A Deterministic Parallel Algorithm for Finding a
Separator in Planar Graphs ™

Hillel Gazit ! Gary L. Miller *

Abstract

We present a deterministic parallel algorithm for finding a simple cycle separator
in a planar graph. The size of the separator is O(+/n) and it scparates the graph
so that the largest part contains at most § - vertices. Our algorithm takes, in the
PRAM EREW model, T = O(log*(n)) time and uses P = O(n'*¢) processors where n
is the number of vertices, f is the number of faces and ¢ is any positive constant. The
algorithm is based on a randomized solution from 1987.

Using a variation of our algorithm we can construct a simple cycle separator of
size O(d - \/f) were d is maximum face size. The running time is the same, but the
number of processors we need is P = O(n +f leey

1 Introduction

A useful method for solving many problems is “divide-and-conquer”. This method has
been used to design sequential as well as parallel algorithms. In graph problems (and
related problems), we usually need to find a separator in the graph in order to apply “divide

and conquer”.

A subset of vertices B is a separator if the remaining vertices can be partitioned into
2 sets A and C such that there are no arcs from A to C, and |A},|C| < % - n. The sets A, B,

C form a partition of V.

*This work was supported in part by NSF grant DCR-8713489.
! Department of Computer Science Duke University Durham, NC 27706
tSchool of Computer Science, Camnegie-Mellon University, Pittsburgh, PA 15213-3890.

Finding a small separator can be used to solve problems such as layouts for VLSI
[Lei80] [Val81], nested dissection [LRT79] in numerical analysis, and for efficient message
routing [FJ86]. In particular Pan and Reif [PR85] showed how to solve the BFS problem
given a family of small separators.

The simplest class of graphs with small separators is trees. Trees have separators of
size 1. We will use this fact throughout this paper. Another important class of graphs
with small separators is the planar graphs. A planar graphis a graph G(V, E) that can be
drawn on the plane, so that there are no arcs crossing. Many problems in VLSI layout and
Numerical Analysis are posed for planar graphs.

Lipton and Tarjan [LT79] showed that for every planar graph we can find a separator
B of size /8 - n. Note that their result is optimal up to multiplicative constants in the worst
case, since there exist planar graphs for which the smallest separator is of size O(y/n). The
/n x /n grid is an example.

There are many application of the parallel separator algorithm. In particular, the planar
flow algorithms in [MN89] can be made deterministic with only a log n factor increase in

the running time.

1.1 Previous Results

In 1979 Lipton and Tarjan [LT79] presented a sequential algorithm for finding a separator
of size v/8n for planar graphs. In 1984 the Miller showed that a simple cycle separator, as
defined in [Mil84], exists and can be found efficiently. In 1987 we [GM87] prcscx;ted a
randomized parallel algorithm with time complexity 0(log2(n)) and processor complexity
of O(n'**) for some constant ¢ greater than zero. The separator size is O(y/n) but the
constant depends on e. A small e increases the constant.

In this paper we present a deterministic version our parallel separator algorithm. The

2

running time is the same as the running time of a deterministic algorithm for a maximal
independent set. Right now the best result is O(log’(n)), and it was presented by Goldberg
and Spencer [GS89]. If the maximal independent set algorithm will be improved in the

future then our algorithm will be improved as well.

1.2 Preliminaries

2 Terminology and preliminaries

Throughout the paper let G = (V, E) be an embedded planar graph where V is the vertex set
and E is the arc set. An arc consists of two directed arc, a arc and its reflection. Let R(e)
be the permutation which takes an arc e to its reflection. The graphs considered may have
multiple arcs, but every arc will have a distinct reflection. The tail of an arc e from vertex
x to y is x, denoted by Tail(e).

A graph is said to be embedded in the plane if intuitively it is “draw” in the plane with
no crossing arcs, an arc and it reflection are drawn on top of each other. This definition is
not very algorithmic. So, all our algorithms assume that the graph is given by the following
combinatorial definition of a planar embedding.

An embedding is a description of the cyclic orderings of the arcs radiating from each
vertex. Formally, let Sym(E) denote all permutations of the arcs of G.

Definition 2.1 The permutation ¢ € Sym(E) is an embedding of G if:
1. Tail(e)=Tail(¢(e)) for each darte € E.
2. ¢ restricted to the darts with tail atv € V is a cyclic permuzation.

Successive applications of ¢ will traverse the darts radiating from a vertex, in say, a

clockwise order. On the other hand, the permutation ¢* = ¢ - R will traverse the darts

forming the boundary of a face in counterclockwise order. We say that ¢ is a planar

embedding if the number of faces f of the embedding satisfies Euler’s formula:

f-e+v=2
where e is the number of arcs and v is the number of vertices of the graph. A region will
be the union of a collection of faces.

A cycle C is an ordered set of arcs ep,e,...,e; such that: for every 0<ic<k
" head(e;) = tail(es) (mod k +1). The cycle C is simple if the vertices between the arcs
are distinct. Thus all cycles are directed. For planar embedding any simple cycle Chasa
well-defined interior int(C) (the faces, vertices, and arcs to the left of C) and a well-defined
exterior ext(C) (the faces, arcs, and vertices to the right of C). Neither the int(C) nor the
ext(C) contain the arcs or vertices of C.

A weighted planar embedded graph G is a triple (G, ¢, #) such that ¢ is a planar
embedding of G and # is an assignment of weights to the vertices, arcs, and faces of G
which sums to one such each face weight < 2/3.

A simple cycle C is a separator of a weighted embedded graph G if the weight of the
interior and the weight of the exterior of C is at most 2/3.

The breadth first search in our earlier work was performed in the face-incidence graph
of G. The face-incidence graph has a vertex for cach face of G and two faces are connected
by an arc if they share a vertex in G. For technical reasons we shall use a slightly different
graph which will simplify many of the definitions and algorithms.

Definition 2.2 The face-vertex graph, denote 6(V,E), is a bipartite embedded planar
graph such that V is the set of the faces and vertices of G. A face F and a vertex v inG are

connected by an edge if v is on the boundary of F.

The distance between two face F and F” in & is the minimum number of vertices on any
path in G from F to F'. A crucial definition throughout the paper is that of a neighborhood
in a graph. |
Definition 2.3 If G is (possibly directed) graph and v is a vertex of G then a set N of
vertices is a neighborhood of v if the distance from v to any vertex in N is at most the
distance to any vertex notinN. A set N' is a subneighborhood of a neighborhood N of vif
N' C NandN' is a neighborhood of v. The setN is a k-neighborhood if N is neighborhood
and the size of N is k.

Note that a k-neighborhood need not be unique. We will restrict the neighborhoods in

the face-vertex graph to consist of only faces ignoring the vertices.

2.0.1 The Algorithm

Let Reduce-G(G(V, E), k) be an operation that reduces the planar graph G(V, E) into another
embedded planar graph G'(V', E') such that G is a subgraph of G and the number of faces
in G’ is O(f /k). We describe this operation in detail later.

Our algorithm is given in Figure 1.

3 Basic Parallel Algorithms

We have several algorithms we will use later. The first algorithm finds the k-neighborhoods
of each face as in [GM87]. This algorithm also gives us a BFS in faces within each of these
neighborhoods. The second algorithm is the important one. The following is the crucial
definition.

Definition 3.1 A set MIS of neighborhoods dominates the set of k-neighborhoods MIS if:

1. The neighborhoods of MIS are face disjoint.

5

In the following algorithm f; represents the number of faces after iteration i, and M(n)
represent the complexity of algebraic matrix multiplication over the ring of integers.

" 1. Go(Vo, Ep) — G(V,E);i —O;

2. while P < M(f;) do
i—i+L ke [\’/}-;‘-_I
Gi(Vi, E;) — Reduce-G(Gi-1(Vi-1,Ei1),k);

3. Find a face BFS of the faces G;. Find a simple cycle separator in G; (using Miller’s
algorithm [Mil86])).

Figure 1: Outline of our algorithm

2. Each neighborhood of MIS is a subneighborhood of some k-neighborhood.

3. Each k-neighborhood will have a nonempty intersection with some neighborhood in

MIS.

We find a dominating set of neighborhoods of size at most 2 {; The third algorithm, using
the results of the first and second algorithms, finds BFS of the face-vertex graph from at
most O(f /k) faces. Between each layer of faces we also get a layer in G of arcs. We divide
each layer of arcs into simple cycles. Each cycle separates the graph between the inside
and the outside. Therefore we can map (by homomorphism) the graph into a tree, were
every cycle is mapped to an arc and the regions between the cycles are mapped to vertices.
Using that tree, and the Tree Tour algorithm of Tarjan and Vishkin [TV85] we compute the
weight inside and outside each cycle. We call the boundaries between faces that belongs to
different “larger neighborhoods” the Voronoi Diagram of the graph. We give an algorithm
that generates that Voronoi Diagram of the graph.

The algorithms are similar to those we use in our randomized paper. We make

the appropriate changes so that we need not find a maximal independent set in the -

6

neighborhood-intersection graph, and we will explain the changes in the next section.

3.1 Finding a Small Dominating Set of Neighborhoods

The idea is to find a dominanting set as defined in > Definition 3.1. Our estimate of the
size will be factor of > 2 larger, but this will be good enough for our separator algorithm.
339,356d343

In this section we find a dominanting set as defined in Definition 3.1. In [GM87]
we found instead a maximal face-disjoint set of k-neighborhoods, MIS. Recall that each
k-neighborhood is a set of k faces. Thus, the number of neighborhoods in MIS is at most
f /k. The approach was to find a maximal independent set in the neighborhood-intersection
graph.
Definition 3.2 The neighborhood-intersection 6 = (V,E) such that V is the set of faces
of G, and two faces F,F' share an arc in E iff their k-neighborhoods C(F),C(F') share a
face.
Observe that MIS is a maximal independent set in this graph. The problem is that this
intersection graph may have O(n?) edges. Thus one can not at present use a determinist
independent set algorithm directly. It will use n? processors. In the previous paper we
went around the problem by using an implementation of Luby’s randomized algorithm,
[Lub86], in this paper we give a general scheme that can work with any efficient maximal
independent set algorithm. The idea is to efficiently find a dominating set which is larger,
by factor of 2, than the a maximal independent set. We change the rest of the algorithms
in [GM87] so that they work with dominating sets of neighborhoods.
Definition 3.3 The indegree of a face is the number of k-neighborhoods containing it.

We say that a face has a high degree if it belongs to k?* neighborhoods or more.

We change the graph G(V, E) by setting the neighborhood of every high degree face

7

to the face itself (size one) and recomputing the intersections. Then we look for an

independent set of neighborhoods in this new graph. we do itin the following way:

1. Include in the set all the modified neighborhoods which correspond to formally high

degree faces.

2. Remove every neighborhood that contains a formally high degree face in its neigh-
borhood from the list of neighborhoods.

3. Compute the reduced Neighborhood-Face graph.
4. Find a maximal independent set of neighborhoods in the remaining graph.

Lemma 3.4 The independent set of neighborhoods as constructed above has size at most
2-£.

Proof: We have at most L high degree faces, and every low degree face in the
independent set has to have its own, unshared, k neighbors. Therefore at most £ low
degree faces can be in the maximal independent set. O
Lemma 3.5 The number of remaining pairs of intersecting neighborhoods in step 3.isat
mostf - k.

Proof: In the worst case we have £ faces with degree KL B =f#.0
Lemma 3.6 The complexity of the maximal independent set procedure is O(log*(n)) using
f - i processors.

Proof: The proof follows from Lemma 3.5, by using Goldberg and Spencer [GS89]

maximal independent set algorithm. o

4 Reduction Step

The union of faces and reduction of the graph is similar to what we did in our randomized
separator paper. There are only two differences because of the new maximal independent

set algorithm:

1. The upper bound for the independent set size is two times larger.

2. We need more processors.

Theorem 4.1 There exists a parallel algorithm that given embedded weighted 2-connected
planar graph G with f faces, such that each face is of size at most d and each face weight
< 2/3, computes subgraph H that is 2-connected with at most 6 - f [k faces, each of size at
most d- (4+5 - k) and each induced face weight < 2/3. This algorithm will use O(log’ n)
time and n - k® processors in the EREW model.

Proof: A full proof for a similar Lemma was given in [GM87]. O
5 Applications of Reduce-G

5.1 Stopping the recursion

We apply Reduce-G repeatedly till one of the following conditions hold:

1. The procedure Reduce-G returns a subgraph H which is a simple cycle separator.
2. The number of faces is small enough to compute a BFS of the graph H via matrix
multiplication in O(log? n) using P processors.
5.2 Number of iterations

If we apply the procedure Reduce-G repeatedly, we can pick a larger and larger value for
k. Therefore we will need only O(log(log(f))) iterations to find a separator using O(n)

9

processors. We show that for P = n!*¢ a constant number of iteration is sufficient.
Define f; to be the number of faces in the reduced graph after iteration i, and k; to be
the k used in iteration i.

In the first iteration P = f - &% and f; = 6 - £, but in the second iteration P = £1 - ki*, s0
- - 6'f _ ; 3
P—f-k’-(—,—c—)-ki‘=>k|—k JV6

In the same way we can show that in the third iteration k; = (k%3 /36 = K /¥/36
and in the i iteration k; = K3/65. An upper bound for i can be obtained when k; > £,
since then we finish the algorithm. This implies k; = K$ /6% < f.

If we take P = 2 - f (that is, k&> = 2), then an upper limit to the number of iterations is:
O(log(log(f))). If, on the other hand, we take k = f ¢/3 where € is some constant, then the
number of iterations is a fixed constant i satisfying the equation ks’ / 6% =f. Note that i is
constant that depends only on log(%). A small e means a large constant, and vice versa.

The separator size also increases also with the number of iterations. Using the result

from our randomized separator paper we can conclude that the separator size will be about
(6-5%3.2.df.

6 Open Problems

1. Is there an optimal polylogarithmic algorithm for the separator problem?
2. Isthere a parallel BFS algorithm for planar graph that needs less than n'- operations?

3. Ts there a deterministic parallel isomorphism algorithm for planar graphs that needs

1 .
less than n# operations?

10

References

[F186]

([GM8T7]

(GS89)
[Lei80]
[LRT79)
[LT79]

[Lub86]

[Mil84]

Greg Fredrickson and Ravi Janardan. Separator-based strategies for efficient
message routing. In 27th Annual Symposium on Foundations of Computer Sci-

ence, pages 428-437. IEEE, Oct 1986.

Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator in
planar graphs. In 28th Annual Symposium on F oundations of Computer Science,
pages 238-248, Los Angeles, October 1987. IEEE.

Mark Goldberg and Thomas Spencer. Constructing a maximal independet set in

parallel. SIAM J. Disc. Math., 2(3):322-328, August 1989.

C. Leiserson. Area-efficient graph layouts (for visi). In 21st Annual S ymposium
on Foundation of Computer Science, pages 270-281. IEEE, Oct 1980.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
J. on Numerical Analysis, 16:346-358, 1979.

R. J. Lipton and R. E. Tarjan. A scparator theorem for planar graphs. SIAM J. of
Appl. Math., 36:177-189, April 1979.

M. Luby. A simple parallel algorithm fot the maximal independent set problem.
SIAM J. Comput., 15(4):1036-1053, November 1986.

Gary L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. In Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, pages 376-382, Washington,D.C., April 1984. ACM.

11

