Moments of Inertia and Graph Separators

Keith D. Gremban Gary L. Miller

School of Computer Science *
Camegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Graphs that arise from the finite element or finite difference methods of-
ten include geometric information such as the coordinates of the nodes of
the graph. The geometric separator algorithm of Miller, Teng, Thurston,
and Vavasis uses some of the available geometric information to find
small node separators of graphs. The algorithm utilizes a random sam-
pling technique based on the uniform distribution to find a good separator.
We show that sampling from an elliptic distribution based on the inertia
matrix of the graph can significantly improve the quality of the separator.
More generally, given a cost function f on the unit d-sphere Uy, we can
define an elliptic distribution based on the second moments of f. The
expectation of f with respect to the elliptic distribution is less than or
equal to the expectation with respect to the uniform distribution, with
equality only in degenerate cases. We also present experimental resuits
that demonstrate the significant benefit gained by use of the additional
geometric information. Some previous algorithms have used the mo-
ments of inertia heuristically, and suffer from extremely poor worst case
performance. This is the first result, to our knowledge, that incorporates
the moments of inertia into a provably good strategy.

1 Introduction

Many problems in computational science and cngineering are
based on unstructured meshes of points in two or three dimen-
sions. The meshes can be quite large, often containing millions
of points. Typically, the size of the mesh is limited by the size
of the machine available to solve the problem, even though, in
many problems, the accuracy of the solution is related to the size
of the mesh. As a result, methods for solving problems on large
meshes are becoming increasingly important.

Mesh partitioning is the process of decomposing a mesh into
two or more pieces of roughly equal size. A mesh consists of
nodes (vertices) and undirected edges connecting the nodes. In
some cases, additional information in the form of the geometric
coordinates of the vertices may also be available. Meshes are
special cases of graphs, and mesh partitioning is a special case
of the more general problem of graph partitioning.
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The graph partitioning problem can be defined as follows.
Given a graph G = (V, E) where V is the set of vertices of G and
E is the set of edges of G, find a set partition AU B = V such that
the size of A is approximately equal to that of B and the number
of edges betweeen A and B is small. The set of edges between
A and B is known as an edge separator. A collection of vertices
whose removal induces a partition of the graph is known as a
vertex separator. The goal of graph partitioning is to find small
separators.

In this paper, we shall be concerned with vertex separators,
which are formalized in the following definition.

Definition 1.1 (Vertex Separators) A subset of vertices C of a
graph G with n vertices is an f (n)-separator that §-splits if
|Cl £ f(n) and the vertices of G — C can be partitioned into
two sets A and B such that there are no edges from A to B,
|Al,|B| < &n, where f is a functionand 0 < § < 1.

Notevery graph has a small separator; for example, consider
the complete graph on n points. A significant amount of research
has gone towards answering the question of which families of
graphs have small separators.

Two of the most well-known families of graphs that have
small separators are trees and planar graphs, Every tree has a
single vertex separator that 2/3-splits [19]. Lipton and Tarjan
[25] proved that every planar graph has a \/S_n-separator that
2/3-splits. Their result improved an earlier one by Ungar [33).
Some extensions of their work have been made [5, 12, 13, 26).
Gilbert, Hutchinson, and Tarjan showed that all graphs with
genus bounded by g have an O(,/gn)-separator [16], and Alon,
Seymour, and Thomas proved that all graphs with an excluded
minor isomorphic to the h-clique have an O(kh*/%,/n)-separator
1}

Graph partitioning is the basis for a number of techniques
for solving problems involving large graphs. For example:
solution of a finite element problem on a distributed mem-
ory parailel processor requires partitioning the graph to assign
roughly equal numbers of nodes to each processor, while min-
imizing the communication requirements between processors
{2, 9, 28, 31, 32, 34]; efficient node ordering for solving lin-
ear systems is related to finding good partitions [15, 24, 29);
optimizing the physical layout of the components of a VLSI
circuit involves graph partitioning {6, 21, 23].



Many different approaches to graph partitioning have been
developed. Graph pantitioning algorithms can be classified as
being either: combinatorial or geometric. A combinatorial par-
titioning algorithm only makes use of the graph connectivity.
Examples of combinatorial partitioning algorithms include: it-
erative improvement [20], simulated annealing [28, 34], spectral
partitioning [7, 18, 30, 31], the greedy method [9], and multi-
commodity flow (22]. Geometric approaches to graph partition-
ing make use of the spatial coordinates of the vertices of the
graph. Examples of geometric partitioning algorithms include:
recursive coordinate bisection [31, 34}, inertia-based slicing al-
gorithms [9], and the sphere separator algorithm [27). However,
all above approaches, with exception of the multicommodity
flow algorithm of Leighton and Rao [22] and the sphere separa-
tor algorithm of Miller, Teng, Thurston and Vavasis [27], fail to
provide any performance guarantees.

In this paper, we explore an extension to the sphere sepa-
rator algorithm of Miller, Teng, Thurston, and Vavasis [27]. In
particular, we show that the moments of inertia of the population
of graph vertices can be used to improve a random sampling
technique employed in the algorithm. Our improved method has
a provably good bound on well-shaped meshes and geometric
graphs.

Some previous graph partitioning algorithms have used the
moments of inertia heuristically, and suffer from extremely poor
worst case performance. In contrast, we present a technique
that takes advantage of the moments of inertia, while avoiding
the problems that can lead to poor performance. We believe
that this is the first result to show how moments of inertia can
be incorporated into a provably good strategy. While we apply
moments of inertia to the problem of graph partitioning, the
technique is generalizable to other problems.

This paper is organized as follows. First, we present an
overview of geometric graph partitioning and a brief, intuitive
explanation of the original sphere separator algorithm. Next, we
present an abstract version of graph partitioning and state two
related optimization problems. We then prove that the expected
cost of sampling from an elliptic distribution based on the mo-
ments of inertia is less than that from a uniform distribution; this
is first proved in one dimension, and then extended to higher
dimensions. Then, we show how this result can be incorporated
into the sphere separator algorithm. Finally, we present exper-
imental results that demonstrate the dramatic improvement that
can result from making use of the moments of inertia to partition
graphs.

2 Geometric Partitioning

Geometric partitioning is only applicable to the class of graphis
for which geometric information such as the coordinates of the
vertices is known. Most of the geometric partitioning algorithms
are heuristic in the sense that no bounds on performance have
been proved. The sphere separator algorithm is distinct in that
bounds on both the expected running time and the expected
quality of the separator can be proved.

2.1 Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordi-
nate bisection (RCB) [31, 34]. In the RCB algorithm, the vertices
of the graph are projected onto one of the coordinate axes, and
the vertex set is partitioned around a hyperplane through the
median of the projected coordinates. Each resuiting subgraph is
then partitioned along a different coordinate axis until the desired
number of subgraphs is obtained.

Because of the simplicity of the algorithm, RCB is very
quick and cheap, but the quality of the resultant separators can
vary dramatically, depending on the embedding of the graph in
R?. For example, consider a graph that is “+"-shaped. Clearly,
the best (smallest) separator consists of the vertices lying along
a diagonal cut through the center of the graph. RCB, however,
will find the largest possible separators, in this case, planar cuts
through the centers of the horizontal and vertical components of
the graph.

2.2 Inertia-based slicing

Williams [34] noted that RCB had poor worst case performance,
and suggested that it could be improved by slicing orthogonal to
the principal axes of inertia, rather than orthogonal to the coordi-
nate axes. Farhat and Lesoinne implemented and evaluated this
heuristic for partitioning [9].

In three dimensions, let v = (vy, vy, v,)’ be the coordinates
of vertex v in R>. Then the inertia matrix / of the vertices of a
graph with respect to the origin is given by

Ie Iy I
I= Iy Ivy Iy -
I Iy I
where,

22 2,2
[“=E vy +vi, by = E Vy + V5, IZZ=E vf+vf.
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and, for i,j € {x,y,2},i #J,
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The eigenvectors of the inertia matrix are the principal axes
of the vertex distribution. The eigenvalues of the inertia matrix
are the principal moments of inertia. Together, the principal
axes and principal moments of inertia define the inertia ellipse;
the axes of the ellipse are the principal axes of inertia, and the
axis lengths are the square roots of the corresponding principal
moments. Physically, the size of the principal moments reflect
how the mass of the system is distributed with respect to the
comresponding axis - the larger the principal moment, the more
mass is concentrated at a distance from the axis.

Let /1, I, and I5 denote the principal axes of inertia cor-
responding to the principal moments oy < a2 < o3. Farhat
and Lesoinne projected the vertex coordinates onto /;, the axis
about which the mass of the system is most tightly clustered, and
partitioned using a planar cut through the median. This method
typically yielded a good initial separator, but did not perform



Algorithm (Sphere Separator)

Input: (the combinatorial structure of a graph G, and the
geometric coordinates of its nodes P).

Output: (a set of nodes defining a separator that ‘;—:—; ) -splits
the graph G).

1. Let SAMPLE be a random sample of P; let Q) =
stereo_up(SAMPLE); find a §-center point ¢ of Qi;
and find a conformal map that sends c to the center of
Us;

2. Choose a random normal vectorw = (wy, ..
Uy; let GC be the great circle normal to w;

.y Wds1) ON

3. Transform GC back R? using the inverse of the above
transformations to obtain a sphere separator S and com-
pute a vertex separator of G from S.

Figure 1: The basic sphere separator algorithm

as well recursively on their test mesh - a regularly structured
“T-shape.

Farhat and Lesoinne did not present any results on the theo-
retical properties of the inertia slicing method. In fact, there are
pathological cases in which the inertia method can be shown to
yield a very poor separator. Consider, for example, a **+”-shape
in which the horizontal bar is very wide and dense, while the
vertical bar is relatively narrow but dense. [, will be parallel to
the horizontal axis, but a cut perpendicular to this axis through
the median will yield a very large separator. A diagonal cut will
yield the smallest separator, but will not be generated with this
method.

2.3 The sphere separator algorithm

The geometric partitioning algorithms outlined above both em-
ploy heuristics for finding separators, and utilize cuts defined
by hyperplanes through the graph. Pathological cases were de-
scribed for which the heuristics would yield extremely poor per-
formance. The sphere separator algorithm is unique in that it is
not heuristic; proofs exist for bounds on expected performance.
Additionally, it can be shown that planar cuts are not sufficiently
robust to yield good separators for all types of graphs; the sphere
separator algorithm uses spherical cuts, which can be shown not
to suffer from the inadequacies of planar cuts [32].

This subsection presents an intuitive overview of the sphere
separator algorithm. The full algorithm can be found in [17, 27];
the relevant theoretical background is containedin {3, 8, 17, 32].
The following definition is needed.

Definition 2.1 (Center Points) Let P be a finite set of points in
RY, Foreach0 < § < 1, a point ¢ € R? is a 6-center point of
P if every hyperplane containing c¢ §-splits P.

The basic algorithm is stated in Figure 1. In the basic aigo-
rithm, stereo_up is the standard stereographic projection mapping

which can be described as follows. Assume the graph is embed-
ded in R? coordinate plane, and let Uy be the sphere in R%'
centered at the origin. For each vertex v in the graph, construct
the line passing through v and the north pole of U;. The line
intersects Uy at g, which is the stereographic projection of v.

Essentially, the algorithm operates by finding a conformal
mapping of the set of vertices V of the graph in R® onto U, such
that origin is a center point, and the "mass" of V is spread out
more-or-less evenly over the surface of Uy, in the sense that every
hyperplane through the origin of Uy partitions V into two sets
of roughly equal size. Since any hyperplane through the origin
defines a great circle on Uy, an equivalent statement is that any
great circle of U, partitions V appropriately. Any great circle
therefore defines a sphere separator S in R%. The vertices of the
graph that lie "near” S then comprise a vertex separator of G.
Because any great circle of Uy defines a separator, the aigorithm
chooses great circles randomly.

The only information used in the determination of the con-
formal mapping is the location of an approximate center point
of the set of points. Hence, the mapping only approximately
distributes the points evenly across the sphere. This observation
is the key to using moments of inertia. As will be shown in
the next section, the moments of inertia of the point set reveals
important information about the distribution of the points on the
sphere, and can be used to guide the selection of a great circle to
reduce the size of the resultant vertex separator.

3 The Abstract Problem:

To prove the utility of the moments of inertia, it is useful to
abstract away from the discrete set of points that define a graph
G, and instead consider a continuous analog. Let g : R — R*
be a density function with compact support. Let I" represent
the support of g. In two dimensions, I" can be visualized as
representing a sheet of material with varying density g. To make
the connection to the graph G, consider that g reflects the density
of the vertices in G.

The abstract partitioning problem consists of finding a cut
S through I' such that I' is partitioned into two sets of approx-
imately equal size, and the size of the cut is small. The sphere
separator algorithm outlined above, transforms the abstract par-
titioning problem into a simpler one. The conformal mapping of
I onto Uy in effect spreads I' out, and ensures that for any great
circle GC, the integrals of g over the hemispheres defined by GC
are approximately equal. Thus, the problem reduces to that of
finding a great circle GC such that the integral of g over GC is
small.

Two related problems can now be defined.

Problem 3.1 (Primal Problem) Given a density function f :
Us — R*, find a point u of U4 of small cost where the cost of u

is f (u).

Problem 3.2 (Dual Problem) Givenadensityfunctionf : Us —
R*, find a great circle C of Uy of small cost, where the cost of C
is f vee f (V)s, the iniegral along the greai circle C.



4 One Dimension

To illustrate the method and introduce concepts and notations,
we start with one dimension. That is, assume that we are given
a nonnegative real function f : U; — R, which is defined on
the unit circle. In other words, f () is a nonnegative real for
an angle 8. The goal of the primal problem is to find a solution
angle 4, such that f () is minimal.

This problem can naturally be viewed as a mathematical
optimization problem. But, in some applications, either f is not
explicitly given, or the gradient of f is too expensive to compute.
Further, in some cases, such as geometric separators, the average
value of f is reasonably small, and the determination of the exact
minimum is unnecessary.

One simple method for finding a solution # is to choose an
angle randomly from a uniform distribution. This is essentially
the approach taken in the sphere separator algorithm. The ex-
pected cost (normalized by multiplying a factor of 2x) of the
solution, denoted by UC(f), is clearly UC(f ) = foz " £(8)de.

Given a random sampling approach, the question naturally
arises as to whether information exists about the distribution of
f that can improve the expectation. In particular, is there an effi-
ciently computable probability distribution with an expectation
less than or equal to that of the uniform distribution?

4.1 Distribution as an angle updating function

One way to describe some probabilistic distributions in two di-
mensions is to use an angle updating function. Suppose §(9) is
an angle function. The new distribution defined by 5() can be
constructed as follows: choose a uniform random angle 8 and
return 4 + 6(8). The expected cost (again, normalized by a factor
of 2) of the new distribution, denoted as KC(f , 6), is then given

by KC(f ,6) = [ £ (6 +5(8))d.

Lemmad.l If 6(0) = §Q27) = O, then A;(6) = UC() —
KC(f,8)= [1f (8 +6(8))6'())db.

Pioof: By Taylor's expaiision anid intcgralion by paris. m]

4.2 Inertia based distribution by angle ui -lating

Again, supposef (8) is the cost function on the unit circic. Define

2r
)= / f(6)dd
0

2r
f (B)cos*0d8
1]

27
Ie(f) = / f(@)sin®8d8  1,(f) =
0

The quantities [ and ,, are called the moments of inertia of
f with respect to the x and y axes, respectively. Clearly, for
all £, If) = Iu(f) + I,(f ), because sin®8 + cos’d = 1, and the
expected cost of the uniform distribution, UC(f), is equal to
IKf) = Ia(f ) + I (f ).

Let A > 1 be a constant (independent of 8) to be specified
later. We construct a new distribution based on A. In particuiar,

we define an angle updating function 6, (9) as following:' 6(8) =
tan™! [Atane] — 6. Geometrically, 6(9) is the angular difference
of the vector (cos, Asinf) and the vector (cos8, sinf).

Itis easytocheckthat 6(kx/2) = Oforallk € {0, 1,2,3,...}.
So it satisfies the condition of Lemma 4.1. The equation cos®8 +
A’sin®@ = 1 defines an ellipse with axes of lengths 1 and +,
so sampling points uniformly from the unit circle and apply-
ing the angle updating formula is equivalent to sampling points
uniformly from the boundary of the corresponding ellipse.

Theoremd.2 If A = \/l,y/I, then the expected cost of the
distribution defined by 6 is equal to 2 /I lyy. Hence, Af(62) =
(/Iyy — VI, which is positive as long as lyy # I

Proof: Let 3 = 8 + 6(8). We have tanf} = tan(8 + §(0)) = Atand.
Hence. we have

cos B

cosip + sin?3 /A2 M

cos™d =
By differentiating both side of tan(@ + §(8)) = tan8 (with respect
to 8, of course), we have

1+8@) 1
cos¥B + 8(9)) ~ “cos*’

€3

Therefore,

A cos*(0 + 6(8))
cos?6
cos 8
cos*6

= A (coszﬂ + sinzﬂ//\z)

2
= A (1 _A ,\: lsin26> 3)

We now calculate the cost discrepancy of this distribution over
the uniform distribution. By Lemma 4.1, we have

1+6(9)

A5 (8)

2

(0 — f (6 +56))d0

0
2

£ (6 +5(8))5'(6)d6
[}]
(Change of variable, § = 6 + §(6))

2
1
/0 10 (1~ o5
(Using Equation (3))

2 1 1
1— — | —————|1]4d
/om( [_rﬂ])ﬂ

(Using 7 =1+ 5 ¥, for0<x< 1)

!For simplicity, we use §(8) instead of & (6).
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2 IF o ,\2_1 " i
A f®B) l—x 1+; T—smﬂ dp

(Using sin®8 < sin®@ fori > 1)

/Z”f(ﬂ) —l-1+i X=1Y s ) ap
o A B A2

/hf(ﬂ) (1 -1 [1+07 - 1)sin2ﬂ]) dg
A )

v

Lo +1, — % (I + Iy +(* = D)
L+ Iy = Iyy[ X — Al

If A = \/1,y /I« ( such that the last quantity is maximized), then
A¢(63) = (\/Iy - VI o

Theorem 4.2 proves that the use of an angle updating func-
tion corresponding to an ellipse yields an improvement in the
expected cost. Moreover, the axes of the ellipse are proportional
to the principal moments of inertia of the cost distribution. In
the next section, we generalize this result to higher dimensions.

5 Two and Higher Dimensions

In the previous section, we defined the moments of inertia of a
cost function defined on U,. The principal axes and principal
moments of the cost function define an ellipse, which in tumn
defines an elliptic probability distribution. The expected cost of
sampling from the elliptic distribution is less than or equal to
that obtained by sampling from the uniform distribution. The
moments of inertia of a function defined on U; have an intuitive
physical interpretation, but lead to a difficult proof that does not
easily generalize.

In this section, we consider the primal problem, starting
initially in two dimensions, and then extending the resuits to
higher dimensions. Rather than using moments of inertia, we
instead use a dual concept - the second moments with respect to
the origin. On the unit sphesein d+ 1 dimensions, Uy, the second
moments are related to the moments of inertia (see Section 6),
and the use of the second moments lead to cleaner proofs.

5.1 The two dimensional case

To find a sphere separator for a two-dimensional graph, we stere-
ographically project the points of the graph onto Uz, the unit
sphere in R®. The goal of the primal problem is to find a point
u € U, that minimizes f (u), the cost of u.

One simple method for finding u is to repeatedly choose a
point randomly from U, based on a uniform distribution. The
expected cost per choice with this distribution is denoted u(f),
and is given by

f(w)dA

1
W) = T
|Us| wel,

where |U| is the surface area of U. A point on the unit sphere
can be uniquely represented by three parameters (o, 3, v) satis-
fying a® + B2 + 4% = 1. For example, in spherical coordinates,

a8, ¢) = singcosl, S8, §) = singsinb, ¥(8, ¢) = cos¢. For
each point w on the unit sphere, let (a(w), B(w), v(w)) be its
three coordinates. Define for i € {a, 3,7},

f W)iw))* dA

wel,

wii(f) m

Then, uii(f ) is the second moment of f with respect to the i axis.
Sincea? +#* +92 =1 and integration is linear, we have
that
u(f)= paalf )+ ups(f) + py(f).

5.2 EMliptic Distribution

Uniform sampling of points on U}, the unit circle, is equivalent
to sampling angles  uniformly from [0, 2x). An identical dis-
tribution is obtained by picking a point p uniformly from B, the
unit ball, and if p # 0 normalizing p to unit length, i.e., projecting
p onto U,;. If we are so unlucky as to pick p = 0 then we repeat
the process until we getap # 0.

We define our elliptic distribution, denoted dist(E), with
respectto an ellipse or ellipsoid E of dimension d and unit sphere
Uy4-. via the following random process:

Process 5.1 While p = 0 pick a random pointp € Eandifp #0
return the projection of p onto Uy_,.

As an example consider the ellipse £, defined by
Ew={x,y) | 5/a’+y'[b’< 1}

Clearly, the sample is biased by the shape of the ellipse. The
associated probability density function is given by the following
lemma:

Lemma 5.2 The probability density function for dist(E.;,,) over
Uyis

1 1
2xab |:x2/a2 + yz/bz]

Proof: Let p = (x,y) be a point on U;. Further let L be the
distance from from O through p to the boundary of Ew, ie., a
scalar L > 0 such that the point L - f = (Lx,Ly) lies on the
boundary of E. Thus L satisfies L’x* /a® + L**/b* = 1. For
each small line segment ds on U, we must determine the area of
E. mapped to ds. In the limit as ds goes to zero this will be a
triangle of area (1/2)L*ds. Now the integral over U, will give
us the area of the ellipse, i.e.:

2
|Eas| =/ L@ s
xel; 2

Thus the probability density is L?/(2|Ex|). Using the fact that

|Ess| = wab the Lemma follows o
We next compute the probability density function for the

distribution dist(Easc) where E is the ellipsoid given by:

Eax = {(,y,2) | #/d+y /b +2/c* < 1}



Lemma 5.3 The probability density function for disEapc) over
Ua is, where |Bj) is the volume of Bs,

: . 3/2
3|Bslabe (xz/a2 +v2/b? +zz/cz>

Proof: Let ds® be a small square patch on Uz. As in the proof
of Lemma 5.2 we will determine that part of Eqe which is pro-
jected onto U,. Normalizing this volume will then give us our
probability density function.

Let p = (a, 3, v) be a point on U in the patch ds® and L
be the distance from from 0 through p to the boundary of Eg. It
follows that L = (a?/a? + /b + v*/c*)~"/2. The preimage of
ds? is a pyramid shaped object as ds goes to zero with volume
%dsz. Asin Lemma 5.2, the integral over U: of the unnormalized

density function is:
3
|Eape| = / Ii%p—)dsz
PEV,

Thus, the probability density is L*/(3|Easc|). Using the fact that
|Eabc| = (4/3)rabc = |Bs|abc the Lemma follows o

Before we estimate the expectation of dist(Eq:) we will
give some inequalities to simplify the integrals. We will use the
following lemma in several of the proofs.

Lemma 5.4 Suppose a, b, a, f are nonnegative reals, and a +
8 < 1. Then (aa + bBY < d‘a+ b*8.

Proof: We prove it by induction on k. The lemma is clearly true
for k = 1. Now assume it is true for k — 1, we prove for k.

(aa +bB)

(aa +b8) ' (aa + bB)

(@ 'a +b"'B)aa + bB)

da+ bkﬂ

- [aka(l —a) +bkﬂ(l - ,6)]

- [ak-lbaﬂ + abk_'aB]

fa+ b8 — af@ - b"Ya-b)

A

aa+ b8
(m]
Len .55 Leta®+ % +~"=1then
{ 3/2
32,3352 3.2
<aa +b' B +cy
(cr’/a2 +02/6% + 72/c2) =
Proof. Here we consnder the special case when ¢ = 1. Substi-
tting 1 — o + 4° for ¥* and rearmanging term we .U that th

LHS equals (1/(1 — (ua® + vﬂz)))3 /7 where u = (@ — 1)/d’

and v = (b2 1)/b%. Since ua® +vB* < 1 we can expand
1/(1 = (ua? +v3?) as Taylor series about zero. Since the con-
stant term in this series is one we can expand the square root of
this series. There are two expansion and we take the positive

one, with constant term one. We now take the cube of this se-
ries. This gives a series of the form below with #p = 1. Using
Lemma 5.4,

(2]

Z t,-(ua2 + vﬂz)i
i=0

Z L’ + viﬂz)

=0

Zt,ua +Zt,v,3 +(1-a* =Y

=0
(1/(1—u»”2 2eq/( - w28+
a3az+b3,32+7

IN

IN

By the way we generated the t;s we get the second equality. O

We let Expect(E,f) denote the expected cost when sam-
pling from the elliptic distribution given by ellipsoid E and using
cost function f. Now the expectation of the distribution of
dist(Eac, f ) is given by the following integral:

Expect(Easc,f) = L’dA
pectEase, f) peuf(p)3|33|“bc

where L = (a?/d* + B2/b* + v*/c*)™"/%. Combining with
Lemma 5.5 we get the following inequality:

Lemma 5.6 ExpeciEac,f) < (@ ptaa + b ugp + cpiy)/abe

If we now minimize the right hand side of Lemma 5.6 we
get the following Theorem:

Theorem 5.7 If a = (1/paa)'’?, b = (1/ppp)'/? and ¢ =
(/ u.,.,)‘/ 3, then the expected cost of sampling from the elliptic
distribution is,

Expect(Ease,f) < 3(paappspry)'’’

Moreover, since 3(haatpstiry)'’> < Baa+pss+ iy, we have
by [4].
Expect(Eac,f) < UC(f)

If we divide both the uniform cost and the elliptic cost by
three, then the uniform costis the arithmetic mean of paa, B88, vy~
and the elliptic cost is bounded from above by the geometric mean
of Baa, 88, v~- We can also show that the geometric mean is
minimized when the ball U, is rotated so that the the covariance
matrix of f is diagonal while the arithmetic mean is unchanged.

5.3 Higher dimensions

The general version of Lemma 5.4 is the following.

Lemma 5.8 Suppose ay,az, ...,aq4, ay, 2, ..., 4 are nonnega-
tive reals,and oy + ... + aqg < 1. Then

&
(ajoy + ... +adad)k < ajaq+... +a§a4



Proof: Proveby induction on k and using the condition Eil a; <
I.

(a1a) +...+adad)k

(@i + ...+ adad)k_'(alm +...+aq0q)

< [alfal +... +af}ad]
d
k -
- Zaiai(l —a) ) + (Z i,ja; a,-a,-aj)
i=1
S [alfal +..+ a'}ad]

d
- (Z af-‘a,-a,-) + (Z i,ja:""ajmaj)
A

i1

= [dfar+... +afad] -

[(Z aiaj(af—' - a}‘")(ai - a,~)>:|
iy

k k
< dja)+...+a404

0

In d dimensions, the second moments of f on Uy with
respect to the coordinate axes are given by

£ w)iw)) dA

wEUy_)

1
ui(f) = |_Ud_—l—|

where i(w) is the ith coordinate of point won Us—. The expected
cost of sampling from the uniform distribution is given by

d
UC(f)=len'(f)

i=l
Let E; denote the d dimensional ellipsoid defined by

d

. 52
EE={(X1,.,.,Xd) | L%Sl}

=t !

Similar to Theorem 5.7, we have,

Theorem 5.9 Ifa; = (1/;;;,-)"” (1 < i £ d), then the expected
cost of the elliptic distribution

d 1/d
ExpectEz,f) < d (H u,-.»)

i=l

Moreover, since

d 1/d d
y (H ﬂ) <3
i=1 i=t

we have [4],
ExpecEz,f) < UC()

6 Great Circles and Duality

The preceding sections have dealt with using the secondmoments
to guide the solution to the primal problem. For application to
geometric separators, we need to deal with the dual problem, in
which the cost of a given point w (on the unit sphere) is not f (w),
but instead is the sum (integration) of the points on the great
circie normal to w (that is, fv cccu/ (V)ds). For presentation, we
focus on the three dimensional problem.

For a density function f on the unit 2-sphere, let M(f) be
the moment matrix (3 by 3 matrix) of f, defined by

Baa Has B
M) = (lsa s uz )
Bya  HBvyg My
where
1 o .
Wi = T FWiw)(w)dA, i,j € {a, 8,7}

wel;

Letgr(w) = [ 6o/ (V)ds denote the dual cost of f, and
D(f) = M(gs) be the moment matrix of the dual cost gy of f.
Let p = UC(f) = fw cu, S (w)dA denote the expected cost from
sampling f with the uniform distribution on U,. Let I; denote
the d x d identity matrix. :

The following lemma relates the moment matrix of the
primal to that of the dual, and is interesting in its own right. It is
easily seen that D(f ) is = times the inertia matrix.

Lemma 6.1 (Primal & Dual) Forall density functionsf on U,
aME)+ D) =nuls.

We will use the following lemmas to prove Lemma 6.1.
These four lemmas follow directly from the definition.

Lemma 6.2 (Linearity) Le: f| and f, be two density function
on U,, then M(f\ + f2) = M(f)) + M(f2) and D(f| +f2) =
D(f1)+D(f2).

Leiuna 6.3 (Primal Rotation) Let f be a densiy funcaon on
U and R a 3 by 3 unitary matrix. Let h be the resulting density
Sfunction when applying R to U,, i.e., mapping point (a, 3, %) to
(a, B,%)R. Then

Mh) = RM(F)R

Lemma 6.4 (Dual Rotation) Letf be a density function on U,
and R a 3 by 3 unitary matrix. Let h be the resulting density
function when applying R to U, i.e., mapping point (a, §, ) to
(a, 8,%)R. Then

D(h) = R'D(f )R

Lemma 6.5 Let f and f2 be two density functions on U,. If
M(f\) = M(f2), then D(f1) = D(f2).

We now outline >the proof of Lemma 6.1.
The simplest case is that of a mass of weight m at (0,0, 1).
The primal moment matrix is

coo
coco
Soo

M(m) = (



The dual cost would be m at every point on the great circle
on the xy-plane (that is, normal to (0, 0, 1)), since the great circle
normal to each such point would pass through (0, 0, 1). So, the
dual moment matrix is

m 00
D(m) = ( 0 =m 0 ) =xmly — tM(m)
0 00

Lemma 6.1 is true in this case.

Now we look at the discrete case where we have a mass of
weight m at point (a, 3, v) of U>. The moment matrix of this
mass is m(a, 3, 7)" (@, 8, 7).

Let R be a unitary matrix that transform the point (0,0, 1)
to (a, 3, 7) (rotation or reflection). Then (a, 3,v) = (0,0, 1)R.

Since R also maps the great circle of (0,0, 1) to that of
(a, 8, v), we have that the dual moment matrix is (Lemma 6.4).
R'D(m)R = xmly — nm(a, B,7) (a, B,7), Lemma 6.1 is again
true here.

The general case of Lernma 6.1 then follows from Lemmas
6.3, 6.4, and 6.5. a

Therefore,

Theorem 6.6 Ifa = (1/(s — paa)'’>, b= (1/(u — pge)'’?,
c=(1/(u— u.,.,))‘/ 3, then the expected dual cost for the elliptic
caseis DEC = 3m{(s — praa)( — psXp — pv1))'/* compared
with the expected dual cost for the uniform case of DUC =

T[(p — paa) + (2 — ppp) + (8 — pyy)] = 2wp. Therefore,
DEC < DUC.

The theorem above can be generalized to higher dimensions.

Theorem 6.7 If a; = (1/(n — pi))'/%, (1 < i < d), then the
d
expected dual elliptic costis DEC = dx [Hil(u - p,-,~)] g com-

pared with the expected dual uniform costof DUC = I[Z:’:I (p—
i)l = (d — )wp. Therefore, DEC < DUC.

7 Applications in Geometric Graph Separators

Asshown in[27], all well-shaped finite element meshesand some
graphs from computational geometry, such as k-nearest neigh-
bor graphs have a geometric ¢' racterization. We now review
this characterization and show ;- v to apply second moments to
improve the sphere separator algorithm.

7.1 Neighborhood systems and their separator

The characterization is based on the notion of a neighborhood
system. A d-dimensionalneighborhoodsystem® = {B,, ..., B}
is a finite collection of balls in R?. Let p; be the center of B;
(1 <i< n)andcall P= {pi,...,pa} the centers of . For each
point p € RY, let the ply of p, denoted by ply 4 (p), be the number
of balls from & that contains p. @ is a k-ply neighborhood system
if for all p, ply 4 (p) < k.

Each (d — 1)-dimensional sphere S in R* partitions & into
three subsets: &,(5), P=(S), and Do(S), those balls that are in the
interior of S, in the exterior of S, and that intersect S, respectively.
The cardinality of @o(S) is called the intersection number of S,
denoted by t¢(S).

Notice that the removal of $o(S) splits @ into two subsets:
@:(S) and $£(5), such that no bail in $,(S) intersects any ball in
@£(S) and vice versa. In analogy to separators in graph theory,
Po(S) can be viewed as a separator of &.

Definition 7.1 (Sphere Separators) A (d — 1)-sphere S is an
J (n)-separator thar §-splits a neighborhood system @ if 1(S) <
f(n) and |D1(S)|, |P(S)| < bn, where f is a positive function
and0 <8 < 1.

Simply by definition, each f (n)-sphere separator that -
splits also naturally induces a vertex separator of the intersection
graph. So, we will just focus on the sphere separators of neigh-
borhood systems. The following theorem is proved in [27]:

Theorem 7.2 (Sphere Separator Theorem) Suppose d =
{Bi,..., By} is a k-ply neighborhood system in R®. Then there

is a(d — 1)-sphere S intersecting at most O(k#ndTTl) balls from
® such that both |1(S)| and |D&(S)| are at most < $1n, where
D1(S) and Pe(S) are those balls that are in the interior and in the
exterior of S, respectively.

We now review the construction of [27) to show where
the second moments can be used. To find a small cost sphere
separator with balanced splitting ratio, we first map the neighbor-
hood system & conformally onto the unit sphere U, so that each
d-dimensional hyperplane containing the center of Uy 8-splits
®={B\,...,B.} (%3 < § < 0). This step can be performed in
random constant time using a randomized center point algorithm
[3, 32). Now, each B; is mapped to a patch D; on Uy, whose
boundary C; has the shape of a (d-1)-sphere. Each great circle
induces a balanced sphere separator and the cost of a great circle
is the number of patches it intersects. Therefore, the goal here
is to find a great circle with a small intersection number. In the
remainder of this section, we will identify B; with D;, and assume
that® = {B,,..., By} is given on the unit d-sphere.

7.2 Exact moment by duality

To apply second moments, we use the duality between great
circles and points on the unit sphere: Each great circle G can be
identified with a pair of points pg and g¢ on U that lie on the
normal to G. Simply from the definition,

Proposition 7.3 (Duality) For each pair of great circles G and
G' of U4, G contains pg: (and hence qg as well) if and only if
G' contains pg (and hence qg ).

Define a great belt be the set of points of Uy that lie between
a pair of parallel hyperplanes located symmetrically about the
center of Uy. The next lemma follows from the definition.

Lemma 7.4 Suppose ¢ = {B.,...,B,} is a neighborhood sys-
tem on Uy. Then for each 1 < i < n, there is a great belt R; such
that a great circle G intersects B; iff pg and qg is contained in
Ri.

Therefore, to find a small sphere separator, it is equivalent
to find a point in Uy that is covered by a small number of great
belts. We can define a density function on the unit sphere Uy



for which the density of a point is the number of great belts that
cover it. In other words, each point of each great belt has a
unit local density and the global density is the sum of the local
densities. Hence we reduce the sphere separator problem to the
primal case of the optimization problem discussed in Section 3.
We can first compute the great belts and use them to find the
moment matrix. Then the construction and results of Section
5 can be applied directly. We refer to this construction as the
dual-primal method, because we first use duality to find great
beits and then compute the moment matrix.

7.3 Approximation by dual moments and geomet-
ric sampling

A more efficient way of applying second moments to use the
primal-dual method, which finds the moment matrix using the
primal information, rather than great belts, and then applies the
construction of Section 6.

The advantages of this method are twofold: (1) we do
not need to compute great belts and (2) we can use geometric
sampling to approximate the moment matrix.

We use the following observation made in [27, 32]. Because
@ = {B,,...,B.} is a k-ply neighborhood system on Uy, then
there exists a constant C such that the number of balls from ¢
whose radius is at least ¥ is bounded from above by Ck/ 7".
Therefore, the radii of most of the balls are small, so that they
can be treated as points, given by their centers. Formally, the
weight of each point should be the diameter of its corresponding
ball. Now, our input becomes a set of points Q = g;...g, on
Us and weights wy...w, The moment matrix is then M =
Z";I wi(giqT), where (giq7) is the outer product of the vector g;.
Then we can use geometric sampling to approximate the moment
matrix. This leads to the algorithm in Figure 2. Note, that in the
algorithm we have set the weights to one. A complete discussion
of the weights will be in the journal version of this paper.

In Figure 2, stereo_up is the standard stereographic projec-
tion. For more detail of other steps such as finding center points,
finding a good conformal map, and finding a vertex separator
from a sphere separator, see [27].

Theorem 7.5 The algorithm above finds a sphere separator
whose expected cost is less than or equal to that found by the
algorithm of [27] which returns a random great circle.

8 Experimental Results

We implemented the moment-based method by modifying the
existing sphere separator code {17] to sample sphere separators
from an elliptic distribution based on the second moments. To
compare the results of the original and modified algorithms, im-
plementation was performed by angle updating. Hence, in each
trial, a random angle was selected from the uniform distribution,
and the angle was updated to yield an angle from the elliptic
distribution. The parameters used were more aggressive than
those predicted by theory.

Our preliminary experiments show that using second mo-
ments improves the sphere separator algorithm for well-shaped
meshes in both two and three dimensions. In each trial, the result

Algorithm (Moment-Based Sphere Separator)
Input: (a neighborhood system I and the geometric coordi-
nates of its centers P).

1. Let SAMPLE be a random sample of P; let Q1 =
stereoup(SAMPLE); find a é-center point ¢ of Qi;
and find a conformal map that sends c to the center of

Us;

2. Let @ =w(0Q); let M = :'\':«»ELJ“NF )let vi, .., Vaai
be the eigenvectors of M whose eigenvalues are
By .-, Bdel gel, Tespectively; let /= 5 pg; and let
ai=1/U— p)""0,;

3. Choose a random normal vector u = (uy, ..., lgi) ON

e \ -
Ugi let w = 377" (aiu)vi; let GC be the great circle
normal to w;

4. Transform GC back R” using the inverse of the above
transformations to obtain a sphere separator § and com-
pute a veriex separator of G from §

Figure 2: The moment-based sphere separator algorithm

of sampling from an elliptic distribution improved the result of
sampling from the uniform distribution.

The following tables (Tables 1-4) give the sizes of edge-
separators found in the first seven trials of the sphere separator al-
gorithm when the moment-based distribution (moment method)
and the uniform distribution (uniform method) were used, re-
spectively. In all cases, the best separator was found using the
moment-based distribution.
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