of this map are the layers. The map is
of the Southwest region which has mesas. In R the mesa are
the faces Bi,..., B:. Between these mesas are ridges. We
show that in our case the ridges form a spanning tree of the
mesas. Our map contains no local minima. We partition the
mesas via the ridges. The formal definitions are given below.

Let T be the BFS spanning of & from C. We say that
an edge (vertex) e (v) of R is a ridge edge (vertex) if the
induced cycle in T from the two faces common to e (v) forms
a nontrivial partition of the set By,..., B; for t > 1. We will
show that the ridge edges and vertices form a forest that
spans the boundary cycles By,..., B;.

procedure Mesa-Partion

1. Find all ridge edges and vertices.

2. For every ridge vertex and face common to it find the
path back to C.

3. For each path in R above find the induced path in R.

4. Viewing pairs of pathe as noninterlacing simple cycle
of R, compute the weight on the interior and exterior
of each cycle.

[
“

If one of the cycles is a separator them return the
cycle, we are done.
else Find a region with all induced face weights > 1/3.

6

Return this region.

Figure 6: Determining the Simple Cycle Boundary for
each I-set and Removing all Others



3.4 Computing the Face-Vertex Dual
Subgraph

In this subsection we construct the graph as required in The-
orem 3.1. From our input graph G we have constructed a
possible subgraph of G which satisfies all the input condi-
tions. Since a separator for this subgraph will be a separator
for G we set G to be this new graph. By Subsection 3.2
we have found a Voronoi subgraph of G satisfying the four
conditions.

Let us look on the Voronoi diagram. The vertices are
sometimes common to faces of two components (type 1 ver-
tices), and sometime to faces of three or more components.
(type 2 vertices) There are paths between two type 2 vertices
composed only of type 1 vertices. We will call these paths
meta-edges.

Lemma 3.6 The number of meta-edges is af most 3 - f/k.

Proof: As we haveshown in section 2, the extensions of
I-sets create a planar graph. The meta-edges are the edges of
this graph, and the Lemma follows immediately from Euler
formula. O
The following Figures describe the cycles we expect to get.

Lemma 8.7 We have a new face around every meta-edge.
The face size is at most d- (4+5 - Vk)

Proof: The meta-edge separates extensions of two
I-gets. We create the face by paths from the centers of both
of them to both sides of the meta-edge, and we may have a
small cycle in both sides of the meta-edge. The total distance
in faces is: 2 + 2 - vk in each component, plus (1 + v/k) for
every path from each I-set to the small cycles, and we have
four such paths. We can translate every face size d into a
path of size d/2, so we get 4-d plus 4-d-+/k. Inside the two
small cycles we can go around the cycle using the shortest
path, and get & - VE for both cycles together. By summing
everything up we get the result we claim.

4 Applications of Reduce-G

4.1 Stopping the recursion

We apply Reduce-G repeatedly till one of the following con-
ditions hold:

1. The procedure Reduce-G returns a subgraph H which
ia a simple cycle separator.
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9. The number of faces is amall enough to compute a BFS
of the graph H via matrix multiplication in O(log?n)
using P processors.

4.2 Number of iterations

If we apply the procedure Reduce-G repeatedly, we can pick
a larger and larger value for k. Therefore we will need only
O(log(log(f))) iterations to find a separator using O(n) pro-
cessors. We show that for P = n'*< only a constant number
of iteration is necessary.

Define f; to be the number of faces in the reduced graph
after iteration ¢, and k; to be the k used in iteration i.

In the first iteration P=f-k* and fi =2 {-, but in
the second iteration P = f1 - k12, s0

p=rk=CL B=m=3

In the same way we can show that in the third it-
eration ks = (k¥)3/3 = k(3)")/3, and in the i** iteration
k; = kP /3% An upper bound for i can be obtained when
k; > f, since then we finish the algorithm. This implies
k= kD) 38 < 1.

If we take P = 2 - f (k* = 2), then an upper limit
to the number of iterations is: O(log(leg(f))). If on the
other hand we take k = f</2 where ¢ is some constant. then
the number of iteration is a fixed constant ¢ satisfying the
equation kg"/ﬁ' = f. Note that i is constant which only
depends on % for a large f. A small ¢ means a large constant,
and vice versa.

The separator size is increased also with the number of
iterations. Using the result of the previous section we can
conclude that the separator size will be about (3-5%)"/2 . 2.
d/f

It is instructive to compute the number of iterations for
a few values of P. If the number of processors P = n’® and
regular n® matrix multiplication is used, then two iterations
will suffice. For P = n''® we need only one iteration. Using
the processor efficient matrix multiplication these exponents
can be improved.

5 Conclusion

As mentioned in the Introduction we have found an optimal
algorithm for the separator problem that needs O(log(n) -
\/(n)] time, see [4]. It is open whether an optimal polylog-
arithmic algorithm exists.

Another open question is the BFS of planar graphs. Pan
and Reif [12] presented a good algorithm for BFS, but the
product P- T is about n'®. Can we find a BFS of a planar
graph in a more efficient way?
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procedure Face-veriez-dual

1. If the Voronoi subgraph H consiste of a simple cycle
then do

(a) Pick a point on H and construct a shortest path
back to each of the two base cycles of G.

(b) Using this path and the BFS tree in each of the
two regions construct a spanning tree of G with
radius O(dv/k)

(c) Find a separator using the algorithm from The-
orem 6 in [10].

2. For each region R in G corresponding to a face in the
Voronoi Diagram compute the induced BFS spanning
tree in G from its base cycle.

3. For each R, find all vertices in H on the boundary of R
common to 2 more other regions and find the subtrees

that span these vertices.

4. Set G* be the graph consisting of these sub-spanning
trees plus the baze and boundary cycles.

5. Remove one edge from each base cycle and each bound-
ary cycle in G¥.
6. Compute the induced weight of each face.

7. If all face weights are at most 2/3 then do

(a) Throw out all base cycles that are either not
connected or only 1-connected to the reat of the
graph.

(b) Return G*.

else Let F be the face with weight > 2/3.

(a) Add the edges which were removed in step 5.
back to any base cycle internal to F.

(b) Remove the edges and vertices of G that are ei-
ther external to F or internal to the base cycles
of F.

(c) Construct a spanning tree from the following
subgraphs: F and the induced BFS trees of the
two regions of the Voronoi diagram that contains
the region F.

(d) Find a separator for this graph using the algo-
rithm from Theorem 6 in [10].

Figure 7: Computing a Dual of the Voronoi Diagram
and the Subgraph H of Theorem 3.1.
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Abstract

We describe an algorithm that determines the
edge connectivity of an n-vertex m-edge graph G in
O(nm) time. A refinement shows that the question
as to whether a graph :l.qz k-edge connected can be
determined in 0(kn®). For dense graphs
characterized by m = 2(n“), the latter result
implies that determination of whether a graph is
k-edge connected for any fixed k can be
accomplished in time linear in input size.

I. Introduction and Summary

Connectivity is an extensively investigated
subject in graph theory with applications as
varied as reliability, circuit and chip design,
and communication networks. The computational
questions of determining the edge and vertex
connectivities have been investigated by numerous
authors [K169,ETT75,5¢79,Ga80,EH84,LL86]. The best
known bound for coqjl‘;(lgting edge-connectivity
[EH84,ETT75] is 0(n”' “m), and derives from the
solution of 0(n) maximum flow problems in the
graph. In this paper we give algorithms for
determining the edge-connectivity in O(nm) and for
resolving the question of whether or not a graph
is k-edge connected in 0(kn®).

In comparison to a source~-sink maximum
network flow problem, the edge-connectivity
problem is easier in that capacities are 0,1, but
harder in that a sequence of source-sink flow
problems need be solved. Of course other methods
of resolving edge-connectivity may be possible,
such as the novel approach to vertex-connectivity
given in [LL86]. Our improved methods employ
traditional flow techniques, with the enhanced
efficiency derived from amortizing the coat of
each maximum flow problem over a set of vertices
between which no further source-sink flow problem
need be investigated.

In Section II we give a lemma that will

provide the basis of our amortized cost approach,
and then a very straightforward algorithm for

0272-5428/87/0000/0249%01.00 © 1987 IEEE
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determining the edge-connectivity in O(nm).
A more refined algorithm is given in Section III
along with a more detailed analysis showing that
the question of k-edge connectedness can be
resolved in 0(kn®), with the edge-connectivity
then obtainable in 0(An%) ., Finally, we give an
application of these results to obtain the
improved complexity bound that the subgraph H of G
having largest edge-connectivity %\rer all
subgraphs [Ma72,MaT78] can be found in O(n"m).

II. Edge Connectivity in O(nm)

Let & denote the minimum degree and A the
edge—connectivity of the n-vertex m-edge graph
G = (V,E). A dominating set S =V of G has every
vertex v € V either in S or adjacent to a vertex
of S. A cut (A,B) denotes the set of all edges
between vertex set A and I = V-A, and a mincut
then has |(A,A)| = A, Our algorithms have their
foundation derived from the followlng straight-
forward but fundamental lemma.

Lemma 1: Let G be a graph with a mincut (A4,A) such
that |(A,K)] = A < 8=1. Then any dominating set S
of G contains vertices of both A and A.

Proof: For a mincut (A,R) the sum of the vertex
degrees over A satisfies

4] CIAl = 1) + A > ] deg(v) > |AlS.

vel
s0

(lal = 8)(1al = 1) 2 8§ =A.

By assumption A ¢ 6§ - 1, so then |A] > 6 + 1, and
similarly |A]l] 26+ 1. Now at most
A = (a,B)] € 6= 1 vertices of A are incident to
edges of (A,E). Thus some vertex of A is not
adjacent to any vertex of i, so no dominating set
can include only members of E, and similarly no
dominating set ecan include only members of A. [

Qur first algorithm utilizes a partition S,
T, U of V, where T contains all vertices of V=3
adjacent to vertices of S, and U contains all
vertices of V-85 not adjacent to vertices of S. At



