
Abstract

The linear systems associated with large, sparse, symmetric,
positive definite matrices are often solved iteratively using the pre-
conditioned conjugate gradient method. We have developed a new
class of preconditioners,support tree preconditioners, that are
based on the connectivity of the graphs corresponding to the
matrices and are well-structured for parallel implementation. In
this paper, we evaluate the performance of support tree precondi-
tioners by comparing them against two common types of precon-
ditioners: diagonal scaling, and incomplete Cholesky. Support
tree preconditioners require less overall storage and less work per
iteration than incomplete Cholesky preconditioners. In terms of
total execution time, support tree preconditioners outperform both
diagonal scaling and incomplete Cholesky preconditioners.

1 Introduction
The demand for increasingly accurate numerical simulation
leads to increasingly large systems of linear equations. Sys-
tems with 100,000 equations are not unusual, and systems
with more than 1,000,000 variables are desirable. We are
interested in the subclass of linear systems with coefficient
matrices that are sparse, symmetric, positive definite, diag-
onally dominant, and have non-positive off-diagonals.
These matrices often arise from the discretization of sec-
ond-order, self-adjoint, elliptic partial differential equa-
tions.

The method of conjugate gradients (CG) is a popular itera-
tive method. The performance of CG can be improved by
the use of a preconditioner, yielding the method of precon-
ditioned conjugate gradients (PCG).

The best performance is achieved by multilevel precondi-
tioners; some can achieve nearly optimal convergence rates
and can be effectively parallelized [5][8]. However, they
requirea priori knowledge about the differential equation
or the discretization process, which is often unavailable.

Diagonal scaling and incomplete Cholesky [10] precondi-
tioners depend only on the coefficient matrix; we term these
a posteriori preconditioners, since they can be constructed
after the linear system is formulated.A posterioriprecondi-
tioners are the most general.

Diagonal scaling can be effectively parallelized, but yields
little improvement in the convergence rate. The incomplete
Cholesky preconditioners are effective at accelerating con-
vergence, but require more computations per iteration and
are more difficult to parallelize in general.

Therefore, there exists a need for effective, parallelizable,a
posteriori preconditioners. The support tree precondition-
ers, to be introduced in the next section, are a step towards
fulfilling this need.

In this paper, we evaluate the performance of the PCG
method using support trees (STCG) by comparison with the
performance using diagonal scaling (DSCG) and incom-
plete Cholesky preconditioning (ICCG). In all cases consid-
ered, we found that STCG yielded convergence rates
competitive with, or superior to ICCG, and processing
times superior to both ICCG and DSCG.

2 Support Trees
Consider linear systems of the form , where the
coefficient matrix A is a symmetric, diagonally dominant
M-matrix.1 We call these matricesLaplacian matrices,or
Laplacians. A Laplacian  corresponds to an undirected
graphG = G(A) with weighted edges: every row/column of

 corresponds to a node of G; ifaij  = aji ≠ 0, then nodes i
andj are connected with an edge of weight ; if the extra

diagonal weight , where , then nodei

has a self-loop of weightdi.

Let A be a Laplacian matrix of ordern, and letG = G(A) be
the corresponding graph. LetS0 be an edge separator ofG;
that partitionsG into two disconnected subgraphsG0 and

1.  is an M-matrix if  for ,  is nonsingular, and
 [10]
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G1 such that . Now, continue separating recursively

until only singleton sets of nodes remain. Construct thesep-
arator tree by introducing a node for each edge separator,
and connecting each node to its unique parent (if any), and
its children (if any). Figure 1 illustrates a simple graph and
a separator tree for the graph.

Each nodeS of the separator tree defines a subset R of the
nodes inG. Let w(R) denote the total weight of the frontier
of R, which is the set of edges in G that connectR andR.
Weight the edge in the separator tree connectingS to its
parent byw(R). Connect each leaf node in the separator tree
to the singleton nodes ofG, weighting the edges by the total
weight of the edges incident to the node. Denote the result-
ing tree byH. H has logn depth, 2n-1 nodes, andn leaves.
We callH asupport tree for G. Figure 2 illustrates a support
tree for the graph and separator tree of Figure 1.

The intuition behind support trees is the idea of maintaining
the volume of communication in a graph, while reducing
the distance required for the communication. Solving a sys-
tem of linear equations defined over a graph using an itera-
tive method is like amixing process. A matrix-vector
multiply is equivalent to mixing the data at one node with
the data from its neighbors. Since a matrix-vector multiply
only lets nodes communicate with their immediate neigh-
bors, mixing cannot be complete until information from
distant nodes has been obtained. Thus, the convergence is
related to the diameter of the graph. For a planar graph with
n nodes, the diameter is O( ), while the diameter of a
support tree for that graph is only O(logn). Therefore, mix-
ing (convergence) will occur more rapidly with the support
tree. The method of construction of the support tree ensures
that the mixing that occurs in the support tree is similar to
the mixing that occurs in the original graph.

It should be noted that construction of a support tree can be
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Figure 1: A Graph and Separator Tree.
a) A simple graph with separators shown.

b) Separator tree corresponding to separators in a
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Figure 2: Support Tree. This support tree was constructed
using the graph and separator tree of Figure 2.

n

easily parallelized, since the partitioning processes applied
to each subgraph are independent.

Support trees depend upon the separators used to construct
them. Even with a given partitioning method, support trees
may take different forms. It is clearly possible to partition
two or more times at a single level, yielding support trees
that are quadtrees, oct-trees, and so on. In practice, we have
make the degree of the support tree equal to the dimension
of the space in which the graph is embedded. Figure 3 illus-
trates a quadtree support tree for a 2D regular mesh.

Let H be the support tree forG. Let B be the Laplacian
matrix corresponding toH. We would like to useB as a pre-
conditioner forA, butB is of order 2n-1, andA is of ordern.
In another paper [6], we describe the theory proving thatB
can be used as a preconditioner forA. Here, we present an
overview of the theory in order to gain some intuition.

Suppose thatH is a binary tree withn leaves andn-1 inter-
nal nodes. Assume that the leaves are numbered 1 through
n. ThenB, the matrix corresponding toH, has the form:

(1)

whereD is nxn and diagonal.

Many matrix operations correspond to graph operations. In
particular, Gaussian elimination corresponds to a graph
operation we call node reduction. A single step of symmet-
ric Gaussian elimination applied to zero out row/columnk
of a LaplacianM corresponding to a graphG is equivalent
to deleting all the edges inG incident to nodek and adding
edges between all the (former) neighbors of nodek. Pivot-
ing in a matrix is equivalent to renumbering the nodes in the
graph. These facts yield two particularly useful results:

• Applying Gaussian elimination to a tree from
the root down, stopping at the leaves, results in a
complete graph on the leaves.

• Gaussian elimination applied to the leaves of a
tree produces no fill. Therefore, the Laplacian of
a tree can be ordered such that its LU factoriza-
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Figure 3: 2D Regular Mesh and Support Tree.
a) A 2D regular 4-connected mesh.

b) A quadtree support tree for the mesh in a).
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tion has zero fill.

Applying Gaussian elimination toB from equation (1) in
the order from root to leaves (i.e., from row 2n-1 up to row
n+1), stopping at the leaves, yields a matrixC of the form:

(2)

whereE is diagonal of ordern-1, andK is dense of ordern.

In [6], we show the following:

• K is an effective preconditioner forA;

• If , then we also have .

That is,K is an effective preconditioner, but we can obtain
the same results using a larger, but sparser tree-structured
system, by simply discarding the unneeded additional vec-
tor elements ( , above). We shall show in the next section
that the tree-structured system is both very sparse and com-
putationally efficient, leading to highly parallel code.

3 Implementation of STCG
The key step in any PCG method is solving the precondi-
tioning systemBz = r. We solve this system by computing
the Cholesky factors ofB and solving each of the resultant
triangular systems. However, sinceB represents a tree, the
factors are sparse and can be evaluated very efficiently.

Every tree has a zero-fill, or perfect ordering, that yields a
Cholesky factorization with no fill. Prior to calling our sub-
routine that implements STCG, we find a perfect ordering
and permute the equations accordingly.

Let  be the root-free Cholesky factorization
of B. ThenC represents a tree with all edges directed from
the leaves towards the root,Ct represents the same tree with
the edges reversed, andD represents a scaling of the node
values. Thus, solving a tree-structured linear system
involves propagating information up the tree, scaling the
values at all nodes, then propagating information back
down the tree.

The structure of a tree permits efficient parallel evaluation.
The fact that leaves are not interconnected means that
leaves can be evaluated independently. Hence, all the nodes
at a single level can be evaluated in parallel, so that a com-
plete binary tree withn leaves requires only
parallel steps. Prior to calling the STCG subroutine, we
determine an optimal order in which to evaluate nodes. We
call this orderingrake-order, since leaves are “raked” off
the tree at each step. Figure 4 illustrates leaf raking.
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Figure 4: Leaf Raking.

Additional parallelism of STCG is possible due to the tree
structure — separate subtrees may be evaluated in parallel
on multiple vector processors.

The performance of STCG is dominated by two operations:
sparse matrix multiplication and preconditioning. In fact,
the raking operation performed at each level is essentially a
sparse matrix multiplication. Thus, the bulk of the computa-
tion in STCG can be implemented with a single general-
purpose sparse matrix multiplication subroutine. On the
Cray C-90, we use an algorithm called SEGMV, which
accomodates arbitrary row sizes using “segmented scan”
operations [2]. Compared to other methods (such as Ell-
pack/Itpack and Jagged Diagonal), SEGMV performance is
comparable for structured matrices, and superior for most
irregular matrices. Thus our STCG implementation per-
forms well on both regular and irregular meshes.

Finally, we evaluate the resource requirements of STCG,
and compare them with those of DSCG and ICCG. We
assume that the entire diagonal is stored for DSCG. For
ICCG and STCG, we assume that the preconditionerB has
been factored asB = CDCt. Table 1 and Table 2 give the
resource requirements for 2D square and 3D cubic meshes,
respectively; lower order terms have been ignored. The sup-
port trees are quadtrees in 2D, and octrees in 3D.

Note that DSCG is the cheapest preconditioner to use. In
2D, STCG is slightly better than ICCG, but the difference is
larger in 3D. The resource requirements for ICCG increase
with increasing graph connectivity, while those for STCG
depend only upon the form of the support tree.

4 Empirical Evaluation of STCG
Greenbaum et al.[5] and Heroux et al.[9] both conducted
empirical evaluations of preconditioner performance. Both
studies found that ICCG significantly improved the conver-
gence rate. However, both studies also found that the
advantages of ICCG with respect to total execution time
diminish or vanish on vector and parallel machines. In this
section, we will confirm the results of their investigations
with respect to DSCG and ICCG, but will also demonstrate
that STCG is superior to DSCG and ICCG for solving large
problems, and is easily and effectively parallelized.

Table 1: Preconditioner Resource Requirements
for an nxn Mesh.
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Table 2: Preconditioner Resource Requirements
for an nxnxn Mesh.
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We limit ourselves to only comparing DSCG, ICCG, and
STCG. We made no attempt to go beyond the obvious opti-
mizations of ICCG. Numerous other authors have reported
on optimizations of ICCG (see, for example [3], [4], [11]).
We studied their results and concluded that a general, opti-
mal implementation of ICCG would require twice the time
per iteration of DSCG. Accordingly, we report these
extrapolated optimal values as ICCG-OPT.

All results were obtained using a single processor on the
Cray C-90 at the Pittsburgh Supercomputing Center.

4.1 Two-dimensional regular meshes

In their work, Greenbaum et al. considered the time-inde-
pendent version of the diffusion equation defined on the
unit square with Dirichlet boundary conditions:

For our experiments on regular meshes, we usedρ(x,y) =
1.0, which reduces the diffusion equation to Poisson’s
equation. We discretized the equation using the 5-point
finite difference operator, and varied the size of thenxn
mesh usingn ranging from 8 to 128 in powers of 2.

For our initial experiments, we used the same forcing func-
tion as Greenbaum et al.:

We used as our stopping criterion the condition reported to
be superior by Arioli et al. [1]:

(3)

We halted whenω2 ≤ 1.0 x 10-10. The starting vector was
the zero vector. The results are reported in Figure 5.

In a second set of experiments, we selected a more difficult
forcing function, an impulse functionb, with b0 = 1.0,bi =
0.0 for i ≠ 0. For each mesh, node 0 was at the lower left
corner.

Again, we halted whenω2 ≤ 1.0 x 10-10 and used the zero
vector as the starting vector. The results for this forcing
function are reported in Figure 6.

4.2 Two-dimensional irregular meshes

We also investigated the relative performance of STCG on
irregular meshes. We had available to us a nested sequence
of meshes developed for the computation of stress on a
cracked plate. There are 11 meshes in all, with 10x2i nodes
in each mesh, i = 0,1,2,...,10. Figure 7 illustrates two of the
meshes. The crack in the plate runs from the center to the
left side, parallel to the x-axis.

The crack data consisted of pattern-only information. We
constructed non-singular coefficient matrices by augment-
ing the Laplacians of the meshes with additional diagonal
weights at each corner node.

∇ ρ x y,( ) ∇u x y,( )⋅ f x y,( )=
x y,( ) 0 1,( ) 0 1,( )×∈

u 0 y,( ) u 1 y,( ) u x 0,( ) u x 1,( ) 0= = = =

f x y,( ) 2x 1 x−( )− 2y 1 y−( )−=

ω2

b A x̂⋅− ∞

A ∞ x̂ 1⋅ b ∞+
=

For the forcing function, we used an impulse function with
b0 = 1.0,bi = 0.0 fori ≠ 0; node 0 is at the bottom left corner
of each mesh. We halted whenω2 ≤ 1.0 x 10-10. The starting
vector was the zero vector. The results are reported below in
Figure 8.

5 Summary and Discussion
In this paper, we compared the performance of a new vari-
ant of preconditioned conjugate gradient, STCG, against the

Figure 5: Results for 2D Regular Meshes, Smooth Input.
a) number of iterations for convergence.

b) total time for iterative process on a Cray C-90.
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Figure 6: Results for 2D Regular Meshes, Impulse Input.
a) number of iterations for convergence.

b) total time for iterative process on a Cray C-90.
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performance of two well-known variants, DSCG and
ICCG. We have demonstrated that on both irregular and
regular meshes:

• STCG requires less overall storage and less
work per iteration than ICCG.

• in terms of iterations to converge, STCG meets
or exceeds the performance of ICCG, which in
turn, outperforms DSCG.

• in terms of execution time, STCG far outper-
forms both ICCG and DSCG on a vector pro-
cessor.

At present, support tree preconditioners can only be applied
to Laplacian matrices. One of our goals is to extend the
support tree methodology to larger classes of matrices.

An expanded version of this paper is available as a techni-
cal report [7].

Figure 7: Crack Meshes.
a) crack00 with 10 nodes. b) crack08 with 2560 nodes

b)a)

Figure 8: Results for 2D Irregular Meshes, Impulse Input.
a) number of iterations for convergence.

b) total time for iterative process on a Cray C-90.

a)

b)

0

50

100

150

200

250

300

350

It
er

at
io

ns

10 40 160 640 256010240
Mesh Size

.DSCG

.STCG

.ICCG

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

to
ta

l t
im

e 
(m

se
c)

10 40 160 640 256010240
Mesh Size

ICCG .DSCG

.STCG

.ICCG-OPT

6 Acknowledgments
The authors would like to thank Guy Blelloch, Omar Ghat-
tas, and Mike Heroux for many useful conversations. We
would also like to thank Omar Ghattas for the crack
meshes.

7 References
[1] M. Arioli, I. Duff, D. Ruiz,Stopping criteria for itera-

tive solvers. SIAM J. Matrix Anal. Appl. 13(1):138-
144, 1992.

[2] G. E. Blelloch, M. A. Heroux, and M. Zagha,Seg-
mented operations for sparse matrix computation on
vector multiprocessors. CMU-CS-93-173, School of
Computer Science, Carnegie Mellon University,
1993.

[3] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A.
van der Vorst,Solving Linear Systems on Vector
and Shared Memory Computers. SIAM, 1991.

[4] I. S. Duff, and G. A. Meurant,The effect of ordering
on preconditioned conjugate gradients. BIT 29:635-
657, 1989.

[5] A. Greenbaum, C. Li, and H. Z. Chao,Comparison of
linear system solvers applied to diffusion-type finite
element equations. Numer. Math. 56:529-546, 1989.

[6] K. D. Gremban, and G. L. Miller,Towards the Appli-
cation of Graph Theory to Finding Parallel Precondi-
tioners for Sparse Symmetric Linear Systems.
Technical Report, Computer Science Department,
Carnegie Mellon University, in preparation.

[7] K. D. Gremban, G. L. Miller, and M. Zagha,Perfor-
mance Evaluation of a New Parallel Preconditioner.
CMU-CS-94-205, School of Computer Science, Car-
negie Mellon University, 1994.

[8] X. -Z. Guo, Multilevel Preconditioners: Analysis,
performance enhancements, and parallel algorithms.
CS-TR-2903, Department of Mathematics, University
of Maryland, 1992.

[9] M. A. Heroux, P. Vu, and C. Yang,A parallel precon-
ditioned conjugate gradient package for solving
sparse linear systems on a Cray Y-MP. Appl. Num.
Math. 8:93-115, 1991.

[10] J. A. Meijerink, and H. A. van der Vorst,An iterative
solution method for linear systems of which the coeffi-
cient matrix is a symmetric M-matrix.Math. Comp.
31:148-162, 1977.

[11] H. A. van der Vorst,ICCG and related methods for
3D problems on vector computers.Comp. Physics
Comm. 53:223-235, 1989.


