
This research is sponsored in part by the Wright Laboratory, Aeronautical Systems Center, Air Force Material
Command, USAF, and the Defense Advanced Research Projects Agency (DARPA) under grant number F33615-93-
1-1330, and in part by NSF Grant CCR-9016641. Cray C-90 computing time was provided by the Pittsburgh Super-
computing Center under Grant ASC890018P. The U.S. government is authorized to reproduce and distribute reprints
for government purposes, notwithstanding any copyright notation thereon.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies or endorsements, either expressed or implied, of DARPA, NSF, or the U.S. govern-
ment.

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keith D. Gremban

Combinatorial Preconditioners
for

Sparse, Symmetric, Diagonally Dominant Linear Systems

 October 1996
CMU-CS-96-123

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:

Gary Miller, Chair
Guy Blelloch
Paul Heckbert
Bruce Maggs
Omar Ghattas

Mike Heroux, Cray Research

Keywords: linear systems, iterative methods, preconditioners, sparse and very large systems, parallel algorithms

iii

Abstract

Solution of large, sparse linear systems is an important problem in science and engineering. Such systems
arise in many applications, such as electrical networks, stress analysis, and more generally, in the numeri-
cal solution of partial differential equations. When the coefficient matrices associated with these linear
systems are symmetric and positive definite, the systems are often solved iteratively using the precondi-
tioned conjugate gradient method. We have developed a new class of preconditioners, which we callsup-
port tree preconditioners, that are based on the combinatorial properties of the graphs corresponding to the
coefficient matrices of the linear systems. We call the resulting iterative methodsupport tree conjugate
gradient, or STCG. These new preconditioners are applicable to the class of symmetric and diagonally
dominant matrices, and have the advantage of being well-structured for parallel implementation, both in
construction and in evaluation. In this thesis, we present the intuition, construction, implementation, and
analysis of STCG.

STCG is based upon an interesting isomorphism between a certain class of matrices (which we call Lapla-
cian matrices), edge-weighted undirected graphs, and resistive networks. Using this isomorphism, we
show that an iterative method can be interpreted in terms of these discrete structures. Based on this inter-
pretation, the STCG method for accelerating convergence is developed, which involves constructing other,
more efficient discrete structures called support trees, and using their interpretation as matrices to apply
them as preconditioners. Interestingly, the matrix preconditioners used in STCG are larger, but sparser
than conventional preconditioners. Additionally, the construction of support trees is basically an applica-
tion of recursive divide-and-conquer. Support trees have very regular structures and are very well-suited
for parallel implementation.

Through theoretical analysis and numerical experiments, we show that STCG is practical and efficient for
the parallel solution of large sparse linear systems with Laplacian coefficient matrices. STCG is an inter-
esting example of combinatorial techniques being applied to solve an algebraic problem. These techniques
have wider applicability than the acceleration of iterative techniques. We also demonstrate an application
of these techniques to the more general problem of bounding eigenvalues.

iv

v

Acknowledgments

My graduate work at CMU was a long process involving a number of cycles of elation, excitement, and frustra-
tion. I entered the program after several years of working in a robotics research group at an aerospace company
and expected to find a thesis topic and graduate in record time. Was I in for a shock, or rather a series of
shocks!

Without going into detail, suffice it to say that I encountered a number of setbacks. Fortunately, though, the
structure of the Computer Science Ph.D. program at CMU is such that I was given time to overcome these dif-
ficulties. I am grateful to Chuck Thorpe, Takeo Kanade, Katsushi Ikeuchi, and Gary Miller for having the
patience and the confidence in me to help me through this period. I am also grateful to Roger Schappell for cre-
ating a work environment that enabled me to finish this thesis after having physically left CMU.

It would not have been possible for me to have finished the program without lots of help from friends. The list
is far too long to detail here, but I would especially like to thank Doug Reece for all the time spent listening to
my troubles on long runs through Schenley Park. Tracy Ann Lewis was a wonderful listener over coffee
throughout my years at CMU.

I couldn’t have made it through my last several years there without the help of the Carnegie Mellon Shotokan
Karate Club. Karate is an amazingly effective way to focus one’s mind and relieve stress! I need to specifically
acknowledge my immediate seniors, Mark Ciancutti and Bruce Schmidt, as well as the many junior members
who helped me out, especially the Wednesday afternoon sparring club, which included Rahul Sukthankar,
Ruth Chabay, Yoichi Sato, Sanjay Sachdev, and Tony Lattanze.

Of course, I have to thank my parents, Joe and June Gremban, who are responsible for my scientific curiousity.
Special thanks go to my family, who put up with me for all this time: my wife Kathy, and my two daughters,
Stephanie and Kelly.

My final thanks are to my late dachshund, Random Variable, who gave his life for this thesis, and again to my
wife, Kathy, who gave up having a life because of this thesis.

vi

vii

Table of Contents
1 Introduction 1

 2 Background 5
2.1 Definitions and Notation 5
2.2 Graph Theory 7
2.3 Direct Methods for the Solution of Sparse Linear Systems 15
2.4 Iterative Methods for the Solution of Sparse Linear Systems 20
2.5 Domain Decomposition Methods 30
2.5 Multilevel Methods 33

 3 Support Trees: Construction and Application 37
3.1 Communication and Mixing 38
3.2 Support Tree Construction 40
3.3 Implementation of Support Tree Conjugate Gradient 44
3.4 Computational Properties of Support Trees 48
3.5 Summary 52

 4 Support Trees: Theory 53
4.1 Matrices and Graphs 53
4.2 Matrices and Resistive Networks 54
4.3 Support Trees and Resistive Networks 57
4.4 Generalized Eigenvalues and Support Numbers 58
4.5 Condition Number Bounds for Support Trees: Preliminary Lemmas 66
4.6 Condition Numbers for Regular Meshes 69
4.7 Summary 78

 5 Extended Analysis 79
5.1 Irregular Graphs and Implicit Embedding 80
5.2 Dealing with Unequal Partitions 83

6 Support Trees: Evaluation 91
6.1 Empirical Evaluation of STCG 92
6.2 Tabulated Experimental Results 103
6.3 Summary and Discussion 107

7 Extensions and Applications of Combinatorial Analysis 109
7.1 Symmetric and Diagonally Dominant Matrices 109
7.2 Bounding the Largest Eigenvalue 111
7.3 Summary 120

8 Discussion and Recommendations 123
8.1 Support Tree Conjugate Gradients 123
8.2 STCG is not Multigrid 125
8.3 Recommendations for Future Work 127

9 References 129

viii

1

1
Introduction

Consider the solution of linear systems of the form

(1.1)

whereA is annxn matrix, and bothx andb arenx1 vectors. Of special interest is the case whereA is large and sparse.
Systems of this sort arise frequently in many applications such as electrical networks, tomography, diffusion, and
structural mechanics [Axelsson (1994)]. We are especially interested in linear systems that arise from the solution of
elliptic boundary value problems by either the finite element or finite difference methods.

The termsparse above refers to the relative number of non-zeros in the matrixA. An nxn matrixA is considered to be
sparse if A has onlyO(n) non-zero entries. In this case, the majority of the entries in the matrix are zeros, which do
not have to be explicitly stored. Annxn dense matrix hasΩ(n2) non-zeros. One of the goals of dealing with sparse
matrices is to make efficient use of the sparsity in order to minimize storage throughout the computations, as well as
to minimize the required number of operations. Sparse linear systems are often solved using different computational
techniques than those employed to solve dense systems.

The termlarge varies with respect to the current generation of computers, and with the sparsity of the system. A
densenxn system requiresΩ(n2) storage vs.O(n) for a sparse matrix of the same order. Nonetheless, some generali-
zations can be made with respect to the size of feasible linear systems. Where at one time (1960’s) dense linear sys-
tems withn > 100 were considered large, such systems can be solved easily on the current (1995) generation of
scientific workstations. In 1995, dense linear systems withn > 10,000, and sparse linear systems withn > 100,000 are
considered large by most computational scientists, andn will continue to grow. As systems withn = 10,000 become
the norm, the desire for more resolution and more accurate simulations will pushn to become larger and larger.

Since large linear systems may require intensive computational resources to solve, it is important to take advantage of
any special information about the coefficient matrices that is available. Consequently, a host of techniques exist that
are applicable to specific kinds of matrices. The techniques presented in this thesis are no different: they are applica-
ble to a specific class of matrices which we call Laplacian matrices. These matrices are characterized by being sym-
metric, diagonally dominant1, and containing non-positive off-diagonals. Laplacian matrices frequently arise in the

1. Annxn matrix isdiagonally dominant if, for all , .

Ax b=

A ai j[]= i 1 2 … n, ,{ , }∈ ai i ai j
j i≠
∑≥

2

solution of elliptic boundary value problems. For example, elliptic problems that are discretized with the finite ele-
ment method using linear, triangular elements yield coefficient matrices that are Laplacian provided that all the angles
of the elements are less than 90°.

There are two broad categories of methods for solving linear systems:direct anditerative.

A direct method for solving the system of equations (1.1) is any method that produces the solutionx after a finite
number of operations [Axelsson and Barker (1984)]. An example of a direct method is using Gaussian elimination to
factorA into matricesL andU whereL is lower triangular andU is upper triangular, then solving the triangular sys-
tems by forward and back substitution. Direct methods are typically preferred for dense linear systems. The problem
with direct methods for sparse systems is that the amount of computational effort and storage required can be prohib-
itive. For example, consider the case of anxn finite element mesh defined for Laplace’s equation on the unit square.
The coefficient matrixA in this case isn2xn2, and will haveO(n2) non-zero elements. A naive direct solution may
lead to storage ofO(n4) and computational effort ofO(n6) [Axelsson and Barker (1984), Golub and Ortega (1993)].
Nested dissection is a technique for reducing storage requirements that has been shown to be asymptotically optimal.
However, even an efficient direct solution method utilizing nested dissection may requireO(nlogn) storage andO(n3)
computations [Axelsson and Barker (1984), Hoffman, Martin, and Rose (1973)].

An alternative to direct methods of solution are iterative methods, which involve the construction of a sequence {x(i)}
of approximations to the solutionx, for whichx(i) → x. Many different iterative methods have been developed. Possi-
bly the most basic iterative method is the Jacobi method, defined by , whereD is
the matrix containing only the main diagonal ofA. The basic first-order linear stationary iterative method involves
repeating apredict-test-correct cycle until the result produced with the approximate solution is sufficiently accurate
[Hageman and Young (1981)]. Everytest step requires the computation ofAx(i). Iterative methods are storage effi-
cient — the basic iterative method requires onlyO(n2) storage for annxn coefficient matrix. Moreover, each step of
an iterative method requires onlyO(n2) operations, as well. An iterative method is more efficient than the best direct
method if the number of iterations required can be held to less thanO(n).

Theconjugate gradients (CG) method is a popular and efficient iterative method that can be used whenever the coef-
ficient matrix is symmetric and positive definite.1 Applied in its basic form to ann2xn2 coefficient matrix, CG may
requireO(n2) iterations, which is not an improvement over the best direct method. However, through the use of a
technique known aspreconditioning, the convergence of CG can be accelerated. The resulting method is known as
the method ofpreconditioned conjugate gradients (PCG). The method presented in this thesis is a variant of PCG that
we callsupport tree conjugate gradient, or STCG.

Parallel performance of a solution method is an important issue. The size of the linear systems that are being solved
has continued to grow over recent years. Linear systems can easily be formulated that exceed the capability of current
serial computers to solve. Consequently, the use of parallel computers is required and it is necessary to design new
algorithms that can simultaneously take advantage of the sparsity and parallel potential of a linear system.

Direct methods for sparse matrices have proven difficult to parallelize. The most common direct methods involve
using Gaussian elimination to factor the coefficient matrix into two triangular matrices, and then performing two suc-
cessive triangular solves. Some progress has been made in parallel factorization, but triangular solution is recognized
as the major bottleneck to effective parallelization [Heath,et al (1990)].

In contrast, the primary operation in iterative methods for sparse matrices is matrix-vector multiplication, which can
be fairly efficiently parallelized for dense matrices, as well as for sparse matrices with regular structure [Blelloch,et
al (1993)]. Therefore, iterative methods are attractive for parallel implementation if the number of iterations can be
kept small by accelerating the rate of convergence. Convergence acceleration requires the use of preconditioners,
however, and these form a bottleneck to parallel implementation. This is because every iteration of a preconditioned
iterative method requires the solution of a linear system involving the preconditioner. Typically, this is done using a
direct method: the preconditioner is factored into triangular matrices, and two triangular solves must be performed.

1. Recall thatA is symmetric if . A is positive definite if, for any vector , .

x
n 1+()

x
n()

D
1–

Ax
n()

b+()–=

A
t

A= x 0≠ xt
Ax 0>

3

The factorization is performed only once, and the factors are stored for use in every iteration. However, the two trian-
gular solves must be performed at every iteration, and, as noted above, sparse triangular solves are difficult to paral-
lelize efficiently. Several studies have shown that the use of preconditioners can actually decrease the parallel
performance of iterative methods [Greenbaum,et al (1989), Heroux,et al (1991)].

A variant of iterative methods are the multigrid methods, which are primarily applicable to the solution of linear sys-
tems resulting from the discretization of partial differential equations. Multigrid methods can be efficiently parallel-
ized, and require very few iterations to converge. However, in addition to being somewhat limited in applicability,
multigrid methods typically require extensive knowledge of the meshing and discretization processes. Such informa-
tion is often unavailable, and so multigrid methods lack generality.

We can briefly summarize the state-of-the-art in solving linear systems as follows:

• the size of the linear systems to be solved can be expected to increase indefinitely;

• parallel machines are required to solve the largest linear systems;

• iterative methods are promising for parallel implementation, if convergence is sufficiently rapid;

• convergence can be accelerated through the use of preconditioners, but the use of preconditioners can
adversely affect the parallel performance of the iterative method.

On the basis of the summary above, we can conclude that the development of an efficient parallel preconditioner
would be a significant advance in the state-of-the-art for solving sparse linear systems on parallel machines.

In this thesis, we present the design and analysis of a new parallel iterative method for the solution of certain types of
large, sparse linear systems. The systems that we shall consider are large, sparse, symmetric, and diagonally domi-
nant with non-positive off-diagonals. The new method is an extension of the PCG method, and is characterized by the
form of the preconditioner. We call the new methodsupport tree conjugate gradients, or STCG. STCG is unusual in
that the preconditioner is derived from an analysis of the combinatorial properties of the linear system, rather than the
algebraic properties. We shall show, both analytically and empirically, that STCG has the following characteristics:

• the rate of convergence of STCG is superior to most variants of PCG;

• the support tree preconditioners are straightforward to construct, given the coefficient matrix;

• support tree preconditioners are large, but very sparse, therefore requiring

• relatively little storage (usually less than the original coefficient matrix);

• relatively little processing per iteration (usually less than that required by a matrix-vector mul-
tiplication involving the original coefficient matrix);

• STCG is efficient to implement on parallel machines;

• STCG is nearly as efficient on serial machines as many standard variants of PCG.

In addition, a major contribution of this thesis is a new method for analyzing matrices. The new analytic method
relies on the combinatorial properties of the graphs that are associated with matrices, and enables proofs of various
matrix properties without explicitly referring to the underlying vector spaces. Instead, the proofs involve determining
bounds on flows in networks, and bounds on various properties of network embeddings. Using this new method, we
obtain bounds on the largest eigenvalues of matrices, and prove theoretical bounds on the convergence rate of STCG.

The format of this thesis is as follows. In the next chapter, we review the current state of the art in direct and iterative

4

methods and show in more detail why a new method is necessary. Following the review, we present the implementa-
tion of STCG. This is followed by a theoretical analysis of the properties of STCG which is divided into two chapters.
Next, numerical experiments are presented that compare the performance of STCG with that of other common vari-
ants of PCG. Finally, STCG is extended to a larger class of problems, and some interesting extensions and applica-
tions of the theory developed for the analysis of STCG are presented.

5

 2
Background

This thesis involves the design and analysis of a new method for solving linear systems. A basic understanding of lin-
ear algebra and the techniques and tools used to analyze and solve linear systems is therefore necessary. In addition,
the method developed in this thesis is based on graph theory, so a basic understanding of this topic is necessary as
well. Below, we first establish some basic definitions and notation. Following that, we review some basic results in
graph theory, direct methods for the solution of linear systems, and iterative methods for the solution of linear sys-
tems.The reader already familiar with this material is encouraged to skip this chapter.

2.1 Definitions and Notation

 will be used to denote the set of real numbers. will denote positive real numbers, while will denote nega-
tive real numbers.

A column vectorx is annx1 array of numbers indexed by row.xi denotes the element in rowi of vectorx. An nx1
vector will sometimes be referred to as an-vector. We will denote vectors with boldface italic lower-case letters. In
general, a vector may have complex elements, but in this thesis, we shall only be concerned with vectors having real
elements.

A collection of vectors {x1,...,xn} is called linearly independent if, for any collection of scalars {α1,...,αn} not all

equal to zero, . Conversely, if there exists a collection {α1,...,αn} with someαi ≠ 0 and ,

then the collection {x1,...,xn} is said to belinearly dependent.

A matrix A is anmxn array of numbers indexed by row and column. Thus,A(i,j) is the element in rowi and columnj
of the matrixA. An n-vector is a special case of a matrix with a single column. In this thesis, we will be considering
square matrices in whichm = n. An nxn matrixA is said to be of ordern. We will denote matrices with italic capital
letters. The elementA(i,j) will often be denoted byaij . In general, the elements of a matrix may be complex numbers,
although in this thesis, we will only be concerned with matrices having real elements.

ℜ ℜ+ ℜ-

αi xi
i 1=

n

∑ 0≠ αi xi
i 1=

n

∑ 0=

6

Therank of anmxn matrix A, rank(A), is the number of linearly independent rows/columns ofA. An nxn matrixA is
said to be offull rank if .

Themain diagonal of annxn matrixA is the set of elements indexed byaii for i = 1,...,n, and is denoted bydiag(A). A
matrixD is said to bediagonal if all elements off the main diagonal are zero.

A nxn matrixA is lower (upper) triangular if all elements above (below) the main diagonal are zero.A is unit lower
(upper) triangular if A is lower (upper) triangular and all the elements on the main diagonal are 1.A is strictly lower
(upper) triangular if A is lower (upper) triangular and all elements of the main diagonal are zero.

The transpose of anmxn matrixA is denoted byAt, and is thenxm matrix defined by . The trans-
pose of a column vector is a row vector.

The inner product of two n-vectorsx and y is denoted (x,y), and is defined by . Note that
.

Themagnitude of a vectorx is denoted , and is given by . A vector with magnitude 1 is called a
unit vector.

A matrix issparse if the ratio of zero to non-zero elements is large. Annxn matrixA is sparse ifA contains onlyO(n)
non-zeros. The location of the non-zeros in a sparse matrixA is called thesparsity patternof A.

The scalar product of a matrix/vector with a scalarα is the component-wise product ofα with the elements of the
matrix/vector: (α*A)(i,j)=α∗A(i,j), and (α∗x)i = α*x i.

Thematrix-vector product of anmxn matrixA with ap-vectorx is only defined forn=p. The result is anm-vector

y=Ax given by .

The matrix-matrix product of anmxn matrix A with a pxq matrix B is only defined forn=p. The result is anmxq

matrixC=AB given by .

The identity matrix of ordern is thenxn matrix I for whichaii=1, i=1,...,n, andaij=0 for i≠j. The identity matrixI has
the property that for any vectorx, Ix=x.

A permutation matrix is an identity matrix with rows (columns) reordered. Thus, a permutation matrixP has exactly
one 1 in each row and column, and is zero elsewhere. Left multiplication by a permutation matrix interchanges rows,
while right multiplication interchanges columns.

The inverse of annxn matrix A is denoted byA-1, and is the uniquenxn matrix defined by . The
inverse of a matrix only exists when there is a unique solution to the equation . WhenA has an inverse,A is
said to benon-singular. Conversely, a matrix without an inverse issingular. An nxn matrix A is non-singular if and
only if A is of full rank.

An nxn matrixA is symmetric if .

An nxn matrix A isdiagonally dominant if, , ; that is,A is diagonally dominant if, for

each row, the sum of the absolute values of the off-diagonal elements is less than or equal to the value of the diagonal

rank A() n=

At i j,() A j i,()=

x y,() xi yi
i 1=

n

∑=
x y,() y x,()=

x x x x,()1 2⁄
=

yi ai j
j 1=

n

∑ x j=

ci j aik
k 1=

n

∑ bkj=

AA 1– A 1– A I= =
Ax b=

At A=

i∀ 1…n= ai i ai j
j 1 j i≠,=

n

∑≥

7

element.A is strictly diagonally dominant if such that ; that is,A is strictly diagonally dominant

if A is diagonally dominant and at least one of the diagonal elements is strictly larger than the corresponding off-diag-
onal absolute sum.

Let A be annxn matrix.A scalarλ is aneigenvalue of A if there exists ann-vectorx, with x ≠ 0, such that .
The vectorx is said to be theeigenvector corresponding to the eigenvalueλ. The collection of eigenvalues of A is
called thespectrum of A, and is denotedλ(A). Thespectral radius of A is denotedρ(A), and is given by the largest
magnitude of any eigenvalue ofA. That is, . In general, an eigenvalue may be real or
complex. However, in this thesis, we are only concerned with real symmetric matrices, and these matrices have only
real eigenvalues.

Let A andB benxn matrices. A scalarλ is ageneralized eigenvalue of the ordered pair of matrices (A, B) if there
exists ann-vectorx, with x ≠ 0, such that . The vectorx is said to be thegeneralized eigenvector corre-
sponding to the generalized eigenvalueλ. We denote the collection of generalized eigenvalues of (A,B) by λ(A,B).

An nxn matrixA is positive (negative) definite if, , (< 0). Equivalently,A is positive (negative) definite if,
, ().

An nxn matrix A is positive (negative) semi-definite if, , (≤ 0). Equivalently,A is positive (negative)
semi-definite if, , ().

Let A be annxn positive definite matrix. Thespectral condition number of A is denoted byκ(A), and is given by the
ratio of the largest to smallest eigenvalues ofA. That is, let . Then . LetB

also benxn and positive definite. The generalized condition number of (A,B) is denoted byκ(A,B), and is given by the

ratio of the largest to smallest generalized eigenvalues of (A,B). Note thatκ(A,B) = κ(B-1A).

An nxn matrixL is aLaplacian matrix, orLaplacian, if L is real, symmetric, and diagonally dominant with non-posi-
tive off-diagonals.

An nxn matrix L is ageneralized Laplacian matrix (generalized Laplacian) if L is real, symmetric, and diagonally
dominant.

2.2 Graph Theory

In this section, we will review some basic, relevant results in graph theory. Further details can be obtained from books
on graph theory, such as the texts by Chartrand (1977) or Harary (1969). First, we start with the following basic defi-
nitions.

An undirected graph G = (V,E) is a collectionV of nodes or vertices, together with a setE of edges or arcs where each
edge inE is an unordered pair of nodes. Aself-loop is an edge in which the vertices are identical. We denote the car-
dinality of a set of verticesS by |S|, and the cardinality of a set of edgesE by |E|. An undirected graph is depicted as a
set of points connected by lines.

A graphG = (V,E) is said to beordered if each of then vertices inV is assigned a unique number in the range 1,...,n;
such an assignment is called anordering. Given an ordered graph G, we will denote vertices byV = {v1,...,vn}, and
edges byE = {e1,...,em}, whereei = (vj,vk) = (vk,vj) for somej,k.We will assume that all graphs are ordered.

Let G = (V,E) be a graph. Ifei = (vj,vk) ∈ E, then verticesvj andvk are calledadjacent, denotedvj adjvk. Let v ∈ V; the
degree of v, deg(v), is the number of distinct vertices adjacent tov.

i∃ ai i ai j
j 1 j i≠,=

n

∑>

Ax λx=

ρ A() max λ :λ λ A()∈{ }=

Ax λBx=

x∀ x
t
Ax 0>

λ λ∈∀ A() λ 0> λ 0<

x∀ x
t
Ax 0≥

λ λ∈∀ A() λ 0≥ λ 0≤

λ A() λ1 … λn≤ ≤{ }= κ A() λn λ1⁄=

8

A complete graph is a graph in which all vertices are pairwise adjacent. We denote byKn the complete graph onn
vertices.

A walk is an alternating sequence of vertices and edges that begins and ends with a vertex, such that any edge in the
sequence connects the vertex preceding it to the vertex following it.

A path is a walk in which all the vertices are distinct.

A cycle is a walk in which the first and last vertex are the same.

A graph isconnected if there exists a path between every pair of vertices. LetG1,...,Gm be subgraphs ofG such that
eachGj is connected and there exist no edges betweenGj andGk for j ≠ k; then theGj are called the connected com-
ponents of G.

A tree is a connected graph with no cycles. Aforest is a graph with no cycles, and is therefore a collection of trees.

A directed graph G is a graph in which the edges are ordered pairs; that is, (vj,vk) ≠ (vk,vj). For an edgee = (vj,vk), vj
is termed the tail of the edge, andvk is the head. A directed graphG is depicted as a set of points connected by lines
with arrowheads denoting the orientation from tail to head.

A weighted graph G (directed or undirected) is a graph together with a functionw: , which assigns weights to
edges.

Let G = (V(G),E(G)) andH = (V(H),E(H)) be graphs.H is asubgraph of G if , and .G is
then asupergraph of H.

Let . LetH be the subgraph ofG given by , and iff and . ThenH
is the subgraph ofG induced by the setS.

Let G = (V,E) be a graph and . LetH be the subgraph ofG induced byS. Then thefrontier, orboundary, of H is
the set of edges (vi, vj) such that either and , or and .

Let G andH be graphs. Anembedding of H into G is a mapping of vertices ofH onto vertices ofG, and edges ofH
onto paths inG. Thedilation of the embedding is the length of the longest path inG onto which an edge ofH is
mapped; we denote the dilation of the embedding byδ(G,H). Thecongestion of an edgee in G is the number of paths
of the embedding that containe. Thecongestion of the embedding is the maximum congestion of the edges inG. We
denote the congestion of the embedding byγ(G,H).

2.2.1 Graphs and matrices

Graphs and matrices are related in a variety of interesting ways. In this section, we present an overview of the rela-
tionships that are important to understanding this thesis. Further details can be found in the books by Varga (1962)
and George and Liu (1981). In the succeeding chapters of this thesis, we will use some of the relationships between
graphs and matrices to develop a new approach to accelerating the convergence of the preconditioned conjugate gra-
dient method. The preconditioned conjugate gradient method was derived in terms of the algebraic properties of vec-
tors and matrices; in contrast, the approach developed in this thesis is derived in terms of the combinatorial, or graph-
theoretic properties of the matrices. In this section, we review some of the basic properties that relate graphs and
matrices.

Let G = (V,E) be an ordered, undirected graph withn vertices and no self-loops. Then theadjacency matrix A corre-
sponding toG can be constructed as follows:

• aij = aji = 1 if e = (vi,vj) ∈ E;

E ℜ→

V H() V G()⊆ E H() E G()⊆

S V G()⊆ V H() S= vi v j(,) E H()∈ vi S∈ v j S∈

S V⊆
vi S∈ v j S∉ vi S∉ v j S∈

9

• aij = 0 otherwise.

Figure 2.1 illustrates an undirected graph and its corresponding adjacency matrix. Note that the adjacency matrix is
symmetric, but has all zeros on the diagonal.

Let p be an ordering of the numbers 1,...,n. Thenp is a list of lengthn, p(i) ∈ {1,...,n}, andp(i) ≠ p(j) for i ≠ j. p can
be used to construct a permutation matrixP = P(p) by setting P(i,p(i)) = 1, for i = 1,...,n, andP(i,j) = 0 elsewhere.p
defines a new labeling of the vertices ofG. The corresponding adjacency matrixB that reflects the new ordering is
given by . The topology of the graph underlying A and B is the same, only the labeling of the vertices has
changed.

It is easy to show that if a graphG consists of exactly m connected componentsG1,...,Gm, then there exists an order-
ing of G such that the adjacency matrix ofG is block diagonal with exactlym diagonal blocks [see George and Liu
(1981)]. Equivalently, letA be the adjacency matrix ofG. Then there exists a permutation matrixP such that

 is block diagonal withm diagonal blocks.

A generalization of the adjacency matrix is theunit Laplacian matrix. Given an undirected graphG = (V,E), the unit
Laplacian,L, is defined as follows:

• l ij = l ji = -1 if e = (vi,vj) ∈ E;

• l ii = deg(vi);

• l ij = 0 otherwise.

(Some authors refer to the unit Laplacian as simply the Laplacian of a graph [for example, see Pothen, Simon, and
Liou (1990)]. We prefer to reserve the termLaplacian for a generalization to weighted undirected graphs that will be
presented in Chapter 4.) Figure 2.2 illustrates the graph from Figure 2.1, and the corresponding unit Laplacian matrix.
Note the differences between the adjacency matrix and the unit Laplacian: the Laplacian has a non-zero diagonal and
non-positive off-diagonals. The sparsity pattern of the off-diagonal elements is the same for the Laplacian and the
adjacency matrix.

The unit Laplacian has some interesting properties related to the structure of the graph. LetG be a graph andL the

v4

v2

v3

v1
0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

Figure 2.1:An Undirected Graph and Corresponding Adjacency Matrix.

B PAPt=

B PAPt=

v4

v2

v3

v1
2 1– 0 1–

1– 3 1– 1–

0 1– 2 1–

1– 1– 1– 3

Figure 2.2:An Undirected Graph and Corresponding Unit Laplacian Matrix.

10

corresponding unit Laplacian. It is easy to show that all the rows and columns ofL sum to zero. Therefore, the vector
1, which consists of all ones, is an eigenvector ofL with eigenvalue 0; that is, . Moreover, ifG consists of
exactlym connected componentsG1,...,Gm, then there arem linearly independent eigenvectorsx1,...,xm correspond-
ing to the eigenvalue 0, andxi(j) = 1 if vj ∈ Gi, andxi(j) = 0 otherwise.

Any symmetric matrix defines an unweighted undirected graph. (Symmetric matrices can also define weighted undi-
rected graphs, but the details of this are postponed until Chapter 4.) LetA be annxn symmetric matrix. We defineG
corresponding toA as follows:

• G has vertex setV = {v1,...,vn}. That is,G has a vertex for every row/column inA.

• G has edge setE = {(v i,vj): A(i,j) = A(j,i) ≠ 0}.

In section 2.3 on direct methods for solving linear systems, we will show that analysis of the graph corresponding to
a symmetric matrix can reduce the amount of storage required to factor the matrix.

Just as undirected graphs correspond to symmetric matrices, directed graphs correspond to nonsymmetric matrices.
Let G = (V,E) be a directed graph. Then the adjacency matrixA corresponding toG can be constructed as follows:

• aij = 1 if e = (vj,vi) ∈ E;

• aij = 0 otherwise.

Clearly, a directed graph in which every directed edge is paired with an edge oriented in the opposite direction defines
a symmetric matrix.

Figure 2.3 illustrates two directed graphs and corresponding adjacency matrices. Figure 2.3a presents a graph similar
to that of Figure 2.1, but directed. Note the difference between the adjacency matrix of Figure 2.1 and that of Figure
2.3a. The directed graph has a much sparser adjacency matrix, and is not symmetric. Figure 2.3b illustrates a directed
tree which is ordered from root to leaves and directed from leaves to root. Note that the adjacency matrix is upper tri-
angular. This fact will be used in the implementation of support tree conjugate gradient in Chapter 3.

Given any arbitrarynxn matrixA, symmetric or nonsymmetric, we can also define an unweighted directed graphG =

L1 0=

0 0 0 0

1 0 0 1

0 1 0 1

1 0 0 0

v1 v2

v3v4

0 1 1 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

v1

v2 v3

v4 v5

a)

b)

Figure 2.3:Directed Graphs and Adjacency Matrices.
a) A directed graph similar to Figure 2.1, and corresponding adjacency matrix.

b) A directed tree and corresponding adjacency matrix.

11

(V,E):

• G has vertex setV = {v1,...,vn}. That is,G has a vertex for every row/column inA.

• G has edge setE = {(v i,vj): A(i,j) ≠ 0}.

2.2.2 Network flow and multicommodity flow

Network flow problems constitute an important area of research in graph theory and combinatorial optimization.
Results from the area of multicommodity flow will be used in Chapter 5 to analyze the theoretical properties of the
support tree conjugate gradient method.

The most basic network flow problem is that of maximum flow. Following Tarjan (1983), the single-commodity max-
imum flow problem can be described as follows:

2.1 Definition: (single commodity maximum flow)Let G = (V,E) be a directed graph with two distinguished
vertices, a source s and a sink t, and a positive capacity c(v,w) on every edge(v,w) ∈ E. (c(v,w) = 0 if (v,w)
∉ E.) A flow on G is a function f: E → ℜ having the following three properties:

1. f(v,w) = -f(w,v).

2. f(v,w) ≤ c(v,w)

3. If v ∈ V, v ≠ s,t, then .

The value |f| of a flow f is the net flow out of the source s. The maximum flow problem is that of finding a
flow of maximum value.

2.2 Definition: A cut (S,) is a partition of the vertex set V into two sets S and=V-S such that s∈ S, and t∈

. The capacity of a cut, c(S,), is defined by . A minimum cut is a cut for

which the capacity of the cut is a minimum over all cuts.

The maximum flow problem has been studied extensively. The main result of interest to us is Ford and Fulkerson’s
Max-Flow Min-Cut Theorem [Ford and Fulkerson (1956), (1962)].

2.3 Theorem (Max-Flow Min-Cut):Let G = (V,E) be a directed graph, and letc: E → ℜ+ be a capacity func-

tion. A flow f is a maximum flow iff there exists a cut (S,) such that |f| = c(S,).

That is, the value of the maximum flow can be determined without explicitly determining the flow itself simply by
finding the value of a minimum cut.

The multicommodity flow problem generalizes the single commodity problem. Following Leighton and Rao (1988):

2.4 Definition: A multicommodity flow problem consists of

• a graph G = (V,E);

• a set of commodities,Γ;

• a capacity function on the edges c: E → ℜ+;

f v w,()
w
∑ 0=

S S

S S c S S,() c x y,()
x S∈ y S∈,

∑=

S S

12

• a supply function for vertices s: V×Γ → ℜ+;

• a demand function for vertices d: V×Γ → ℜ+;

The objective of a multicommodity flow problem is to construct flows for each commodity that satisfy the demands
without violating the constraints of supply and capacity. In contrast to single-commodity flow, there is no Max-Flow
Min-Cut Theorem for multicommodity flow.

Shahrokhi and Matula (1990) define the ratio of flow supplied between pairs to the demand as thethroughput, and
studied multicommodity flow for the case in which the throughput must be the same for all pairs. They called this the
maximum concurrent flow problem (MCFP). They showed that the dual of MCFP is the problem of assigning dis-
tances to the edges to maximize the minimum cost of routing the flow. They developed a polynomial time approxima-
tion algorithm for the MCFP for the case of arbitrary demands but uniform capacity.

Leighton and Rao (1988) considered a special case of multicommodity flow called the uniform multicommodity flow
problem (UMFP). In a UMFP, every ordered pair of vertices defines a commodity, and the demands are the same for
each commodity. While it is clear that the flow in a UMFP cannot exceed the capacity of a minimum cut, Leighton
and Rao first showed that the converse is not true. That is, there are cases of UMFP where the value of a maximum
flow is less than the value of a minimum cut.

Let (S,) be a cut. For a UMFP with unit demands, the demand across (S,) is given by . Define theratio cost
of a cut to be

(2.1)

Leighton-Rao define aminimum cut to be a cut (S,) for which the ratio cost is the minimum over all cuts. That is, for
a minimum cut,

If the edge capacities are all unity, then the minimum cut corresponds to the concept of asparsest cut from graph the-
ory. Finding a sparsest cut is NP-hard [Garey, Johnson, and Stockmeyer (1976)].

A concept related to that of ratio cost is theflux, orminimum edge expansion, defined by

(2.2)

A flux cut is a cut for which the value of flux is the minimum over all cuts. The flux is an important concept because it
is a measure of the connectedness of a graph. Any componentS of a graphG such that |S| ≤ |G|/2 is connected to the
rest of the graph with at leastα|S| edges.

The key theorem that Leighton and Rao proved is the relationship between throughput and minimum cuts for the
UMFP. In particular, they proved the following theorem for a graph withn vertices:

2.5 Theorem: There is a feasible flow with |f| = Ω(γ/logn).

Theorem 2.5, coupled with the fact that the value of a maximum flow cannot exceed the value of a minimum cut
yields the following:

S S S S⋅

γ S S,()

c x y,()
x S∈ y S∈,

∑
S S⋅

--=

S

γ S S,() minS V⊆

c x y,()
x S∈ y S∈,

∑
S S⋅

--=

α minS V⊆

c x y,()
x S∈ y S∈,

∑
min S S⋅()

--=

13

(2.3)

Another interesting result from Leighton and Rao deals with the area ofgraph embedding. In Chapters 4 and 5, we
will show that the theoretical properties of the support tree conjugate gradients method are related to the congestion
and dilation of certain graph embeddings. In particular, it will be important to minimize the congestion and dilation of
the embeddings.

Leighton and Rao proved the following theorem which yields bounds on the congestion and dilation of embeddings
without explicitly constructing the embeddings. This result will be used extensively in Chapter 5:

2.6 Theorem: Consider any n-node bounded degree graph H, and any 1-1 embedding of the nodes of H onto
the nodes of an n-node bounded degree graph G with fluxα. The edges of H can be routed as paths in G

with congestion and dilation .

2.2.3 Graph partitioning

We have discussed above the basic relationship between symmetric matrices and undirected graphs. The linear sys-
tems that arise in many applications have interesting interpretations in terms of graphs. In addition, many application
problems in computational science and engineering are based on meshes, which are special cases of graphs.

Graph partitioning is a process which is fundamental to the generation of support trees in Chapter 3. Graph partition-
ing is the process of decomposing a graph into two or more pieces of roughly equal size by removing a collection of
either edges or vertices called aseparator (an edge or vertex separator, respectively). Graph partitioning has a number
of applications. For example, finding good partitions is useful in determining orderings for linear systems that mini-
mize the fill that occurs as a result of factorization [George and Liu (1981), Gilbert (1980), Lipton, Rose, and Tarjan
(1979)]. Optimization of the physical layout of a VLSI circuit can be performed by using graph partitioning [Donath
(1988), Leighton (1983), Leiserson (1983)]. Finally, solving a finite element problem on a distributed processor
requires partitioning the finite element mesh and distributing the pieces among the processor elements [Blelloch,et al
(1992), Farhat and Lesoinne (1993), Nour-Omid,et al (1987),Williams (1991)].

In each of the applications above, it is desirable to have the pieces (subgraphs) contain roughly the same number of
nodes, with as few edges as possible connecting the pieces (since edges imply communication). This observation
motivates the following definition:

2.7 Definition (edge separator):An f(n) edge separator thatδ-splits is a subset of edges, F, of a graph G with

n vertices if and the vertices of G-F can be partitioned into two sets S and such that there are

no edges from S to, and , where f is a function and .

A similar definition can be formulated for vertex separators.

With respect to the previous discussion of network and multicommodity flow, an edge separator defines a cut, and the
capacity of a cut is the sum of the weights of the edges in the separator. Similarly, a cut defines a partition of the graph
into two sets.

The goal of graph partitioning is to find small separators. Not all graphs have small separators. Consider, for example,
Kn, the complete graph onn vertices, where n = 2k. If (S,) is a cut ofKn such that |S| = | | =k, then the separator
containsk2 edges. Compare this with a rectangular mesh, which has the same number of nodes asKn, but
fewer edges; partitioning the mesh into two pieces of equal size can be done with a separator having only
edges.

Ω γ
nlog

----------- 
  f γ≤ ≤

O
nlog

α
-----------()

F f n()≤ S

S S S, δn≤ 0 δ 1≤ ≤

S S
nx n

n k<

14

An interesting and important research problem is characterizing families of graphs by separator size. For example, an
early result is that every tree has a single vertex separator that 2/3-splits [Jordan (1869)]. More recently, Lipton and
Tarjan (1979) proved that every planar graph has an -separator that 2/3-splits; the constant they obtained for
the asymptotic bound was . Djidjev (1982) improved their result by reducing the constant to . Other extensions
have been made as well [Gazit and Miller (1987), Miller (1986)]. Gilbert, Hutchinson, and Tarjan (1984) proved that
all graphs with genus bounded byg have separators. Alon, Seymour, and Thomas (1990) proved an

 bound on the separator size for graphs with an excluded minor isomorphic to the complete graph onh
vertices. (Roughly speaking, aminor is a subgraph that can be obtained by shrinking edges to identify vertices; an
excluded minor is one which cannot be obtained by such reduction operations.)

Many different approaches to graph partitioning have been taken. In general, graph partitioning algorithms can be
classified as being eithercombinatorial or geometric.

Combinatorial algorithms only make use of graph connectivity information. Combinatorial algorithms include:

• iterative improvement algorithms

The first iterative improvement algorithm was proposed by Kernighan and Lin (1970). Roughly speaking,
this algorithm is implemented by starting with an initial cut, and then iteratively swapping pairs of vertices
across the cut if doing so improves the size of the separator. The algorithm continues iterating until no fur-
ther improvements are possible. Because of the dependence on starting condition, this algorithm is not
guaranteed to achieve the best cut.

Fiduccia and Mattheyses (1982) improved on the Kernighan and Lin algorithm. In their extension, only
one vertex is moved at a time, and the method extends to unbalanced cuts, as well as graphs for which the
vertex weights may vary.

• simulated annealing [Nour-Omid,et al (1987), Williams (1991)]

Simulated annealing is a general purpose optimization method that is modeled on the process of slow
cooling that allows liquids to crystallized. The idea, by analogy to liquid crystallization, is that the energy
of a physical system is distributed among its components, the distribution is a probabilistic function of the
temperature, and crystallization is a minimum energy state. By cooling the system, there is less freedom in
the energy distribution, and the system will tend towards an energy minimum. Local minima are avoided
by cooling slowly enough that there is enough energy in the system for components to “bounce” out of
local minima. [Press, et al (1988)].

Simulated annealing often produces good results, but the only guarantee of optimality is the following: if
the temperature decreases sufficiently slowly, then the probability of ending in a global optimum tends to
certainty [Hajek (1988)].

• spectral partitioning[Donath and Hoffman (1972), Pothen, Simon, and Liou (1990), Hendrickson and
Leland (1992)]

Let L be the unit Laplacian matrix of a graph. Then the smallest eigenvalue ofL is zero, and the second
smallest eigenvalue,λ2, is related to the connectivity of the graph. Fiedler (1973) was among the first to
make this observation, and calledλ2 the algebraic connectivity of the graph.υ2, the eigenvector corre-
sponding toλ2, contains information about the relative distances between vertices.

Spectral partitioning is implemented by determiningυ2, sorting the entries, and partitioning the corre-
sponding vertices about the median value. Higher order eigenvectors can be used to obtain cuts resulting
in more than two subgraphs. While this method seems to perform well in practice, there are no guarantees
of the quality of the cut. Recently, Guattery and Miller (1994, 1995) have shown examples where the spec-
tral algorithm performs poorly.

O n()
8 6

O gn()
O h3 2⁄ n()

15

• greedy method [Dagum (1993), Farhat and Lesoinne (1993)]

The greedy method is a region growing procedure. The best way to think about the greedy method is as
wave propagation. Wavefronts propagate outward from two or more starting nodes, traveling at the same
speed in terms of number of edges per step. The places where wavefronts collide define the separator. This
method has the advantage that partitioned pieces are connected. However, there are no performance guar-
antees.

• multicommodity flow [Leighton and Rao (1988), Lang and Rao (1994)].

Multicommodity flow was discussed in §2.2.2. One side effect of the proof relating the value of a maxi-
mum uniform multicommodity flow to the value of a minimum cut, was an algorithm guaranteed to find
the minimum ratio cut to within a factor of [Leighton and Rao (1988)]. The multicommodity
flow method is one of the few graph partitioning methods to provide a performance guarantee.

In contrast to combinatorial methods, geometric methods require the spatial coordinates of the nodes of the graph.
For many finite element and finite difference problems, this geometric information is a by-product of mesh construc-
tion. Geometric methods include:

• coordinate bisection [Simon (1991), Williams (1991)]

This method is the simplest of the geometric methods. The method is implemented by sorting the nodes
according to their coordinates, then bisecting with a hyperplane orthogonal to one the coordinate axes.
The coordinate axis that yields the smallest separator is chosen. Again, there are no performance guaran-
tees with this method, and the performance can vary with the orientation of the graph. Pathological cases
exist for which the separator obtained with coordinate bisection is among the worst possible.

• inertia-based slicing [Farhat and Lesoinne (1993)]

Inertia-based slicing is a generalization of coordinate bisection. Instead of bisecting orthogonal to one of
the coordinate axes, the inertia matrix of the mesh is computed, and the principal axes of the mesh are
determined. Bisection is then performed with respect to the principal axes, rather than the coordinate axes.
Again, there are no performance guarantees, and pathological cases exist for which inertia-based slicing
yields very large separators.

• sphere separators [Miller, et al (1992)].

It can be shown that there exist pathological cases for which the planar cuts used in coordinate bisection
and inertia-based slicing cannot yield good separators. In contrast, sphere separators do not suffer these
inadequacies [Teng (1991)]. The idea behind sphere separators is to conformally map the mesh points
onto a sphere, rotate the points on the surface so that the mass of the mesh is more or less evenly spread
out over the sphere surface, then partition using a plane through the center of the sphere (which yields a
great circle on the sphere surface). Biasing the cut using the inertia matrix of the mesh improves the qual-
ity of the separators [Gremban, Miller, and Teng (1994)]. The sphere separator algorithm is also one of the
few separator algorithms for which there are bounds on the expected performance.

2.3 Direct Methods for the Solution of Sparse Linear Systems

This subsection is not intended to be a thorough review of the state-of-the-art in direct methods for the solution of
sparse linear systems. Rather, it is intended to be an overview that presents the problems and the solutions that have
relevance to STCG. For more detailed information, the reader is referred to Dongarra,et al (1991), Duff, Erisman,
and Reid (1986)], and Heath,et al (1990).

O nlog()

16

Consider the solution of linear systems of the form

(2.4)

whereA is nxn large, sparse, symmetric, and positive definite. Direct methods for solution usually involve some vari-
ation of computing the Cholesky factorization ofA:

(2.5)

whereC is lower triangular. The solutionx is then obtained by the successive solution of the two constituent triangu-

lar systems , and by forward and backward substitution, respectively.

2.3.1 Cholesky factorization and the problem of fill

Cholesky factorization is most easily explained by the use of Gaussian elimination to obtain the root-free Cholesky
factorization:

(2.6)

whereL is unit lower triangular, andD is diagonal. Following Khaira, Miller, and Sheffler (1992), the process of fac-
toringA can be described as a recursive series of steps. LetA0 = A, and letIn denote thenxn identity matrix. Then,

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

This process proceeds recursively untilAn-1 = D, whereD is diagonal. The final result is

(2.12)

Since is unit lower triangular, we have the result sought. ForA positive definite, all the elements ofD

are positive, so the Cholesky factorization can be easily obtained from theroot-free form:

Ax b=

A C Ct⋅=

Cy b= Ctx y=

A LDLt=

A0
d1 v1

t

v1 B1

=

1 0

v1 d1⁄ I n 1–

d1 0t

0 B1 v1v1
t() d1⁄–

1 v1
t d1⁄

0 I n 1–

=

L1A1L1
t=

A1

d1 0 0t

0 d2 v2
t

0 v2 B2

=

1 0 0t

0 1 0t

0 v2 d2⁄ I n 2–

d1 0 0t

0 d2 0t

0 0 B2 v2v2
t() d2⁄–

1 0 0t

0 1 v2
t d2⁄

0 0 I n 2–

=

A L1…Ln 1– DLn 1–
t …L1

t=

L L1…Ln 1–=

17

(2.13)

Each step in the sequence of factorizations shown above is a single step of Gaussian elimination. We will occasion-
ally refer to such a step as areduction step. ForA non-singular, we also have

, (2.14)

which shows that Gaussian elimination can be performed as a pair of matrix multiplications: a pre-multiplication by a
lower triangular matrix, and a post-multiplication by an upper triangular matrix.

For A positive definite, Cholesky factorization, as implemented above, is a stable numerical process. When sparse
matrices are involved, however, the problem offill becomes critical. Fill occurs when a zero entry ofA become non-
zero in one of the Cholesky factors. It is possible for the Cholesky factors of annxn sparse matrix to be dense (with
Ω(n2) non-zero entries, instead ofO(n)). Figure 2.4 illustrates an example for which two-thirds of the zero positions
in the original matrix became non-zero in the Cholesky factors.

Fill is easiest to understand from a graph-theoretic point of view. As explained in §2.2.1, a correspondence exists
between symmetric matrices and undirected graphs. LetA be annxn symmetric matrix, and letG = (V,E) be the graph
defined by

• V = {v1,...,vn}

• E = {(vi,vj): A(i,j) ≠ 0}

As explained above, Gaussian elimination proceeds in a matrix by selecting a diagonal element, and then zeroing out
all the off-diagonal elements in the same row and column. Graph theoretically, theith step of Gaussian elimination
corresponds to selecting a vertexvi, deleting all the edges betweenvi and its neighbors, then adding edges between all
the former neighbors ofvi. Figure 2.5 illustrates an example step of Gaussian elimination. The original matrixA = A0
corresponds to the graph below it in the figure. The matrixA1 that results from the first step of Gaussian elimination
is shown with the corresponding graph below it. Note that nodev1 has been disconnected, and an edge has been added
between nodesv2 andv3, corresponding to the fill in positions (2,3) and (3,2) ofA1. Each step of Gaussian elimina-
tion removes all the edges from one node; we call each such step anode reduction.

Fill is a property of the order in which nodes are eliminated. Fill can often be reduced by reordering the matrix; graph
theoretically, this is equivalent to renumbering the nodes of the graph. Reordering is implemented by pre- and post-
multiplication ofA by a permutation matrixP and its transpose, respectively: . The permutation matrixPij
used to interchange row/columni andj of A has the form:

•

• , for k ≠ l;

• , for k ≠ i, j;

A LDLt LD1 2/() D1 2/ Lt() CCt= = =

D L 1– AL t–=

3 1– 1– 0 0

1– 3 0 1– 1–

1– 0 1 0 0

0 1– 0 1 0

0 1– 0 0 1

1.73 0 0 0 0

0.58– 1.63 0 0 0

0.58– 0.20– 0.79 0 0

0 0.61– 0.16– 0.77 0

0 0.61– 0.16– 0.52– 0.58

1.73 0.58– 0.58– 0 0

0 1.63 0.20– 0.61– 0.61–

0 0 0.79 0.16– 0.16–

0 0 0 0.77 0.52–

0 0 0 0 0.58

=

Figure 2.4:Cholesky Factorization with Fill.
The sparse matrix was factored, with 2/3 of the zeros becoming nonzero.

Filled values are in bold font.

B PAPt=

Pi j i j,() Pi j j i,() 1= =

Pi j k l,() 0=

Pi j k k,() 1=

18

Figure 2.6 illustrates an ordering of the matrix/graph from Figure 2.5 that leads to zero fill. Figure 2.6 is an example
of a useful fact that will be exploited later in this thesis:real symmetric matrices that correspond to trees have order-
ings that permit Cholesky factorization with zero fill.

For most matrices encountered in real applications, factorization will result in fill. The problem, then, is to minimize
fill. The problem of finding an ordering that will yield minimum fill has been shown to be NP-complete [Garey and
Johnson (1979)]. Nonetheless, many different approaches to ordering have been suggested for reducing fill. For the
purposes of this thesis, the most relevant ordering method is that ofgeneralized nested dissection [Lipton, Rose, and
Tarjan (1979), Gilbert (1980)], which is explained below.

Generalized nested dissection utilizes a recursive divide-and-conquer approach to produce an ordering. Consider a
graphG with n nodes. Generalized nested dissection proceeds by finding a small node (vertex) separatorS0 of G, and
ordering these nodes last, assigning them numbersn-|S0|+1 ton. Suppose that removal ofS0 from G results in two
connected componentsG00 andG01. SeparatorsS00 andS01 are then found forG00 andG01, and the nodes of these
separators are ordered fromn-(|S0|+|S00|+|S01|)+1 ton-|S0|. The process then continues recursively until all the nodes
of G have been ordered.

3 1– 1– 0 0

1– 3 0 1– 1–

1– 0 1 0 0

0 1– 0 1 0

0 1– 0 0 1

1 0 0 0 0

1 3⁄– 1 0 0 0

1 3⁄– 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3 0 0 0 0

0 8 3⁄ 1 3⁄– 1– 1–

0 1 3⁄– 2 3⁄ 0 0

0 1– 0 1 0

0 1– 0 0 1

1 1 3⁄– 1 3⁄– 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

=

1

23

4 5

1

23

4 5

Figure 2.5:Graph Theoretic Interpretation of Gaussian Elimination.
The original matrix A = A0 corresponds to the graph at the left. The first step of Gaussian elimination

yields . A1 corresponds to the graph at the right, in which all edges to node v1 have been
eliminated, and all the neighbors of v1 have been connected. Filled values are in bold font.
A0 L1A1L1

t=

1 0 0 0 1–

0 1 0 1– 0

0 0 1 1– 0

0 1– 1– 3 1–

1– 0 0 1– 3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1– 1– 1 3⁄ 0

1– 0 0 1 3⁄– 1 3⁄

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0 3

1 0 0 0 1–

0 1 0 1– 0

0 0 1 1– 0

0 0 0 1 3⁄ 1 3⁄–

0 0 0 0 1 3⁄

=

1

2 3

4

5

1

2 3

4

5

Figure 2.6:Gaussian Elimination with Zero Fill.
The matrix/graph from Figure 2.5 has been reordered so that factorization does not lead to any fill.

19

Let thefill-factor be defined as the ratio of fill to the original number of non-zeros. Then generalized nested dissection
yields a fill-factor ofO(logn) for n2xn2xn2 matrices corresponding to planar graphs, finite elements graphs, and sev-
eral other classes of graphs [Gilbert and Tarjan (1987)]. Moreover, a fill-factor ofO(logn) is asymptotically optimal
[Hoffman, Martin, and Rose (1973)].

One of the interesting properties of the support tree preconditioners to be developed in the next chapter is that they
can be easily ordered to have zero fill Cholesky factorizations. This property follows from the fact that the graphs of
the preconditioners are trees.

2.3.2 Parallel performance

There are three stages in the direct solution of sparse linear systems which must be parallelized:

1. computation of the ordering

2. computation of the Cholesky factors

3. solution of the triangular systems

The ordering computations can be parallelized to some extent. In particular, generalized nested dissection has reason-
able parallel potential: first, the processes for finding separators can be parallelized; second, the ordering computa-
tions at each level of recursion are independent and may be performed in parallel. Hence, an ordering can be
determined using generalized nested dissection with logarithmic parallel speedup [Heath,et al (1990)].

Perhaps a bigger issue than that of parallelizing the ordering algorithm is that of selecting the ordering itself. On serial
machines, the goal of ordering is to minimize fill, since fill affects both storage requirements and the work required to
both factor and solve the resulting systems. The desire to achieve good parallel performance is often at odds with the
desire to minimize fill and total work. For example, Heath,et al (1990) consider the case of factoring annxn tridiago-
nal matrix. The associated graph is a simple path of lengthn. By factoring inward, starting at the ends, a no-fill factor-
ization can be achieved (since a simple path is a tree), but at the cost ofO(n) parallel steps. On the other hand, if
nested dissection were applied to the problem, the result would be a factorization with a fill factor ofO(logn), but
only O(logn) parallel steps in the factorization. As yet, the proper trade-off between parallel work and fill has not
been determined.

Given an ordering and the resultant factorization, then the remaining problem is to parallelize the substitution algo-
rithms used to solve the triangular systems.

Forward substitution is implemented straightforwardly in a serial manner by:

, and ,

while backward substitution is given by:

, and .

Unfortunately, it is very difficult to efficiently parallelize forward and backward substitution. The serial formulas
above point out the inherent data dependencies - each new solution value may depend on one or more of the preced-
ing solution values. High computational rates are even difficult to achieve when the triangular factors are dense, and
the situation is made even worse in the sparse case. In the dense case, the products contained within each sum in the
substitution formulas can be performed in parallel, and the sum computed in a sequence of parallel steps logarithmic
in the number of terms. In the sparse case, however, there are very few products within each sum, so the parallel
potential is greatly reduced. Furthermore, the speedup that is obtained in the dense case is largely done by exploiting
the regularity of the structure of the dense factors; this regularity is largely lost in the sparse case [Heath,et al

y1

b1

L 1 1,()
-----------------= yi

1
L i i,()
-------------- bi L i j,() y j⋅

j 1=

i 1–

∑– i,⋅ 2 … n, ,= =

xn

bn

U n n,()
------------------= xi

1
U i i,()
---------------- yi U i j,() x j⋅

j n=

i 1+

∑– i,⋅ n 1– … 1, ,= =

20

(1990)].

Anderson and Saad (1989) studied the problem of triangular solution and proposed a method known as level schedul-
ing for preprocessing sparse triangular matrices in order to maximize parallelism. Level scheduling is best understood
as a graph reordering operation in which sets of independent nodes are numbered consecutively. For example, on a
square mesh, one common ordering that can be obtained through level scheduling is by diagonal, starting at a corner.
On annxn mesh, this yields 2n-1 sets such that all the nodes in each set are independent and can be solved for in par-
allel once the previous set has been solved

Figure 2.7 illustrates the interpretation of level scheduling in terms of graph theory. Both graphs in the figure have 25
vertices. In Figure 2.7a, the independent sets correspond to vertices that lie along common diagonals. In Figure 2.7b,
the independent sets correspond to levels in the tree. In general, annxn mesh (corresponding to ann2xn2 matrix) will
haveO(n) diagonals, while a tree withn2 nodes will haveO(logn) levels. Therefore, using simple level scheduling,
more potential parallelism exists for tree structures than for mesh structures. This observation is important in under-
standing the parallelism inherent in the support tree conjugate gradient method developed in Chapter 3.

2.4 Iterative Methods for the Solution of Sparse Linear Systems

As was the case for the previous subsection, this subsection is not intended to be a complete review of the state-of-
the-art in iterative methods. Rather, it is intended to bring the reader up to speed with those particular characteristics
of iterative methods that will be needed to understand the remainder of this thesis. For more complete discussions of
iterative methods, the reader is referred to Axelsson (1994), Hackbusch (1994), and Hageman and Young (1981).

Consider solving

(2.15)

iteratively. Finding an iterative solution means finding a sequence of approximations to the solutionx such

that asn gets large. We shall call eachx(n) aniterate. Let .r(n) is called theresidual, and is
a measure of the accuracy of thenth iterate. Typically, an iterative method is halted when the size of the residual drops
below a certain tolerance.

2.4.1 The classical iterative methods

Linear, stationary, first-order iterative methods have the form [Hageman and Young (1981)]:

a) b)

Figure 2.7:Graph-theoretic Interpretation of Level Scheduling.
a) Level scheduling of a mesh yields sets that lie along diagonals.

b) Level scheduling of a tree yields sets that correspond to levels of the tree.

Ax b=

x n(){ }

x n() x→ r n() Ax n() b–=

21

(2.16)

The basic iterative method defined by (2.16) islinear becauseG andk do not depend onx(n). The method isstation-
ary, sinceG andk do not change. Finally, the method isfirst-order sincex(n+1) depends only onx(n), and not on addi-
tional previous iterates. The matrixG is called theiteration matrix and is derived from the coefficient matrixA. The
basic iterative method converges if and only if thespectral radius of G is strictly less than 1; that is,ρ(G) < 1, where
ρ(G) = max{|λ|: λ ∈ λ(G)}.

The first method we shall consider is called the RF method [Hageman and Young (1981)], and is given by

(2.17)

or, equivalently, as

(2.18)

or

(2.19)

In the RF method, the iteration matrix is (I-A), and, from (2.18), can also be viewed as updating the current iterate
with a correction vector that is given in this case by the residual. So, another way of viewing an iterative method is as
a predict-test-correct loop: the current iterate is aprediction of the solution; this istested by computing the residual
and comparing the magnitude of the residual against a tolerance; if the residual is too large, the current iterate iscor-
rected in some way to produce the next iterate (prediction). Convergence can be improved by finding a better iteration
matrix, which is equivalent to finding a better way to correct each iterate.

Some intuition can be gained by observing that the coefficient matrixA is a mapping between two vector spaces, the
domain and the range: . By examination of (2.19) with respect toA as a mapping, we see an obvious prob-
lem with the correction step: each iteratex(n) is a vector in the domain,D , while the correction vectorr(n) is in the
range,R . In general,R is rotated and scaled with respect toD, so the residualr(n) does not point directly fromx(n) to
the solutionx. Figure 2.8 illustrates the mismatch of vector spaces in the predict-test-correct loop for the RF method.

Preconditioning is a technique for accelerating the convergence of an iterative method. In the context of the basic iter-
ative method defined by (2.16), preconditioning is a way of determining a better iteration matrix. Consider again the
original linear system to be solved, (2.15). Now, letB be some non-singular matrix, of the same size asA, and con-
sider the solution of the linear system

x n 1+() Gx n() k+=

x n 1+() I A–()x n() b+=

x n 1+() x n() Ax n() b–()–=

x n 1+() x n() r n()–=

A:D R→

x

x(n) bAx(n)

r(n)
x(n)

x

x(n+1)A

D
R

D

predict

test
correct

Figure 2.8:The Basic Predict-Test-Correct Step of the RF Method.

22

(2.20)

B is called apreconditioner for A. If B is chosen properly, then the preconditioned system will be easier to solve than
the original system, and the iterative solution method will converge more quickly. The basic iterative method for the
preconditioned system (2.20) is given by

(2.21)

or, in predict-test-correct form, as

(2.22)

In equations (2.21) and (2.22) above, expressions involvingB-1 are not meant to imply thatB-1 is explicitly known.
Instead, a termB-1z should be understood as the vectorw obtained by solvingBw = z.

One way of viewing the preconditionerB is as an approximation to the mappingA, so thatB-1 approximately trans-
forms the residual fromR into a vector space that is more similar toD . This observation, along with examination of
(2.20) shows that the best possible preconditioner forA is B = A. Of course, applyingB = A as a preconditioner means
solving systems of the formBw = z, for B = A, which is the original problem to be solved. The key, then, is to find a
preconditionerB that approximatesA in some sense, but leads to systems that are easier to solve.

Many different preconditioners have been proposed. An interesting observation is that the classical iterative methods
can all be viewed as instances of (2.21) with different preconditioners. For example, supposeA can be written as

A = L + D + U (2.23)

whereL is strictly lower diagonal,D is diagonal, andU is strictly upper diagonal. Then the classical iterative methods
are as follows:

• The Jacobi method is defined when all diagonal elements are non-zero by [Hageman and Young (1981)]

(2.24)

So, the Jacobi method can be defined by the use ofD as the preconditioner.

• The Gauss-Seidel method is defined by [Hageman and Young (1981)]

(2.25)

So, the Gauss-Seidel method can be defined by the use of (L+D), the lower triangular part ofA, as the pre-
conditioner.

• The Symmetric Successive OverRelaxation (SSOR) method is defined by [Hageman and Young (1981)]

(2.26)

where , and 0 <ω < 2 is a relaxation parameter.

So, the SSOR method can be defined by the use ofQ, above, as the preconditioner.

2.4.2 Conjugate gradient-type methods

In this subsection, we present a brief overview of the method of conjugate gradients (CG) and the extension to the
method of preconditioned conjugate gradients (PCG). CG was first developed as a direct solution method by Hestenes

B 1– Ax B 1– b=

x n 1+() I B 1– A–()x n() B 1– b+=

x n 1+() x n() B 1– Ax n() b–()–=

x n 1+() I D 1– A–()x n() D 1– b+=

x n 1+() I L D+() 1– A–()x n() L D+() 1– b+=

x n 1+() I Q 1– A–()x n() Q 1– b+=

Q
1

2 ω–
------------- 1

ω
----D L+ 

  1
ω
----D 

  1– 1
ω
----D U+ 

 =

23

and Steifel (1956). CG can be shown, in the absence of rounding errors, to converge to the exact solution inn steps,
whereA is nxn. Rounding errors destroy this process, however, and CG was not considered as a viable direct solution
method. Reid (1971) noted that CG converged well for large sparse problems, and sparked interest in the use of CG as
an iterative method. An excellent derivation of CG and PCG can be found in Axelsson and Barker (1984). Golub and
O’Leary (1989) contains an annotated bibliography that cover the development of CG between 1948 and 1976. In the
paragraphs to follow, we essentially summarize the excellent treatment of Axelsson and Barker (1984).

Since the focus of this thesis is on the development of a new version of PCG, we will focus on the convergence rates
of the varieties of PCG. In order to do this, we define a model problem, which is simply Poisson’s equation defined on
the unit square with Dirichlet boundary conditions:

(2.27)

We discretize the problem with the 5 point Laplacian, yielding annxn rectangular mesh. The coefficient matrix corre-
sponding to this problem isn2xn2. The choice of mesh and matrix size is made to provide consistency with later chap-
ters.

2.4.2.1 Steepest descent

CG is best understood as an extension of the method of steepest descent, which in turn is derived by viewing the solu-
tion of a linear system as finding the minimum of a linear functional. In particular, when the coefficient matrixA is
symmetric and positive definite, the solution toAx = b can be formulated as a minimization problem for the quadratic
functionalf(x) defined by

(2.28)

Equation (2.28) has a unique minimum, , which is the solution toAx = b.

We wish to develop an iterative method of the form

(2.29)

whered(k) is a direction vector.τk is then a measure of how far along the new direction vector we wish to search. To
specify the iterative method, we must specify how to choosed(k) andτk at each step.

For fixed f(x), equation (2.28) defines an ellipsoid inn-space, centered around . The iteratesx(k) are points on ellip-
soids centered around . For a givenx(k), let g(k) = g(x(k)) be the gradient atx(k). g(k) is perpendicular to the ellipsoid
and points out, away from . The gradient defines the direction of the maximum rate of change in the functional at a
given point. The method of steepest descent is defined by takingd(k) = -g(k) (hence the namesteepest descent), and
takingτk to minimizef(x(k) + τkd

(k)). It is easily shown that

(2.30)

and

(2.31)

where (x,y) is the standard Euclidean inner product given by (x,y) = xty.

∇2u x y,() f x y,()=

x y,() 0 1,() 0 1,()×∈

u 0 y,() u 1 y,() u x 0,() u x 1,() 0= = = =

f x() 1
2
---xtAx btx– c+=

x̂

x k 1+() x k() τkd k()+=

x̂
x̂

x̂

g k() g x k()() Ax k() b–= =

τk
d k() g k()(,)

d k() Ad k()(,)
------------------------------=

24

Before presenting the steepest descent algorithm, it is useful to point out that, withd(k) = -g(k), (2.29) becomes

. Combining this with the definition ofg(k) in (2.30), a recursive formula for computing the

gradient can be easily derived:

(2.32)

A procedure for solvingAx = b by the method of steepest descent is given below. The procedure utilizes the recursive
formula (2.32) to update the gradient, which saves one matrix-vector multiply.

2.8 Proceduresteepest_descent (A, x(0), b, ε) {

x = x(0);
g = Ax - b;
δ = (g, g);
while (δ > ε) do {

h = Ag;
τ = δ / (g, h);
x = x - τg;
g = g - τh;
δ = (g, g);

}
return (x);

};

The catch with the method of steepest descent is that the gradient does not point directly towards , and the geometry
of the ellipsoids defined by the functional may be such that the gradient does not point very close to until the iter-
ates are already very near convergence. To see this, consider a coefficient matrixA with λ(A) = {λ1 < λ2 <...<λn}and
a very large spectral condition number . Thenλn >> λ1. The eigenvalues ofA define the relative
lengths of the axes of the ellipsoids defined by the quadratic functional (2.28). Therefore, a large condition number
corresponds to ellipsoids that are relatively long and thin with respect to some pair of axes. For such an ellipsoid, the
gradient is nearly perpendicular to the long axis, and so the method of steepest descent will march back and forth
along the long axis, slowly moving inward towards . Convergence in this case is quite slow.

The rate of convergence of steepest descent is given by the following theorem [after Axelsson and Barker (1984)]:

2.9 Theorem: The rate of convergence of the method of steepest descent is given by

where is the spectral condition number of A, and .

Less formally, givenε > 0, the number of iterations required to reduce the initial error by a factor ofε is bounded
above by [Axelsson and Barker (1984)]. Thus, for constantε, the convergence rate of steep-
est descent isO(κ(A)).

On the model problem (2.27),κ(A) = O(n2) [Axelsson and Barker (1984)]. Therefore, the rate of convergence of
steepest descent isO(n2).

2.4.2.2 Conjugate gradients

Convergence can be accelerated with the use of conjugate directions. Letd(i) andd(j) be direction vectors. Thend(i)

andd(j) areA-conjugate (or A-orthogonal) if (d(i), Ad(j)) = 0. The following theorem can be proved [Golub and Ortega
(1993)]:

x k 1+() x k() τkg k()–=

g k 1+() g k() τkAg k()–=

x̂
x̂

κ A() λn λ1⁄=

x̂

x k() x̂– A
κ A() 1–
κ A() 1+
--------------------- 

 k
x 0() x̂– A≤

κ A() λn λ1⁄= x A x Ax(,)1 2⁄=

1 2⁄()κ A()ln 1 ε⁄() 1+

25

2.10 Theorem: If A is a real nxn symmetric positive definite matrix, and{ d(1),...,d(n)} is a set of nonzero A-con-

jugate direction vectors, then for anyx(0), with iterates defined by (2.29),andτk defined by (2.31),the iter-

ates converge to the solution of Ax = b in no more than n steps.

The choice of

(2.33)

and

(2.34)

defines the method ofconjugate gradients (CG) [Golub and Ortega (1993), Axelsson and Barker (1984)].

Reid (1971) studied various implementations of CG with regard to computational labor, storage requirements, and
accuracy. Following the algorithm in Axelsson and Barker (1984), which incorporates the implementation favored by
Reid, a procedure for computing the solution ofAx = b using CG is given below:

2.11 Procedureconjugate_gradients (A, x(0), b, ε) {

x = x(0);
g = Ax - b;
δ = (g, g);
β = 0;
d = 0;
while (δ > ε) do {

d = -g + βd;
h = Ad;
τ = δ / (d, h);
x = x + τd;
g = g + τh;
σ = (g, g);
β = σ / δ;
δ = σ;

}
return (x);

};

For CG, the rate of convergence is given by the following theorem [after Hackbusch (1994)]:

2.12 Theorem: The rate of convergence of the method of conjugate gradients is given by the following:

where is the spectral condition number of A, and .

βk
g k 1+() Ad k()(,)

d k() Ad k()(,)
--------------------------------------=

d k 1+() g k 1+()– βkd k()+=

x k() x̂– A
κ A() 1–

κ A() 1+
-------------------------- 

 k 2

1
κ A() 1–

κ A() 1+
-------------------------- 

 2k
+

--- x 0() x̂– A≤

κ A() λn λ1⁄= x A x Ax(,)1 2⁄=

26

Again, less formally, givenε > 0, the number of iterations required to reduce the initial error by a factor ofε is
bounded above by [Axelsson and Barker (1984)]. Thus, for constantε, the convergence
rate of CG is .

On the model problem (2.27),κ(A) = O(n2) [Axelsson and Barker (1984)]. Therefore, the rate of convergence of CG
is

2.4.2.3 Preconditioned conjugate gradients

As with steepest descent, preconditioning can accelerate the convergence of CG. The resulting method is calledpre-
conditioned conjugate gradients (PCG).

Because of the requirement that the iteration matrix be symmetric and positive definite, preconditioning for CG must

be performed with a similarity transformation. Let . Then is symmetric and positive definite, and CG
can be applied to the system

(2.35)

where , and .

By algebraic manipulation, it is possible to rearrange the statements in the algorithm implementing CG on the precon-
ditioned system (2.35), avoid all references to the preconditioning factorsC andCt, and instead implement precondi-
tioning as a transformation of the residual with the preconditionerB = (CtC)-1 [see Golub and van Loan (1989),
Golub and Ortega (1993)]. A procedure for computing the solution ofAx = b using PCG with preconditionerB is
given below [after Axelsson and Barker (1984)].

2.13 Procedurepreconditioned_conjugate_gradients (A, x(0), b, B, ε) {

x = x(0);
g = Ax - b;
solveBh = g;
δ = (g, h);
β = 0;
d = 0;
while (δ > ε) do {

d = -h + βd;
h = Ad;
τ = δ / (d, h);
x = x + τd;
g = g + τh;
solveBh = g;
σ = (g, h);
β = σ / δ;
δ = σ;

}
return (x);

};

Since PCG is an implementation of CG, the convergence results of Theorem 2.12 for CG apply. In particular, given
, the number of iterations required to reduce the initial error by a factor ofε is bounded above by

[Axelsson and Barker (1984)]. Thus, for constantε, the convergence rate of PCG is .

1 2⁄() κ A()ln 2 ε⁄() 1+
O κ A()()

O n()

Ã CACt= Ã

Ãx̃ b̃=

x̃ C t– x= b̃ Cb=

ε 0>
1
2
--- κ Ã()ln 2 ε⁄() 1+ O κ Ã()()

27

A simple set of algebraic manipulations shows that

.

Therefore, the convergence rate of PCG is .

We call the expressionκ(A,B) = κ(B-1A) thegeneralized condition number of the ordered pair of matrices (A, B).

Axelsson and Barker (1984) stated three criteria that define a good preconditionerB for a coefficient matrixA, which
can be rephrased as follows:

1. κ(B-1A) should be significantly less thanκ(A);

2. B should be easy to factor, and the factors should not require much storage (in comparison to the storage
requirements ofA);

3. the systemBw = z should be substantially easier to solve thanAx = b.

The most well-known preconditioners are diagonal scaling, the incomplete Cholesky factorization, the modified (and
relaxed) incomplete Cholesky factorization, and the SSOR preconditioner. Each of these is discussed below with
attention to the three points listed above.

• diagonal scaling

The simplest preconditioner for CG is the preconditioner that defines the classical Jacobi method,
. The corresponding variant of PCG is often calleddiagonal scaled conjugate gradients, or

DSCG.

For the model problem (2.27),κ(B-1A) = O(n2) = κ(A), so the asymptotic rate of convergence is not
improved with diagonal scaling.B in this case does not need to be factored. The storage required for the
preconditioner isO(n2). And, the preconditioned system is very easy to solve, since it simply requires
dividing each vector entry by the corresponding diagonal value ofB.

Even though the asymptotic rate of convergence is not improved, diagonal scaling can sometimes make
the difference between convergence and non-convergence for an ill-conditioned matrixA. Moreover, diag-
onal scaling generally achieves some reduction in the number of iterations, and is so cheap to apply that it
might as well be done.

• incomplete Cholesky

The incomplete Cholesky factorization as a preconditioner for CG was first proposed by Meijerink and
van der Vorst (1977). The variant of PCG that utilizes incomplete Cholesky preconditioning is often called
incomplete Cholesky conjugate gradients, or ICCG. The idea behind ICCG is to approximate the coeffi-
cient matrixA by performing the Cholesky factorization, but ignoring parts of the factors.

Recall that for a sparse matrixA, the Cholesky factorsC andCt are often less sparse thanA. Let J be the
matrix that has a 1 whereverA has a nonzero, and is zero elsewhere.J defines the sparsity pattern ofA,.
Let K define the sparsity pattern of (C+Ct). Then . The zero-fill incomplete Cholesky factors ofA,

 and are obtained by performing all the steps in factoringA, except those that would change a zero
to a nonzero. Thus, ifK0 defines the sparsity pattern of (+), thenJ = K0.

The use of and as preconditioner factors defines ICCG(0); the preconditioner is . Other
variants of ICCG can be defined by specifying thelevel of fill that is allowed in the factors. For example,
ICCG(1) allows one level of fill; the fill that results from non-zeros ofA is allowed, but that fill is not

λ Ã() λ CACt() λ B 1– A() λ A B,()= = =

O κ B 1– A()() O κ A B,()()=

B diag A()=

J K⊆
C0 C0

t

C0 C0
t

C0 C0
t B C0Co

t=

28

allowed to propagate and create more fill. ICCG(i) allows i levels of fill.

For the model problem (2.27),κ(B-1A) = O(n2) = κ(A), so the asymptotic rate of convergence is not
improved with incomplete Cholesky preconditioning [Gustafsson (1978)]. In practice, the constant that
accompanies the asymptotic rate is quite small, because ICCG usually requires far fewer iterations to con-
verge than does DSCG or (unpreconditioned) CG. Because fill is not propagated, the factorization is fairly
easy to perform, and the preconditioner requires the same amount of storage,O(n2), as does the coefficient
matrix. Solving the preconditioned systems requires performing two sparse triangular solves, which are
easy to perform serially, but are difficult to efficiently parallelize (see §2.3).

• modified incomplete Cholesky

The modified incomplete Cholesky factorization was proposed by Gustafsson (1978). The corresponding
variant of PCG is often calledmodified incomplete Cholesky conjugate gradients, or MICCG. The idea
behind MICCG is to take the absolute value of the fill that was ignored in computing the IC precondi-
tioner, and add it back to the diagonal. Therefore, MICCG can be viewed as a variant of ICCG with the
approximation errors added back into the diagonal [van der Vorst (1989b)]. As with ICCG, various levels
of fill can be allowed.

Axelsson and Lindskog (1986) proposed a relaxed version of MICCG. Instead of adding all the approxi-
mation error back into the diagonal, a parameterα, with is defined, andα times the error is
added in [van der Vorst (1989b)]. Therefore, defines ICCG (no error added to the diagonal), and

 defines MICCG. The relaxed version is often calledrelaxed incomplete Cholesky conjugate gradi-
ents, or RICCG.

For the model problem (2.12), [Gustafsson (1978)], so the asymptotic rate of conver-
gence is significantly improved by MICCG. However, van der Vorst (1989b) reports that, while MICCG
has been observed to converge much faster than ICCG on academic model problems, the situation is often
reversed for real industrial problems. He explored the effects of varying the parameterα on the conver-
gence rate, and found that the convergence was similar for and . The convergence improved
slowly asα increased from 0, achieving the best results for . Between 0.95 and 1.0, the conver-
gence rate sharply decreased again. Axelsson and Lindskog (1986) made similar observations.

As for ICCG, the computation of the MICCG factors is fairly easy to perform, and the preconditioner
requires the same amount of storage,O(n2), as does the coefficient matrix. Also, solving the precondi-
tioned systems requires performing two sparse triangular solves, which are easy to perform serially, but
are difficult to efficiently parallelize (see §2.3).

• symmetric successive over-relaxation (SSOR)

The iteration matrix from the method of symmetric successive over-relaxation is positive definite for
, and can be used as a preconditioner in CG. Recall from §2.4.1 that, for , the

SSOR matrix for relaxation parameterω is given by

(2.36)

For the model problem (2.27) with optimal relaxation parameterω, [Axelsson and
Barker (1984)]. The factors of the SSOR preconditioner are generated as a result of the construction;
equation (2.36) defines theLDL factorization of the preconditioner. The preconditioner requires the same
amount of storage,O(n2), as does the coefficient matrix. As was the case for ICCG and MICCG, solving
the preconditioned systems requires performing two sparse triangular solves, which are easy to perform
serially, but are difficult to efficiently parallelize (see §2.3).

0 α 1<≤
α 0=

α 1=

κ B 1– A() O n()=

α 0= α 1=
α 0.95=

0 ω 2< < A L D Lt+ +=

B
1

2 ω–
------------- 1

ω
----D L+ 

  1
ω
----D 

  1– 1
ω
----D U+ 

 =

κ B 1– A() O n()=

29

2.4.2.4 Parallel performance

In this section, we examine some of the details behind the parallel implementation of CG and PCG. As in §2.4.2, we
assume ann2xn2 matrix for consistency with later chapters. van der Vorst (1989b) stated three performance require-
ments for a good preconditioner. The first of his performance requirements was essentially identical to the first of
Axelsson and Barker (1984), and we do not bother to state it. The second two requirements are elaborations of
requirement 3 of Axelsson and Barker (1984), above:

1. the amount of work per iteration step should be roughly the same as for unpreconditioned CG;

2. the computational speed for each iteration step should have the same order of magnitude as the unprecon-
ditioned CG process.

To analyze the parallel performance of CG and the various versions of PCG, we use the parallel vector models of
Blelloch (1990), which comprise a unifying framework for examining the parallel complexity of algorithms. Serial
complexity is typically analyzed in terms of an ideal machine architecture, the random access machine, or RAM. Par-
allel complexity can be analyzed in terms of an ideal parallel architecture, the vector RAM, or V-RAM. A V-RAM is
essentially a serial RAM with the addition of a vector processor and vector memory. Each location in vector memory
can contain an arbitrarily long vector of scalar values. Each instruction executed by the vector processor can reference
one or more vectors from vector memory, and one or more scalars from scalar memory. The reader interested in more
details is referred to Blelloch (1990).

The complexity of an algorithm executing on a V-RAM can be characterized by two measures: thestep complexity,
and theelement complexity. The step complexity is simply defined as the number of (parallel) steps executed sequen-
tially; step complexity can be thought of as the parallel complexity. The element complexity is the sum over the steps
of the lengths of the vectors operated on at each step; element complexity can be thought of as the serial complexity.

The basic CG algorithm as given by Procedure 2.11 requires, per iteration: one matrix vector multiply, two vector
inner products, and three SAXPY operations (ax+y, see Dongarra, et al (1991)). van der Vorst (1989b) notes that all
these operations can be implemented fairly efficiently on vector machines. The formulation of PCG given as Proce-
dure 2.13 requires all these operations, plus an additional operation of solving the preconditioned system. This solu-
tion step is typically implemented as two triangular solves and/or a diagonal scaling.

A sparse matrix vector multiply of ann2-vector with ann2xn2 sparse matrix, assuming that the number of non-zeros
in any row of the matrix is bounded by a constant, has step complexity ofO(1), and element complexity ofO(n2).
This is because the operations to determine each output vector element are independent and may be performed in par-
allel. Each such operation involves a constant number of operations, and there areO(n2) of them.

A vector inner product operation has step complexity ofO(logn), and element complexity ofO(n2). Then multiplies
required for an inner product can all be performed in parallel. Computing the sum of products requires 2logn steps of
pairwise sums:n2/2 sums the first step,n2/4 the next, and so on for a total ofO(n2) operations.

A SAXPY operation takes a vector times a scalar and adds it to another vector. All elements of the scalar-vector mul-
tiply can be performed in parallel, as can each element in the vector-vector sum. Therefore, the step complexity is
O(1), and the element complexity isO(n2).

The vector inner product has the largest step complexity and is therefore the bound on the complexity of each itera-
tion of CG. Thus, each iteration of (unpreconditioned) CG has step complexityO(logn), and element complexity
O(n2).

Now, consider the complexity of applying a preconditioner. The simplest preconditioner is diagonal scaling. All the
operations involved can be performed in parallel, yielding a step complexity ofO(1), and an element complexity of
O(n2). The other preconditioners, IC, MIC, and SSOR, all require triangular solves.

30

The naive implementation of a triangular solve is purely serial — each element of the solution vector must be solved
for one at a time. This yields a step complexity ofO(n2) and an element complexity ofO(n2), which is clearly a bur-
den for a loop that would otherwise require onlyO(logn) steps.

As discussed in §2.3, it is possible to use level scheduling to find a good parallel ordering for triangular solution. For
the model problem, annxn mesh with ann2xn2 coefficient matrix, a good ordering is to walk along the diagonals,
solving for elements on each diagonal in parallel. The asymptotic performance of this procedure is better, but is still
fairly poor. Walking the diagonals has step complexity ofO(n), and element complexity ofO(n2). Again, this is a bur-
den on a loop with step complexity ofO(logn).

With respect to van der Vorst’s performance requirements for a good preconditioner, only diagonal scaling can be
applied without significantly slowing each iteration. There are techniques that can be applied to speed up the precon-
ditioning. For example, with rectangular meshes (such as our model problem) there is a technique developed by
Eisenstat (1981) that solves the explicitly preconditioned system (2.35). This technique cannot be applied to meshes
with triangles, and is therefore not completely general.

2.5 Domain Decomposition Methods

Divide-and-conquer is a powerful algorithmic principle. When applied to the solution of linear systems of equations,
divide-and-conquer yields the class of methods calleddomain decomposition. The name arises because the methods
involve partitioning the original domain of the problem into a number of smaller subdomains, for which solution can
proceed independently in parallel. Domain decomposition methods involve both direct and iterative solvers. The arti-
cle by Chan and Mathew (1994) is an excellent survey of domain decomposition methods. Additional treatments can
be found in Golub and Ortega (1993) and Hackbusch (1994).

2.5.1 Non-Overlapping subdomains

The basic domain decomposition method involves partitioning a domain into non-overlapping subdomains separated
by an interface subdomain. The idea behind domain decomposition is to solve the interface equations that connect the
subdomains. This partial solution can then be used to compute the solution on each of the subdomains independently
in parallel. Variations on the basic method include different methods used to solve the interface equations, and differ-
ent methods that result when overlapping subdomains are used.

Figure 2.9 illustrates a region,Ω, its decomposition into non-overlapping regionsΩ1, Ω2, Ω3, Ω4, and the interface
region B. The linear systems corresponding to the region and its decomposition are shown in the figure as well. By
ordering the nodes in the decomposition so that nodes in the subdomains are grouped together, and nodes in the inter-
face region are ordered last, the linear system corresponding to the decomposition can be written in the block arrow-
head form shown in the figure and below as equation (2.37). We assume that the original linear system is
symmetric and positive definite.

(2.37)

Ax b=

A1 0 0 0 B1

0 A2 0 0 B2

0 0 A3 0 B3

0 0 0 A4 B4

B1
t

B2
t

B3
t

B4
t

AS

x1

x2

x3

x4

xS

b1

b2

b3

b4

bS

=

31

In equation (2.37), the blocks Ai correspond to the linear system restricted to the subdomainsΩi, respectively; AS
represents the linear system restricted to the interface nodes. Similarly, thexi represent the vectors of unknowns cor-
responding to the subdomains and the interface region, while thebi represent the reordering of the input vector to be
consistent with the partitioning. The off-diagonal blocksBi represent the interactions between the subdomains and the
interface region.

Performing Gaussian elimination on the blocks in equation (2.37) yields:

(2.38)

where:

(2.39)

and

Ω1 Ω2

Ω3 Ω4

BΩ

Ax b=

A1 0 0 0 B1

0 A2 0 0 B2

0 0 A3 0 B3

0 0 0 A4 B4

B1
t

B2
t

B3
t

B4
t

AS

x1

x2

x3

x4

xS

b1

b2

b3

b4

bS

=

a) b)

Figure 2.9:Basic Domain Decomposition.
a) Original domain and corresponding linear system.

b) Subdomains and corresponding block-arrowhead system.

I 1 0 0 0 A1
1–
B1

0 I 2 0 0 A2
1–
B2

0 0 I 3 0 A3
1–
B3

0 0 0 I 4 A4
1–
B4

0 0 0 0 S

x1

x2

x3

x4

xS

A1
1–
b1

A2
1–
b2

A3
1–
b3

A4
1–
b4

b̂S

=

S AS Bi
t
Ai

1–
Bi

i 1=

4

∑–=

32

(2.40)

The matrixS in (2.39) is called the Schur complement. The Schur complement embodies all the interactions between
subdomains. Solving the subsystem of (2.38) that contains S solves the linear system at all the interface nodes. The
Schur complement subsystem is given below:

(2.41)

The other subsystems of (2.38) for the subdomainsΩi, i = 1,...,4 are given by:

(2.42)

It is clear from the form of equation (2.42) that the subsystems for the subdomains are independent, involving only
quantities belonging to the subdomain and to the interface region. Thus, once (2.41) has been solved for the
unknowns in the interface region, the remaining subsystems can be solved in parallel. This coarse grain parallelism is
a major benefit of domain decomposition. Golub and Ortega (1993) note that domain decomposition and its variants
are the best known parallel algorithms for solving narrow banded systems.

For general linear systems, the Schur complement method of domain decomposition suffers from the fact that the
Schur complement is dense and computationally intensive to solve directly. Typically, an iterative method such as
preconditioned conjugate gradients is used to solve the Schur complement system. The condition number of the
Schur complement system of a second order elliptic operator discretized on annxn mesh isO(n), which is a signifi-
cant improvement over the condition number ofO(n2) for the original system [Chan and Mathew (1994)]. A variety
of preconditioners have been developed for use in the iterative solution of the Schur complement system. The reader
is referred to Chan and Mathew (1994) for a survey.

2.5.2 Overlapping subdomains

The earliest method of domain decomposition dealing with overlapping subdomains was developed in the pioneering
work of H. A. Schwarz over a century ago [Schwarz (1870)]. While variants of Schwarz’s method have been devel-
oped, the based method for overlapping subdomains is still based on that work. For simplicity of exposition, we fol-
low the treatment of Chan and Mathew (1994), and deal with a domainΩ partitioned into two overlapping
subdomains,Ω1 andΩ2. Let Γ1 denote that part of the boundary ofΩ1 that is contained inΩ2, and letΓ2 denote the
part of the boundary ofΩ2 that is contained inΩ1. Figure 2.10 illustrates the decomposition.

Now, letx be then-vector of unknowns in the domainΩ, and letxi be theni-vector of unknowns in the subdomainΩi,
i = 1, 2. Then and . Fori = 1, 2, letRi be the rectangular matrix that restricts ann-vector
to anni-vector by selecting the elements that belong to the domainΩi. Then, . Conversely, extends an
ni-vector to ann-vector by filling with zeros in entries corresponding to elements of . The coefficient matrices
corresponding to the subdomains are therefore given by .

b̂S bS Bi
t
Ai

1–
bi

i 1=

4

∑–=

SxS b̂S=

xi Ai
1–
bi Ai

1–
Bi x̂S–=

Ω1 Ω2Γ2 Γ1

Figure 2.10:Decomposition of a domain into overlapping subdomains.

x x1 x2∪= x1 x2∩ ∅≠
xi Ri x= Ri

t

Ω Ωi–
Ai Ri ARi

t
=

33

Themultiplicative Schwarz method generates a sequence of iterates starting with an initial estimatex(0) by executing
the following set of updates:

(2.43a)

(2.43b)

The multiplicative Schwarz method is a generalization of the block Gauss-Seidel method. However, unlike the stan-
dard Gauss-Seidel method, with sufficient overlap, the convergence rate of the multiplicative Schwarz method is inde-
pendent of the mesh size [Chan and Mathew (1994)].

Theadditive Schwarz method generates a sequence of iterates starting with an initial estimatex(0) by executing the
following set of updates:

(2.44a)

(2.44b)

The additive Schwarz method is a generalization of the block Jacobi method. Again, with sufficient overlap, the addi-
tive Schwarz method has a convergence rate that is independent of the mesh size. Because the correction term in
(2.44b) does not reference the update from (2.44a), the two updates in the additive method can be computed in paral-
lel [Chan and Mathew (1994)].

2.6 Multilevel Methods

Multilevel methods refer to a family of methods designed to solve partial differential equations (PDEs), and are gen-
eralizations of a method known as multigrid. Multigrid and multilevel are often used interchangeably in the literature.
These methods are fairly new; the multigrid paper by Brandt (1977) is often pointed to as the seminal paper in the
field. Multilevel methods have received a great deal of attention from the scientific and engineering community
because of their impressive theoretical properties: for a PDE defined onn2 grid points, many multigrid methods have
optimal (O(1)) or near-optimal (O(logkn)) convergence rates [Guo (1992)]. Moreover, the total number of operations
required can be as low asO(n2). In this section, we present a very high level introduction to multigrid. More detailed
presentations can be found in the paper by Press and Teukolsky (1991), the tutorial by Briggs (1987), or in the text-
books by Axelsson and Barker (1984), Golub and Ortega (1993), or Hackbusch (1994).

2.6.1 Basic multilevel concepts

We first consider a two-grid method. Consider a linear elliptic PDE in two dimensions defined on the unit square that
has been discretized on a uniform square meshn vertices on a side. The result is a linear system of equations

(2.45)

where the subscriptn serves to denote the resolution of the discretization.

(2.45) can be solved iteratively by one of the methods discussed above, say Gauss-Seidel, for example. Then each
iteration produces an approximation to the solution, and we denote thekth approximation byxn

(k). Recall from §2.4
that thekth residual,rn

(k) is defined byrn
(k)=Anxn

(k)-bn. The residual is often called thedefect. If we now solve the
equation

x
k 1 2⁄+()

x
k()

R1
t
A1R1 b Ax

k()
–()+=

x
k 1+()

x
k 1 2⁄+()

R2
t
A2R2 b Ax

k 1 2⁄+()
–()+=

x
k 1 2⁄+()

x
k()

R1
t
A1R1 b Ax

k()
–()+=

x
k 1+()

x
k 1 2⁄+()

R2
t
A2R2 b Ax

k()
–()+=

Anxn bn=

34

(2.46)

then the solutionxn to (2.45) is given by

(2.47)

The catch with this approach is, of course, that (2.46) is just as hard to solve as the original equation (2.45). However,
many iterative methods will usually converge quickly given a good starting approximation. Therefore, a good approx-
imation to (2.46) may be sufficient to accelerate the convergence of the iterative method used to solve (2.45). The
question then is how to generate a good approximation.

Consider constructing a mesh over the unit square with onlym=n/2 vertices on a side. The corresponding linear sys-
tem is

(2.48)

Since we have discretized the same equation over the same region, changing only the mesh size, we would expect that
a solution to (2.48), expanded in some reasonable way, would be a good approximation to (2.45). Or, given the resid-
ual rn

(k), we could generate a smaller residual vectorrm
(k) (that is,restrict the residual), and solve the smaller system

(2.49)

Then, we could expandzm
(k) to formzn

(k) (by interpolation, for example), and usezn
(k) to updatexn

(k):

(2.50)

The steps above describe the basic idea behind multigrid, and comprise one iteration of thecoarse-grid correction
scheme [Press and Teukolsky (1991)]:

i) compute thekth approximation;
ii) compute thekth defect;
iii) restrict the defect to a coarser grid;
iv) solve the defect equation on the coarse grid to find the correction;
v) interpolate the correction to the finer grid;
vi) use the correction to compute the (k+1)st approximation.

The coarse-grid correction scheme has intuitive appeal, and has formal justification as well. The way to analyze the
coarse-grid correction scheme is to use Fourier analysis and look at the error in terms of frequency components. The
residual at each iteration consists of a number of components of various frequencies. It can be shown that an iterative
method such as Gauss-Seidel gradually reduces the amplitudes of the components of the residual. However, high fre-
quency components are reduced more quickly than low frequency components; for this reason, many iterative meth-
ods are calledsmoothers. The key to the effectiveness of the coarse-grid correction scheme is that the low frequency
components of the fine grid residual become high frequency components of the coarse grid residual produced by
restriction. That is, the components whose amplitudes are reduced most slowly on the fine grid are reduced quickly on
the coarse grid!

The basic multigrid method is a generalization of the coarse-grid correction method described above. Let {Gi} be a
sequence of successively finer grids, whereG0 is the coarsest, andGn is the finest. At each iteration, we produce the
residualrn

(k), and restrict it to formrn-1
(k). Now, instead of directly solving for the correctionzn-1

(k), we recursively
apply the coarse-grid correction idea: we perform several iterations of smoothing on the equationAn-1zn-1

(k)=rn-1
(k),

then restrict the resulting residual to the next coarser grid,Gn-2. This process of smoothing and restricting continues
until the coarsest grid,G0, is reached. Then,A0z0

(k)=r0
(k) is solved for the correctionz0

(k). Then,z0
(k) is interpolated

Anzn
k()

rn
k()

=

xn xn
k()

zn
k()

+=

Amxm bm=

Amzm
k()

rm
k()

=

xn
i 1+()

xn
k()

zn
k()

+=

35

to form z1
(k), and A1z1

(k)=r1
(k) is smoothed several times. The process of computing corrections then proceeds

through ever finer grids untilzn
(k) is determined and used to computexn

(k+1). One multigrid cycle is now complete.

2.6.2 Multilevel preconditioners

Recall that preconditioners approximate the original coefficient matrix. Multilevel methods do exactly the same thing,
approximate the original coefficient matrix, but with a matrix of lower resolution. Therefore, it is a natural extension
to use multilevel methods in preconditioning.

Multilevel methods can be used to form preconditioners by considering all operations to take place in a vector space
of dimension equal to the total number of nodes in the multilevel scheme. The expanded coefficient matrices at each
level then consist of the original coefficient matrices augmented with diagonal blocks of identity matrices. Restriction
and interpolation operators can likewise be defined by matrices.

Consider a basic two-level scheme with fine coefficient matrixA, coarse coefficient matrixC, and restriction and
interpolation operatorsR andP, respectively. A preconditionerB for A can then be defined byB=PCR. Different mul-
tilevel methods then define different preconditioners which can all be analyzed in the same way as the preconditioners
discussed in §2.4.2.3.

The basic multigrid method has a rate of convergence ofO(1) for a regular differential operator and a quasi-uniform
discretization mesh [Bank and Dupont (1981), Braess and Hackbusch (1983)]. There are many variants of multigrid
which achieve optimal or near-optimal convergence rates under more general conditions. For example, the multilevel
preconditioner of Bramble, Pasciak, and Xu (1990) was proved by Oswald (1991) to have condition numberO(1).
The multilevel preconditioner of Axelsson and Vassilevski (1989, 1990) also has optimal condition numberO(1).

2.6.3 The difficulty with multilevel methods

The difficulty in applying multilevel methods lies in the requirement for a nested set of meshes or matrices which dis-
cretize the problem at different levels of resolution. Constraints of geometry and physics often impose a certain mini-
mum mesh resolution in order that the discrete problem be a good approximation to the continuous problem. Given a
mesh at this minimum resolution, it is possible to further refine it in order to obtain finer meshes for application of a
multigrid method. However, the mesh representing the minimum resolution may already be fine enough and further
refinement may be unnecessary. Standard multigrid methods cannot be applied in this case, since a coarse mesh is
unavailable. Moreover, in many applications, only the coefficient matrix is known, and no information about the
meshing process is available. Again, standard multigrid methods cannot be applied.

Brandt, McCormick, and Ruge (1982) proposed a method for applying multigrid techniques given only a coefficient
matrix. The method, known as Algebraic MultiGrid (AMG), was further refined by Stuben (1983). Essentially, AMG
defines a method to construct coarser grids, given the matrix corresponding to the finest grid. AMG is applicable to
the same class of matrices (non-singular Laplacian matrices) as the techniques described later in this thesis, and
yields convergence rates similar to other multigrid methods [Stuben (1983)]. However, the algorithms involved are
very complex and difficult to analyze. Judging from the lack of recent publications, AMG has apparently fallen out of
favor within the numerical community.

In conclusion, multigrid methods are very efficient and practical when a nested sequence of matrices or meshes is
available. However, when only a coefficient matrix is supplied, multigrid methods are difficult or impossible to apply.

36

 37

 3
Support Trees: Construction and Application

In this chapter, we introduce a new class of preconditioners for the preconditioned conjugate gradient (PCG) algo-
rithm, which we callsupport tree preconditioners. We call the variant of PCG that utilizes these preconditionerssup-
port tree conjugate gradient, or STCG. Support tree preconditioners can be constructed for linear systems with
coefficient matrices that are real, symmetric, and diagonally dominant. In this chapter, we show how to construct sup-
port trees for a more restricted set of matrices, those that are real, symmetric, and diagonally dominant with only non-
positive off-diagonal elements. An extension to all symmetric and diagonally dominant matrices is presented in
Chapter 7.

Support trees have the following advantages as preconditioners:

• They are easy to construct.

• They depend only on the coefficient matrix, and not on the differential equation or the meshing process.

• They are designed for efficient parallel evaluation.

• They are very sparse and therefore have relatively small resource requirements (both storage and work).

• They significantly improve convergence rates.

This chapter first presents the intuition behind the concept of support trees. Then, an algorithm for the construction of
support trees is presented, including a discussion of how to implement STCG. Finally, the chapter closes with a dis-
cussion of the computational properties of support trees.

38

3.1 Communication and Mixing

First, some definitions.

3.1 Definition: An nxn matrix L is a Laplacian matrix, or Laplacian, if L is real, symmetric, and diagonally
dominant with non-positive off-diagonals.

3.2 Definition: An nxn matrix L is ageneralized Laplacian matrix (generalized Laplacian) if L is real, sym-
metric, and diagonally dominant.

Recall from Chapter 2 that a real symmetric matrixA corresponds to an unweighted, undirected graph in which every
pair of nonzero off-diagonalsaij=aji corresponds to a edge between nodesvi andvj. For the case in whichA is a
Laplacian matrix, we can augment the graph by weighting the edges with the absolute values of the corresponding
off-diagonal elements. More formally, letA be annxn Laplacian matrix. ThenA corresponds to an edge-weighted,
undirected graphG = G(A) defined by:

• G has vertex set V = {v1,...vn}, wheren is the number of rows/columns inA, and nodevi corresponds to
row/columni of A;

• G has edge setE = {(vi,vj) : A(i,j) ≠ 0};

• edge (vi,vj) ∈ E has weight wt((vi,vj)) = |A(i,j)|.

An example of the correspondence between a Laplacian matrix and a graph is illustrated in Figure 3.1.

Consider the multiplication of vectorx with matrixA, y = Ax. One view of the multiplication is as communication of
information between adjacent nodes of the graph corresponding to the matrix: each node sends its value to its neigh-
bors (multiplied by the weight of the connecting edge), and each node computes its new value as a weighted sum of
its current value and the values from its neighbors. For example, Figure 3.2 illustrates the simple case of communica-
tion in a matrix corresponding to a path on 4 points.

Now, consider what happens in an iterative method like Conjugate Gradients (CG). Theith iterate in CG is the mini-
mum error solution of the systemAx = b projected intoKi(A; r0) = span{r0, Ar0, A2r0,..., Ai-1r0}, where r0 = b-Ax0
[Dongarra,et al (1991), Golub and Ortega (1993)].Ki(A; r0) is called aKrylov subspace. Each multiplication by the
matrix A increases the radius of information propagation by 1 mesh edge. The expression defining the Krylov sub-
space shows that after i iterations, information from the residual can only have propagatedi mesh edges. Moreover, in
addition to the limitation of the radius of propagation, the magnitude of the information may decrease as the radius
increases.

Figure 3.3 illustrates an example for a 25x25 square mesh, in which the starting vector is an impulse function located
at the center of the grid. The propagation of information outward from the impulse is clearly observable. Figure 3.3a
shows the starting vector. Figure 3.3b shows the effect of a single matrix multiplication. Figure 3.3c shows the effect

Figure 3.1:The correspondence between Laplacian matrices and weighted undirected graphs.

A

9 2– 3– 4–

2– 2 0 0

3– 0 3 0

4– 0 0 4

=

v1

v3

v2

v4

2

34

 39

of 10 matrix multiplications; while the information from the impulse function has spread nearly to the edges of the
mesh, the magnitude has decreased dramatically. Figure 3.3d show that, after 100 multiplications (corresponding to
the 100th iteration of CG), the 100th Krylov subspace encompasses the entire mesh, but the magnitude of the infor-
mation propagated is small.

Another way to look at the effect of a matrix multiplication is as one step of a mixing process. A matrix multiplication
corresponds to having each node “mix” its value with the values from its neighbors. This viewpoint provides an
insight into the convergence of iterative methods. The convergence rate of iterative methods in general, and CG in
particular, can be related to the rate at which mixing takes place, which in turn is a function of both the rate at which
information is propagated across the mesh and the rate at which magnitude is reduced with each multiplication. The
solution to a linear system is the fixed point of the iteration, the point at which further information propagation pro-
duces no change to the value of the iterate; that is, the information from the initial vector has been completely
“mixed”.

Figure 3.3 and the discussion above motivate the heuristic argument that convergence rate is a function of graph
diameter; convergence requires complete mixing, and complete mixing requires information from every node to reach
every other node. In fact, on annxn mesh (which hasn2 nodes) this is a very good heuristic — the diameter of annxn
mesh is 2n, while the convergence rate of CG is O(n) [Guo (1990)].

The idea behind support trees is to accelerate the mixing process by increasing the rate of information propagation.
This is implemented in a novel way — by providing an alternate communication network with a smaller diameter so
that fewer steps are necessary to get information from one side of the graph to the opposite side. For annxn planar
graph with a diameter ofn, the corresponding support tree has a diameter of only logn.

A support tree is constructed by recursively finding edge separators and adding a node for each separator with edges
connecting nodes at different levels. Each support tree edge therefore defines a subgraph of the original graph, and the
weight of each edge is equal to the total weight of the edges in the boundary of the corresponding subtree. The sup-
port tree is therefore able to carry roughly the same volume of communication in/out of a subtree as did the edges in
the original graph. But, the support tree is constructed so that the communication distance is shorter. Hence, informa-
tion mixes more rapidly.

1 0 0 0

1

1–

0

0

1 1– 0 0

1– 3 2– 0

0 2– 5 3–

0 0 3– 3

1

0

0

0

=
1 0 0 0

1 -1 0 0

-1 * 1 -2 * 0 -3 * 0

-3 * 0-2 * 0-1 * 0

x

y = Ax

y

Figure 3.2:Matrix multiplication as communication.
The matrix multiplication is shown at the left. The top right shows the values ofx superimposed on the

graph of the matrix; edge weights have been omitted from the figure. The middle right shows the
communication operations that make up the matrix multiplication. The bottom right shows the result of

the matrix multiplication.

40

From the standpoint of preconditioners as approximate inverses, the support tree preconditioners are constructed to
approximate the communication network represented by the coefficient matrix. In some sense, then, a support tree
preconditioner is intended to approximate the topological properties of the coefficient matrix, rather than the alge-
braic properties.

3.2 Support Tree Construction

The procedures used in the construction of a support tree are presented as Procedures 3.3 through 3.5 below. In these
procedures, the weights of the edges of the support tree are set equal to the total weight of the edges on the boundary
of the subgraph induced by the tree edge. Support tree edge weights can be assigned in many other ways. In Chapter
5, we present a weighting based on the ratio of boundary edges to internal nodes; this weighting has some very nice
theoretical properties. In all other chapters, however, we utilize boundary weighted support trees.

0
5

10
15

20
25

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

0
5

10
15

20
25

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

0
5

10
15

20
25

0

5

10

15

20

25
-6

-4

-2

0

2

4

6

8

x 10
7

0
5

10
15

20
25

0

5

10

15

20

25
-1.5

-1

-0.5

0

0.5

1

1.5

x 10
88

a) y = x b) y = Ax

c) y = A10x d) y = A100x

Figure 3.3:Repeated matrix multiplication on a 25x25 grid.
a) the starting condition:y = x
b) after 1 multiplication:y = Ax

c) after 10 multiplications:y = A10x
d) after 100 multiplications:y = A100x

 41

3.3 Procedure:partition_fn

set_of_graphspartition_fn (G) {

% input :G = an edge-weighted graph onn nodes;
% output:{ Gi} = a collection of subgraphs ofG

1. findS, an edge separator ofG;

2. let {Gi} be the connected components of ;

3.return({ Gi});

} % endpartition_fn

3.4 Procedure: generate_support_tree

treegenerate_support_tree (G, partition_fn) {

% input : G = an edge-weighted graph onn nodes;
% partition_fn = a function which returns a set of two or more subgraphs
% output:T = support tree for the graphG

1. create a new nodeS;

2. create a new treeT containing only the nodeS;

3.T = generate_support_tree_sub (T, S, G, partition_fn);

4. return(T);

} % endgenerate_support_tree

3.5 Procedure:generate_support_tree_sub

treegenerate_support_tree_sub (T, Si, Gi, partition_fn) {

% input :T = a tree;
% Si = a node ofT, the root of the subtree to be created
% Gi = a subgraph whose support tree is to be rooted atSi
% partition_fn = a function which returns a set of two or more subgraphs
% output:T = T ∪ Ti, whereTi is the support tree forGi

1. {Hi} = partition_fn(Gi);

2. for eachHi ∈ {Hi} {

3. create a nodeRi in T corresponding toHi;

4. computeβi, the total weight of the edges on the frontier ofHi;

5. create an edge of weightβi in T connectingRi to Si;

6. if then T = generate_support_tree_sub (T, Ri ,Hi, partition_fn);

} %end for

7.return(T);

} % endgenerate_support_tree_sub

G S–

H i 1≥

42

The process of building a support tree is illustrated in Figure 3.4. The figure represents building a support tree for a
finite element mesh that was derived for a cracked plate. The original mesh is presented in Figure 3.4a. Each addi-
tional illustration takes the support tree construction process down one more level of recursion. At each level, edges
of the separators are drawn as dotted lines, while remaining edges are solid. Figure 3.4f is the final support tree. The
crack is not visible in the illustration, since the points are separated by only a small amount, but runs from (0.0,0.5) to
(0.5,0.5). A singularity exists at the inner end of the crack, which requires very fine meshing to resolve adequately;
the fine meshing can be seen around the center of the mesh.

The reason for the namesupport tree is revealed by looking at the figure. The original mesh is planar, with the support
tree sticking out in the third dimension. The mesh appears to be hanging from the support tree; that is, the mesh
appears to besupported by the tree.

Each node of a support tree defines a subgraph of the graph; the root corresponds to the entire graph, while leaves cor-
respond to individual nodes. Each non-leaf node of a support tree also defines a separator, in particular, the separator
used to partition the associated subgraph. Finally, every edge in the support tree corresponds to the collection of edges
that make up the frontier of the subgraph associated with the node on the leaf side of the edge.

3.2.1 Partitioning the graph

The process of graph partitioning is at the heart of the support tree construction procedure. Graph partitioning,
reviewed in Chapter 2, is a process of deleting edges of a graphG in order to produce two or more subgraphs of
roughly the same size that are disconnected from each other. The set of edges removed is called anedge-separator.
Graph partitioning can also be performed by deleting vertices; the set of vertices which, upon removal, partitions the
graph is called avertex separator. In this thesis, we shall only be concerned with edge separators. The goal of graph
partitioning is to find small separators.

Any graph partitioning algorithm is applicable to the construction of support trees, provided that the algorithm can be
applied to the underlying graph. For example, if only the coefficient matrix is known, then one of the combinatorial
algorithms must be used. When geometric information is available, then a geometric algorithm can be used as well.

One of the decisions that must be made in constructing a support tree is deciding upon the branching factor of each
node. We have found that, for relatively regular problems, a good solution is to match the branching factor to the
dimensionality of the space: a support tree for a mesh ind dimensions has a branching factor of 2d. Thus, the support
tree for a path is a binary tree, the support tree for a square mesh is a quadtree, and so on.

For exotic graphs that may be highly irregular, a somewhat irregular support tree is also desirable. In Chapter 5, we
present a method for construction of irregular support trees in which the branching factor at each node depends upon
the topology of the underlying subgraph.

3.2.2 Weighting the edges of a support tree

Recall that we have compared the convergence of an iterative method to a mixing process. Each of the constituent
matrix/vector products propagates information one step, and the goal in constructing support trees is to accelerate
mixing by reducing the distance across the graph. But just reducing the distance is not sufficient. The volume of com-
munication between subsets must be maintained while distance is reduced.

Consider a subgraphGi of a graphG that resulted from some number of recursive partitioning steps. The collection of
edges (u,v) such thatu ∈ Gi, andv ∉ Gi is called thefrontier of Gi, which we denotefrontier(Gi). Each of the edges
(u,v) ∈ frontier(Gi) has a weightwt(u,v) associated with it. Thefrontier weight of Gi, β(Gi) is the sum of the weights
of the frontier edges. Imagine that these edges are pipes with capacities given by the weights. Thenβ(Gi) is the total
capacity of the edges with whichGi communicates with the rest of the graph. Hence, the edge of the support tree that
leads down toGi must be able to accommodate the same capacity as the frontier ofGi. That is, the same volume of
information must flow through the support edge as can flow throughfrontier(Gi).

 43

The reasoning above (which is formalized in the proofs of Chapter 4), provides the intuition behind weighting the
support tree edges by the total weight of the edges on the frontier of the associated subgraph. In Chapter 5 we discuss
a more elaborate way to weight the edges of both regular and irregular support trees that guarantees sufficient support
of boundary edges, but also provides properties that are useful for theoretical analysis of general support tree perfor-
mance. The boundary edge weighting used in the algorithms of this section are sufficient for regular graphs, however.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

a) b)

c) d)

e) f)

Figure 3.4:Support tree construction.
The steps in the construction of a support tree are illustrated.

a) the original meshb) one level of partitioning
c) two levels of partitioningd) three levels of partitioning

e) four levels of partitioningf) five levels of partitioning: the final tree

44

3.3 Implementation of Support Tree Conjugate Gradient

We use support tree preconditioners in a variant of PCG. We call our variant of PCGsupport tree conjugate gradient
(STCG).

Support tree matrices are large and sparse, larger, in fact, than the original matrix. For a simple path onn nodes, the
coefficient matrixA is nxn, while the corresponding binary support tree matrixT is (2n-1)x(2n-1). How can we make
use of a preconditioner that is larger than the original matrix? The answer is to considerT a computational implemen-
tation of a smaller matrix. This is explained below.

Let T be a support tree matrix. Then, ifT is ordered from leaves to root,T has the form

(3.1)

whereD is nxn and diagonal. Rows/columns 1 throughn of T correspond to the nodes of the original mesh, which are
the leaves of the tree. The other rows/columns correspond to internal nodes of the tree, and constitute the additional
variables that make the support tree matrix larger than the original matrix. In graph-theoretic terms,D represents the
total connectivity at the leaves.R andRt represent the connections between leaves and internal nodes of the tree, and
S represents the internal nodes and connections in the tree. Figure 3.5 illustrates an example for a quadtree support
tree constructed for a 2x4 mesh.

Let A be annxncoefficient matrix andT be anmxm support tree matrix forA. Assume thatA andT are ordered so that
T has the block decomposition shown above. Consider performing Gaussian reduction to the internal nodes ofT,
which is the blockS. This process reducesS to a diagonal matrixSd. In addition,R andRt are zeroed out, and it can be
shown thatD fills out to become a densenxn matrix K. Denote the reduction ofT by . The Gaussian reduction can
be implemented as matrix multiplication: pre-multiplication by a matrixG, and post-multiplication byGt, as shown
below.

(3.2)

Let be themxm matrix constructed fromA by addingm-n rows and columns of zeros:

(3.3)

Similarly, for anyn-vectorx, let be them-vector obtained by addingm-n zeros tox:

(3.4)

Consider the Gaussian reduction denoted byG andGt to . The elementary operations ofG consist of adding multi-

ples of row/columni, for i ∈ {n+1,...,m} to row/columnj, for j ∈ {1,...,n}. But, all the rows/columns of are zero for

i ∈ {n+1,...,m}. Therefore, is unchanged by the given Gaussian reduction operations. We therefore have:

(3.5)

A similar argument shows that, for anym-vector constructed by augmenting ann-vectorx with zeros:

T D R

Rt S
=

T̃

GTGt K 0

0 Sd

T̃= =

Ã

Ã A 0

0 0
=

x̃

x̃ x
0

=

Ã

Ã

Ã

GÃGt Ã=

x̃

 45

(3.6)

We now have enough tools to show how anmxm support tree matrixT may be used as a preconditioner for annxn
matrixA, wheren < m.

Consider solving , where is as defined in (3.3), and both and are constructed as in (3.4). This system
is singular, so more than one solution exists. We need to show how to find a unique solution that can be easily con-
verted into a solution to . UsingT as a preconditioner is equivalent to solving the system

(3.7)

where ,x is the solution to , andy is some unknown vector.

Applying Gaussian reduction to , where yields

d1 2+ 0 0 0 0 0 0 0 2– 0 0 0 0

0 d2 3+ 0 0 0 0 0 0 3– 0 0 0 0

0 0 d3 3+ 0 0 0 0 0 0 3– 0 0 0

0 0 0 d4 2+ 0 0 0 0 0 2– 0 0 0

0 0 0 0 d5 2+ 0 0 0 0 0 2– 0 0

0 0 0 0 0 d6 3+ 0 0 0 0 3– 0 0

0 0 0 0 0 0 d7 3+ 0 0 0 0 3– 0

0 0 0 0 0 0 0 d8 2+ 0 0 0 2– 0

2– 3– 0 0 0 0 0 0 8 0 0 0 3–

0 0 3– 2– 0 0 0 0 0 8 0 0 3–

0 0 0 0 2– 3– 0 0 0 0 8 0 3–

0 0 0 0 0 0 3– 2– 0 0 0 8 3–

0 0 0 0 0 0 0 0 3– 3– 3– 3– 12

v1 v2 v3 v4

v5 v6 v7 v8

v9

v11

v10

v12

v13

D R

S

v1 v2 v3 v4

v5 v6 v7 v8

Rt

Figure 3.5:The structure of support tree matrices.
At the top is a mesh and the corresponding matrix. At the bottom is a support tree constructed for the

mesh, and the corresponding matrix. The block structure of the matrix is illustrated.

d1 2+ 1– 0 0 1– 0 0 0

1– d2 3+ 1– 0 0 1– 0 0

0 1– d3 3+ 1– 0 0 1– 0

0 0 1– d4 2+ 0 0 0 1–

1– 0 0 0 d5 2+ 1– 0 0

0 1– 0 0 1– d6 3+ 1– 0

0 0 1– 0 0 1– d7 3+ 1–

0 0 0 1– 0 0 1– d8 2+

Gx̃ x̃=

Ãx̃ b̃= Ã x̃ b̃

Ax b=

T 1– Ãz T 1– b̃=

z x
y

= Ax b=

T
1–

GTGt T̃=

46

(3.8)

or, using (3.2),

(3.9)

We now apply the same reduction to :

(3.10)

Now, recalling from above the effect of the particular Gaussian reduction on and , as given by (3.5) and (3.6), we
have:

(3.11)

That is, we can use the reduced matrix as a preconditioner for a system involving a coefficient matrix instead
of usingT to precondition A. Moreover, the structure of this alternate system is useful. Equation (3.11) above, in
block form, is

(3.12)

Multiplying out the matrix terms yields:

(3.13)

In equation (3.13) above, the variables corresponding to the extra nodes of the support tree have no influence on the
solution to . Therefore, we only need to useK as a preconditioner forA, and solve

(3.14)

The catch is thatK is dense, and requires too much work to use, both to compute the triangular factors ofK, and to
solve the resulting systems. However, since the added variables iny have no effect on the solutionx, we can use the
sparse support tree matrixT as a preconditioner forA by simply augmenting the vectorsx andb with zeros, solving
(3.7). and throwing away the extra variables. The advantage in using (3.7) is thatT is extremely sparse, and is also
structured for efficient computation, meaning that solving the larger, sparser system (3.7) is more efficient than solv-
ing the smaller, denser system (3.14). The intuition is to think ofT as a sparse, computationally efficient form of the
dense preconditionerK.

We can now present the STCG algorithm, which is a variant of the PCG algorithm presented as Procedure 2.12 in
Chapter 2. For convenience in exposition, Procedure 2.12 is reproduced here.

G t– T
1–
G 1– GÃz G t– T

1–
G 1– Gb̃=

T̃ 1– GÃz T̃ 1– Gb̃=

Ã

T̃ 1– GÃGtG t– z T̃ 1– Gb̃=

Ã b̃

T̃ 1– ÃG t– z T̃ 1– b̃=

T̃ ÃG t–

K 1– 0

0 Sd
1–

A 0

0 0

I 0

H21 H22

x
y

K 1– 0

0 Sd
1–

b
0

=

K 1– A 0

0 0

x
y

K 1– 0

0 Sd
1–

b
0

=

Ax b=

K
1–
A K

1–
b=

 47

2.12 Procedurepreconditioned_conjugate_gradients (A, x(0), b, B, ε) {

x = x(0);
g = Ax - b;
solveBh = g;
δ = (g, h);
β = 0;
d = 0;
while (δ > ε) do {

d = -h + βd;
h = Ad;
τ = δ / (d, h);
x = x + τd;
g = g + τh;
solveBh = g;
σ = (g, h);
β = σ / δ;
δ = σ;

}
return (x);

};

We now state the STCG algorithm as Procedure 3.6:

3.6 Proceduresupport_tree_conjugate_gradients (A, x(0), b, T, ε) {
n = dim(A);
m = dim(T);

x = x(0);
g = Ax - b;

 = augment(g,m-n);

solveT = ;

h = (1:n);
δ = (g, h);
β = 0;
d = 0;
while (δ > ε) do {

d = -h + βd;
h = Ad;
τ = δ / (d, h);
x = x + τd;
g = g + τh;

 = augment(g,m-n);

solveT = ;

h = (1:n);
σ = (g, h);
β = σ / δ;
δ = σ;

}
return (x);

};

The only differences between PCG (2.12) and STCG (3.6) are at the points where the preconditioner is applied. In

g̃

h̃ g̃

h̃

g̃

h̃ g̃

h̃

48

STCG, the residual must be augmented with zeros before the preconditioned system is solved, which is performed by
the statement =augment(g,m-n). Then, following the solution step, performed bysolveT = , the solution must
be reduced in size by dropping elements corresponding to the added zeros, which is performed byh = (1:n) (where

(1:n) is the notation from Matlab [Mathworks, Inc., (1992)] for elements 1 throughn of vector). Therefore, most
of the STCG algorithm is executed withn-vectors and thenxn matrix A. The only step that involves the added vari-
ables is in solving the preconditioned system, which is done efficiently because of the structure of the support tree.

In Chapter 4, we show how an interpretation of Laplacian matrices as resistive networks also leads to the conclusion
that a support tree can be used as a preconditioner. The demonstration in Chapter 4 is based on physical principles
about current flow.

3.4 Computational Properties of Support Trees

A good preconditionerB for a coefficient matrixA should satisfy three criteria [Axelsson and Barker (1984), vander-
Vorst (1989)]:

1. Preconditioning withB should reduce the number of iterations required for PCG to converge.

2. B should be easy to construct. That is, the cost of constructing the preconditionerB should be small with
respect to the total cost of solving the linear system.

3. The preconditioned systemBz = r should be easy to solve. On both serial and parallel machines, this
means that the time required to solveBz = r should be small with respect to the time required for an
unpreconditioned iteration. On serial machines, a good preconditioner should require relatively little work
to solve, and should be structured for efficient execution. On parallel machines, a good preconditioner
should be well-structured for parallel execution.

In the subsections below, we address each of these criteria with respect to support tree preconditioners, with special
emphasis on parallel implementations.

3.4.1 Reduction in the number of iterations

Recall from the review in Chapter 2 that the generalized condition number of an ordered pair of matrices (A,B) is
given by the ratio of the maximum and minimum generalized eigenvalues:

The rate of convergence of PCG for coefficient matrixA and preconditionerB is [Axelsson and Barker
(1984)].

To compare convergence rates, we consider as our model problem the two-dimension Dirichlet problem on the unit
square discretized by linear finite elements into annxn square mesh. When the preconditioner is the identity (no pre-
conditioning), the condition number isO(n2) [Johnson (1987)]. Diagonal scaling (DSCG) and the incomplete
Cholesky (ICCG preconditioners are alsoO(n2) [Gustafsson (1978)]; although DSCG yields improvements over no
preconditioning, and ICCG is known to be an improvement over diagonal scaling, neither actually improves the
asymptotic convergence rate. The modified incomplete Cholesky (MICCG) preconditioner isO(n), but requires deter-
mination of a relaxation parameter to achieve the optimal convergence rate [Gustafsson (1978), Axelsson and Lind-
skog (1986)]. The SSOR preconditioner with optimal relaxation parameter is alsoO(n) [Axelsson and Barker
(1984)].

In comparison, we show in Chapter 4 that support tree preconditioners have a generalized condition number of
O(nlogn). Thus, support tree preconditioners have better asymptotic properties than diagonal scaling and incomplete

g̃ h̃ g̃
h̃

h̃ h̃

κ B 1– A() κ A B,() λmax A B,() λmin A B,()⁄= =

O κ B
1–
A()()

 49

Cholesky, but not as good as modified incomplete Cholesky or SSOR preconditioning. However, it should be noted
that support tree preconditioners do not require the computation of any optimizing parameters, as in the case with
modified incomplete Cholesky and SSOR. Furthermore, in this section we also show that the regular structure of sup-
port trees make their parallel performance much better than any of the others listed here except diagonal scaling. Sup-
port tree preconditioners are also more sparse than either modified incomplete Cholesky or SSOR preconditioners.

3.4.2 Ease of construction

The algorithm for support tree construction, presented in §3.2, is very straightforward and relies only on a subroutine
to perform graph partitioning. As explained above, graph partitioning is a well-researched problem for which a num-
ber of efficient solutions have been proposed.

The algorithm for support tree construction contains two inherent levels of parallelism: parallelism within the parti-
tioning code, and parallelism by subgraph. For example, consider partitioning a subgraphGi. The partitioning code
can be parallelized in various ways. Then, after partitioningGi into Gi1,...Gi4, the partitioning processes for each of
theGij can be executed on separate processors.

The cost of construction of a support tree preconditionerT must include the cost of factoringT into triangular matri-
ces,T = VVt. The structure of a support tree yields an ordering for factoring the associated matrixT with zero fill.
Moreover, the zero-fill ordering is a by-product of the support tree construction procedure. The tree is constructed
from root to leaves, while the zero-fill factorization proceeds from leaves to root. Therefore, the order in which tree
nodes are created is simply reversed to find the zero-fill ordering.

The zero-fill ordering can be used, with some modification, to perform Cholesky factorization in parallel. The key in
parallel factorization is to find sets of independent nodes to factor in parallel. As discussed in the next section, a pro-
cedure calledleaf-rakingcan be used to determine an ordering for parallel evaluation of independent nodes. When
ordered properly,T can be factored inO(logn) parallel steps.

3.4.3 Ease of solution

Consider the process of solution on a serial processor. A support tree is large, but very sparse. A support tree matrixT
for a coefficient matrixA will be stored, in application, in the form of its Cholesky factorsV andVt. The serial work is
proportional to the total number of non-zeros in the Cholesky factors. Table 3.1 and Table 3.2 list the resource
requirements for diagonal scaling (DSCG), incomplete Cholesky (ICCG), and support tree (STCG) preconditioners
of square and cubic meshes, respectively. For the tables, lower order terms have been ignored. In 2D, a quadtree sup-
port tree was used for comparison, while in 3D an octtree was used. The tables make clear the sparsity of support
trees: despite having more nodes than the original matrix, the support tree has fewer non-zeros than the incomplete
Cholesky preconditioner, and even fewer non-zeros than the original matrix itself. Moreover, the advantages of sup-
port trees increase with increasing dimensionality: in 2D, the support tree has roughly 80% of the non-zeros that the
incomplete Cholesky factors have; in 3D, the fraction drops to less than 50%.

Suppose thatT is ordered to yield a zero-fill Cholesky factorizationT = VVt. The triangular factorsV andVt corre-
spond to edge-weighted directed trees, one tree with all edges directed from leaves to root, and the other with edges

Table 3.2:Preconditioner Resource
Requirements for an nxnxn Mesh.

Table 3.1:Preconditioner Resource
Requirements for an nxn Mesh.

2D (nxn)
storage
+
*
/

DSCG
n2

0
0
n2

ICCG
5n2

3n2

4n2

n2

STCG
4n2

2n2

(8/3)n2

(4/3)n2

3D(nxnxn)
storage
+
*
/

DSCG
n3

0
0
n3

ICCG
7n3

5n3

6n3

n3

STCG
(24/7)n3

2n3

(16/7)n3

(8/7)n3

50

directed from root to leaves. In the directed interpretation, row indices correspond to the heads of arcs and column
indices to the tails. For example,V(i,j) ≠ 0 corresponds to a directed edge (vj,vi) for whichvi is the head of the directed
edge, andvj is the tail. Figure 3.6 illustrates a simple example.

Recall that, to solveTz = r, we solve two triangular systems:Vy = r, andVtz = y. By referring to Figure 3.6 and recall-
ing the interpretation of triangular matrices as directed graphs, we see that the solution process consists of propagat-
ing weighted averages up the tree (solvingVy = r), and then propagating corrections back down the tree (solvingVtz
= y). We can make the process somewhat more efficient for parallel execution by using the root-free Cholesky factor-
ization:T = CDCt, whereC is unit lower triangular, andD is diagonal. Then the solution process consists of propagat-
ing averages up (solvingCy = r), scaling all values in parallel (computingw = D-1y), then propagating corrections
down the tree (solvingCtz = y).

The fact that the Cholesky factors correspond to directed trees can be used to optimize the solution procedure for par-
allel processors. The directed arcs represent dependencies: nodes at the heads of arrows are dependent on values from
the nodes at the tails. Hence, leaves are entirely independent, and may be solved in parallel. If the leaves are then
removed from the tree, a new, smaller tree results, with leaves that are again independent. We call this evaluation pro-
cessleaf-raking, since all existing leaves are “raked” off the tree at each step. Parallel node evaluation by leaf-raking
is a special case of a more general parallel algorithm known asparallel tree contraction [Reid-Miller, et al (1993)]. A
complete binary tree withn leaves (2n-1 total nodes) can be evaluated using leaf raking in only parallel
steps.

As part of the initialization process for STCG, the order in which nodes should be evaluated is determined, and the
linear systems are reordered to maximize data locality at each step. We call this orderingrake-order.

Figure 3.7 illustrates the process of leaf raking on a simple tree. An analogous process exists for the downward
directed tree: expansions from parents to children can be performed independently in parallel. Leaf raking can result
in impressive parallel performance. For example, consider the case of a quadtree support tree for annxn mesh. The
first and last steps in the evaluation of the preconditioned system can be performed by evaluatingn2 nodes in parallel.

Leaf raking is only one source of parallelism that can be exploited in the solution of the preconditioned system. The
second source is evaluation by subtree. Each subtree of a support tree is independent of other subtrees. Hence, with a
parallel-vector processor architecture such as the Cray C-90, separate subtrees can be assigned to separate processors,
and only a single message from each processor to a central processor is necessary to combine results for complete
evaluation of a single triangular factor. Each of the subtrees can be evaluated efficiently using the vector capabilities
of each processor. Figure 3.8 illustrates the procedure for a simple quadtree support tree assumingp = 16 processors.
On a massively parallel machine, clusters of processors can be assigned to subtrees. Interprocessor communication is

2
0
0

-1
0

0
1
0

-1
0

0
0
1
0

-1

-1
-1
0
3

-1

0
0

-1
-1
2

4

2 3

1 0

=

1 1

1 1

1.4
0
0
0
0

0
1
0
0
0

0
0
1
0
0

-.7
-1
0

1.2
0

0
0

-1
-.8
.58

1.4
0
0

-.7
0

0
1
0

-1
0

0
0
1
0

-1

0
0
0

1.2
-.8

0
0
0
0

.58

*

4

2 3

1 0

1 .8

1 .7

= *

4

2 3

1 0

1 .8

1 .7

Figure 3.6:Graph-theoretic interpretation of Cholesky factorization.
a) Cholesky factorization of a Laplacian matrix.

b) Equivalent factorization of an undirected tree into two directed trees.

a)

b)

2 nlog

 51

minimal since each processor must send/receive at most two messages during evaluation of a triangular factor, as long
as every processor is assigned either a single node or a subtree.

The theoretical efficiency of STCG in solving the preconditioned system on a per-iteration basis can be compared
with that of other methods using the parallel-vector models of Blelloch (1990), which were presented in §2.4.2.4.
Consider solving the preconditioned systems for DSCG, ICCG, and STCG applied to annxn mesh:

• DSCG is the most efficient of the methods. The preconditioned system can be solved in a single parallel
step, yielding a step complexity ofO(1), and an element complexity ofO(n2).

• For ICCG, a naive triangular solve method would have step complexity ofO(n2), and asymptotic element
complexity ofO(n2) as well. Using the more efficient diagonal ordering (see §2.4.2.4), in which nodes that
lie along a common diagonal are solved in parallel, yields step complexity ofO(n), and element complex-
ity of O(n2).

• For STCG using leaf raking, step complexity isO(logn), and element complexity isO(n2).

rake

rake

rake

Figure 3.7:Leaf Raking and the Solution of a Lower Triangular System.
A linear system corresponding to a tree directed from leaves to root is shown at the left. In the first parallel
step, the solutions at the leaves are computed, and the right hand side values at the parents are updated. In
succeeding parallel steps, the process is repeated at the leaves obtained when the previous set of leaves is

removed. At the last step (not shown), the solution at the root is computed.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

p1

Figure 3.8:Parallel evaluation of subtrees.
With 16 parallel-vector processors, the quadtree is partitioned up at level 3, with each subtree being

assigned to a separate processor. By applying leaf raking, each of the subtrees can be efficiently evaluated
using the vector capabilities of each processor. To combine the results, one processor is selected as the

central processor, and the other processors each send a single number to it.

52

3.5 Summary

In this section, we have presented the intuition that led to the development of support tree preconditioners. We pre-
sented an algorithm for the construction of a support tree preconditioner for an arbitrary Laplacian matrix, and
showed how to implement the STCG algorithm. We stated that the condition number of STCG isO(nlogn) for annxn
mesh, and showed how the implementation of STCG could be made very efficient for parallel processors.

In the next three chapters, we provide theoretical and practical demonstrations of the properties of STCG. In Chapters
4 and 5, we prove the convergence properties of STCG through analysis of generalized condition numbers, and show
the applicability of STCG to Laplacian matrices. In Chapter 6, we present the results of numerical experiments that
demonstrate the actual performance of the STCG algorithm. In Chapter 7, we show how to extend STCG to general-
ized Laplacian matrices.

 53

 4
Support Trees: Theory

In this chapter, we present a theoretical analysis of the convergence properties of support tree preconditioners. The
analysis relies on interesting isomorphisms between Laplacian matrices, undirected graphs with self-loops, and
grounded resistive networks. The theory interprets matrix multiplication as current flow in resistive networks and
shows how condition numbers are based on a concept of support of one network for another.

4.1 Matrices and Graphs

Recall the definition of Laplacian matrices from Chapter 2:

An nxn matrix L is aLaplacian matrix, or Laplacian, if L is real, symmetric, and diagonally dominant with
non-positive off-diagonals.

A one-to-one correspondence exists between a subset of undirected graphs and Laplacian matrices.

Given an undirected graph with positive edge weights, a corresponding Laplacian matrix can be constructed. LetG =
(V,E) be an undirected graph with vertex setV = {v1...vn}, edge setE = {(v i,vj): vi is adjacent to vj}, and edge weights
w(vi,vj). The Laplacian matrix ofG, L = L(G), is annxn real symmetric matrix such that:

• L(i,j) = L(j,i) = -w(vi,vj), wherew(vi,vj) is the weight of the edge between vi and vj;

• .

Figure 4.1 illustrates several edge-weighted graphs and their Laplacian matrices.

The Laplacian matrices illustrated in Figure 4.1 are all singular. In particular, they all have the zero row/column sum
property:the sum of all the elements in any row/column is zero. The zero row/column sum property implies singular-
ity because it means that the constant vector is an eigenvector corresponding to eigenvalue zero.

Given annxn Laplacian matrixL with the zero row/column sum property, it is easy to construct the corresponding
graphG = G(L):

L i i,() w vi v j,()
viadjv j

∑=

 54

• G has vertex setV = {v1,...,vn}, wheren is the number of rows/columns inL, andvi corresponds to row/
columni of L;

• G has edge setE = {(v i,vj): L(i,j) ≠ 0};

• edge (vi,vj) ∈ E has weightwt(vi,vj) = |L(i,j)|.

So there is an isomorphism between Laplacian matrices with the zero row/column sum property (that is, singular
Laplacian matrices) and edge-weighted, undirected graphs. To deal with non-singular Laplacians, it is necessary to
expand the class of graphs.

A LaplacianL can be made positive definite (and hence non-singular) by adding positive weight to one or more of the
diagonal elements. That is, forL a Laplacian having the zero row/column sum property,L can be made non-singular
by adding positive weightdi to L(i,i) for some i. In terms of the associated graphG = G(L), we represent the added
diagonal weightdi as a self-loop on nodevi of weightdi. Figure 4.2 illustrates diagonal weighting on Laplacians and
their associated graphs.

We have now demonstrated an isomorphism between all Laplacian matrices and undirected graphs with self-loops, in
which all edges are weighted with positive weights.

4.2 Matrices and Resistive Networks

There is also an isomorphism between Laplacian matrices and resistive networks. Consider a simple circuit consisting
of two nodesvj andvk separated by a resistor with resistance rjk, as in Figure 4.3. The current betweenvj andvk,
denotedi jk, is a function of the voltage difference between the nodes and the resistancer jk:

(4.1)

whereuj anduk are the voltages at nodesvj andvk, respectively. Or, since conductance is the reciprocal of resistance,
we have

Figure 4.1:Graphs and Laplacian Matrices.

L

9 2– 3– 4–

2– 2 0 0

3– 0 3 0

4– 0 0 4

=

v1 v2

v3v4

L

8 2– 1– 5–

2– 5 3– 0

1– 3– 8 4–

5– 0 4– 9

=

v1

v3

v2

v4

2

34

2

3

4

5 1

L

9 2– 3– 4–

2– 3 0 0

3– 0 3 0

4– 0 0 4

=

v1
v2

v3v4

L

10 2– 1– 5–

2– 5 3– 0

1– 3– 3 4–

5– 0 4– 9

=

v1

v3

v2

v4

2

34

2

3

4

5 1

1 2

Figure 4.2:Non-singular Laplacians and Self-loops.

i jk

u j uk–

r jk
--------------=

 55

(4.2)

wherecjk, the conductance betweenvj andvk is given by

(4.3)

By symmetry in the circuit, we also have

(4.4)

Let i j andik be the net current flow out of nodevj andvk, respectively. Sincecjk = ckj, we can rewrite the equations
above as a linear system:

(4.5)

or, in matrix notation,

(4.6)

We callC theconductance matrix for the resistive circuit. The conductance matrix maps applied voltages at the nodes
to net currents at the nodes. Because conductance is the property of interest to us, we will label resistors in figures by
their conductances.

We can generalize these equations to resistive circuits with an arbitrary number of nodes. Consider a resistive network
with n nodes. Suppose that nodesvj andvk are connected, as above, with a resistor having conductancecjk. Letejk, for
j < k be then-vector with 1 in thejth component and -1 in thekth. Then let

(4.7)

Ejk is thenxn matrix having +1 in positionsEjk(j,j) andEjk(k,k), -1 in positionsEjk(j,k) andEjk(k,j), and zero else-
where. Equation (4.5) can then be written as

(4.8)

Since the net current flow at a node is given by the sum of the current flows between the node and its neighbors, we
have for any nodevj:

(4.9)

Or, for all nodes in the circuit:

(4.10)

i jk c jk u j uk–()=

c jk 1 r jk⁄=

vj vk

i jk

r jk

Figure 4.3:Simple resistive circuit.

ikj ckj uk u j–()=

i j

ik

c jk c jk–

c jk– c jk

u j

uk

=

i Cu=

E jk ejkejk
t=

i j

ik
c jkE jk=

u j

uk

i j c jk u j uk–()
kadj j
∑=

i c jkE jk
kadj j k j>,

∑ 
 u Cu= =

 56

In the equation above, the conductance matrixC is now the sum of all the conductance matrices for the individual
resistive connections. The sum is taken for adjacencies with nodes of higher index to avoid duplication. The conduc-
tance matrixC is exactly the Laplacian matrix of the weighted graphG that has the same topology as the resistive cir-
cuit, with edge weights given by the conductances of the individual connections. Figure 4.4 illustrates a resistive
network and its associated conductance matrix. Compare this with the weighted graph and Laplacian in Figure 4.1.

The conductance matrices for resistive circuits have the zero row/column sum property. This property makes sense
from a physical standpoint: when all the nodes in a circuit have the same voltage, there is no net flow of current at any
node. However, we need to extend the resistive circuit isomorphism to include non-singular Laplacians.

Since a conductance matrix is a Laplacian matrix, it can be made non-singular by adding positive weight to one or
more of the diagonal elements. In the case of resistive circuits, this can be interpreted as adding a resistive connection
to a ground node that is fixed at voltage zero. This is formalized below.

4.1 Definition (augmented matrix):Let L be a Laplacian matrix. Then L = C + D, where C is the conductance
matrix of a resistive circuit with n nodes, and D is an nxn diagonal matrix with non-negative entries. Let F
be the conductance matrix corresponding to the circuit of C augmented with a ground node vn+1 such that

F(i,n+1) = F(n+1,i) = -D(i,i), and . That is, each node in the circuit is con-

nected to the ground node with a conductance equal to the additional diagonal weight at that node. We

call F theaugmented matrix, or augmentation, of L. Let , and

. Then F can be written in block form as

(4.11)

4.2 Lemma: Let L be a Laplacian matrix. Let F be the augmentation of L. For any vector of applied voltages

, let , , and . Then we have , for all

.

v1

v2

v4 v3

c12= 2

c13= 3c14 = 4

C

2 2– 0 0

2– 2 0 0

0 0 0 0

0 0 0 0

3 0 3– 0

0 0 0 0

3– 0 3 0

0 0 0 0

4 0 0 4–

0 0 0 0

0 0 0 0

4– 0 0 4

+ +

9 2– 3– 4–

2– 2 0 0

3– 0 3 0

4– 0 0 4

= =

Figure 4.4: Resistive network and conductance matrix.

F n 1+ n 1+,() D i i,()
i

∑=

d diag D() D 1 1,() … D n n,(), ,[]t= =

h dk
k
∑ tr D()= =

F L d–

d– t h
=

u u1 … un
t

= w u1 … un 0
t

= i Lu= j Fw= ik jk=

k 1…n=

 57

proof:

By construction, using equation (4.11), . Partitioningw in the same way yields

. Substituting and multiplying, we obtain .

■

Thus, any Laplacian matrix is isomorphic to a resistive network. Now we can move between three different, equiva-
lent representations of the same object. In what follows, we will cease to distinguish between undirected weighted
graphs and resistive networks, and will use both representations interchangeably.

4.3 Support Trees and Resistive Networks

In Chapter 3, we presented the intuition for support trees in terms of making communication across the mesh more
efficient. We now augment this intuition by presenting support trees in terms of resistive networks.

The previous subsection showed that a Laplacian matrix corresponds to a grounded resistive network; the Laplacian
corresponds to the conductance matrix that defines the network. Furthermore, matrix-vector multiplication is a map-
ping from voltages at each node to net current flow at each node. For example, consider the simple example of the
conductance matrix shown in Figure 4.5. The top of the figure shows the conductance matrix and the corresponding
network in which edges are labeled with conductances. The bottom of the figure shows a matrix-vector multiply and
its network interpretation. The input vector denotes the voltages assigned to each node of the network. The individual
terms in the matrix-vector multiply give the current flow from one node to another: for example,a12u2 = i12 = -1/2,
which is the current flow fromv1 to v2. The output vector gives the net current flow at each node. A negative net flow
indicates flow into the node — the node is a current sink. A positive net flow is flow out of the node — the node is a
current source. In the figure, nodev1 is a sink,v4 is a source, and nodesv2 andv3 have no net current flow.

F L d

dt h
=

w u
0

= Fw L d

dt h

u
0

Lu

dtu

i

dtu
= = =

4 1– 1– 2–

1– 2 0 1–

1– 0 2 1–

2– 1– 1– 4

1

1

1

1 2

v1 v2

v4v3

4 1– 1– 2–

1– 2 0 1–

1– 0 2 1–

2– 1– 1– 4

0

1 2⁄
1 2⁄

1

3–

0

0

3

=

u1=0 u2=1/2

u3=1/2 u4=1

i21 = 1/2

i43 = 1/2

i42 = 1/2i31 = 1/2

i41 = 2

a)

Figure 4.5:Matrix-vector multiplication maps voltages to currents.
a) A conductance matrix and the corresponding network.

b) A matrix-vector multiply, and the resulting interpretation in terms of current flow.

b)

A

A u i

 58

The nodesv2 andv3 which have no net current flow are particularly interesting to us. Consider nodev2. As seen in the
figure,v2 has current flowing both in and out of it; the inward flow exactly balances the outward flow, however. The
reason that the inward and outward flows balance is that the voltage atv2 is the weighted average of the voltages at its
neighbors. A function that satisfies the local averaging property is calledharmonic [Doyle and Snell (1984)], and so
we call nodes likev2 andv3 which have zero net current flowharmonic nodes. The concept of harmonic nodes are
essential to the construction of support trees. All non-leaf nodes of support trees are harmonic nodes.

Consider the process of constructing a support treeT for the coefficient matrixA (see §3.2). Suppose that, at some
step in the process, a subgraphGi is partitioned into componentsGi0 andGi1. Then, a support tree node is created
with edges to each component, and each edge is weighted to support the total communication out of the connecting
component. If the support tree node is harmonic, then its voltage is the weighted average of all the voltages in the tree,
and it doesn’t alter the net current flow through it. That is, the net communication between each subgraph and the rest
of the graph is left unchanged. Thespecific communication effects are of course altered, but theoverall communica-
tion with respect to each subgraph is unchanged. Therefore, a support tree effectively reduces the communication dis-
tance while accurately preserving global communication effects.

Internal support tree nodes are made harmonic by the simple process of setting their net current flow to zero. To be
more specific, letT be a support tree for annxn Laplacian matrixA. Then, as explained in §3.3, there is an ordering of
the nodes inT such that

(4.12)

whereD is annxn diagonal matrix and corresponds to the nodes ofA, S is square and corresponds to the internal
nodes of the tree and their interconnections, andR andRt correspond to the connections between nodes ofA and inter-
nal nodes ofT. Now, if r(i) = b - Ax(i) is theith residual, then the usual preconditioned system that must be solved at

the ith step is , whereB is the preconditioner. The preconditioned system using support trees with har-

monic internal nodes is , where, forT in the block diagonal form above, , and .

Augmenting the residual with zeros ensures that the internal nodes of the support tree are harmonic so that the tree
only propagates local averages. The quantities in the vectory represent weighted average voltages for different sub-
graphs, and can be ignored for the purposes of computing the next step in the PCG algorithm.

Recall from Chapter 3 that the leaves of the support tree correspond to nodes of the original mesh. By construction, a
leaf of a support tree is grounded if and only if the corresponding mesh node is grounded. Since the coefficient matrix
A is assumed to be non-singular, at least one node ofA must be grounded; hence, at least one leaf node ofT is
grounded. By construction,T is Laplacian. Therefore,T is non-singular.

It is interesting to note that, in Chapter 3, we came to the same result about how to augment the residual vectors by a
completely different route, and also concluded that the values in vectory could be ignored.

4.4 Generalized Eigenvalues and Support Numbers

To begin this section, recall from Chapter 2 thatλ is aneigenvalue of a matrixA if there exists a vectorx such thatAx
= λx. We denote the set of eigenvalues ofA by λ(A).

Further recall from Chapter 2 thatλ is ageneralized eigenvalue of the ordered pair of matrices (A,B) if there exists a
vectorx such thatAx = λBx. We denote the set of generalized eigenvalues of (A,B) by λ(A,B). Note thatλ(A) = λ(A,I),
whereI is the identity matrix. There existn generalized eigenvalues if and only if the matrixB is non-singular. IfB is

T D R

Rt S
=

Bz i() r i()=

Tw s i()= s i() r i()

0
= w z i()

y
=

 59

singular, there may be fewer thann eigenvalues — this is the case whenAx ≠ 0, butBx = 0. In addition, there may be
an infinite number of eigenvalues ifA andB have a common null space — that is, there existsx such thatAx = 0 =Bx
[Golub and VanLoan (1989)].

When there exists a vectorx and a uniqueλ such thatAx = λBx, we will callλ afinite generalized eigenvalue. In what
follows, we will be concerned with only finite generalized eigenvalues. In application, the preconditionerB will be
non-singular, and only finite generalized eigenvalues will exist. For simplicity of exposition, we make the following
definition:

4.3 Definition: λ is a finite generalized eigenvalue of the ordered pair of matrices(A,B) if there exists a vector
x such that Ax = λBx, and λ is unique. We denote the collection of finite generalized eigenvalues by
λ(A,B).

The primary tool that we will use for bounding finite generalized eigenvalues is theSupport Lemma. This lemma
appears in a slightly different form as Corollary 2.1 in Axelsson (1992).

4.4 Lemma(Support Lemma):Suppose that A and B are Laplacian matrices. Ifλ ∈ λ(A,B) is a finite general-
ized eigenvalue, andτB-A is positive semi-definite, thenλ ≤ τ.

proof:

First, assume that bothA and B are non-singular and hence positive definite. Suppose the
lemma is false and there existsλ ∈ λ(A,B) such thatλ > τ. Lety be an eigenvector correspond-
ing toλ. Then

Now λ > τ, so there is anε > 0 such thatλ−ε = τ. This yields

which must be less than zero, since the first term is zero andB is positive definite. This contra-
dicts the assumption ofτB-A positive semi-definite. Therefore, we must haveλ ≤ τ.

Now, if eitherA or B is singular, we simply note that any y corresponding toλ ∈ λ(A,B), where
λ is a finite generalized eigenvalue, may not lie in the null space ofB. Hence the termεytBy
above is always positive, and the result follows.

■

Based on the Support Lemma, we define the concept of supportof one matrix for another.

4.5 Definition: The support, σ = σ(A,B), of matrix B for A is the greatest lower bound over allτ satisfying the
Support Lemma. That is,σ = lim inf{ τ: τB-A is positive semi-definite}.

Note that the support number of an ordered pair of matrices (A,B) is an upper bound on the largest finite generalized
eigenvalue of (A,B). That is, ifλ ∈ λ(A,B), thenλ ≤ σ(A,B). Therefore,λmax(A) = λmax(A,I) ≤ σ(A,I).

The concept of support has a physical meaning in terms of resistive networks. Consider the networks corresponding
to matricesA andB. σ(A,B) is the gain factor that must be applied toB to guarantee that, for a given set of voltages, at
least as much current flows inB as inA. This concept is made clearer in the next lemma.

y
t λB A–() y 0=

y
t τB A–[] y y

t λ ε–()B A–[] y=

y
t λB A–() y ε y

t
By–=

 60

4.6 Lemma: Let A be a Laplacian matrix corresponding to the graph G = (VG,EG), consisting of a single sim-

ple cycle on n nodes, with edge weights given by wjk. Let H = (VH,EH) be the graph corresponding to G,

but missing edge e(i,j), and let B be the matrix corresponding to H. Thenσ(A,B) ≤ ζ, where

(4.13)

In particular, if G is a unit weight graph (that is, wjk = 1,∀j≠k ∈ {1...n}), thenσ(A,B) ≤ n.

proof:

Assume without loss of generality that the cycle containn nodes which are numbered in order
around the cycle, and that the deleted edge is between nodesn and 1.

Let eij , i<j, be the vector with a 1 in positioni, -1 in positionj, and 0 elsewhere. ThenEij =
wijeijeij

t is the conductance matrix corresponding to a network with a single resistive connec-
tion between node i and nodej of conductancewij . We calleijeij

t a primitive matrix.

The matrix of any ungrounded resistive network can be formed as the weighted sum of primi-
tive matrices. Hence,

(4.14)

and

(4.15)

We need to findτ such thatτB-A is positive semi-definite. By substituting (4.14) and (4.15)
into , then expanding and rearranging terms, we get

(4.16)

Now, it is easy to see that

(4.17)

Substituting (4.17) into (4.16) yields

(4.18)

Setting , then expanding and rearranging terms:

(4.19)

But the innermost sums are easily recognized as outer products, so (4.19) reduces to:

ζ wi j
1

wkl

k l,() EH∈
∑⋅ 

  1+=

A wi i 1+, ei i 1+, et
i i 1+,

i 1=

n 1–

∑
 
 
 

w1 n, e1 n, e1 n,
t+=

B wi i 1+, ei i 1+, et
i i 1+,

i 1=

n 1–

∑=

τB A–

τB A– τ 1–() wi i 1+, ei i 1+, et
i i 1+,

i 1=

n 1–

∑
 
 
 

w1 n, e1 n, e1 n,
t–=

e1 n, e1 2, e2 3, … en 1 n,–+ + +=

τB A– τ 1–() wi i 1+, ei i 1+, et
i i 1+,

i 1=

n 1–

∑ w1 n, ei i 1+, et
j j 1+,

j 1=

n 1–

∑
 
 
 

i 1=

n 1–

∑–=

τ 1–() w1 n,
1

wk l,

k l,() H∈
∑⋅=

τB A– w1 n,
wi i 1+,
w j j 1+,
------------------ei i 1+, et

i i 1+, ei i 1+, et
j j 1+, ej j 1+, et

i i 1+,––
w j j 1+,
wi i 1+,
------------------ej j 1+, et

j j 1+,+
j i 1+=

n 1–

∑
 
 
 

i 1=

n 2–

∑=

 61

(4.20)

Each of the terms on the right hand side above is an outer product, and hence is positive semi-
definite. Therefore, the entire right hand side is positive semi-definite and by Lemma 3.1 we
have the desired result.

Finally, for a cycle with unit edges, substitutewij = 1, 1 ≤ i,j ≤ n into

and we get (τ-1) = n -1, orτ = n.

■

Physics texts and texts on circuit theory generally discuss the rules that are used to reduce circuit complexity by com-
bining multiple circuit elements into a single element. It is useful at this point to review some of these rules. In partic-
ular, the two rules which we shall employ deal with resistive (conductive) elements of the same type connected either
in parallel or in series.

When two resistors of resistancesr1 and r2 are connected in series, they may be replaced by a single resistor of resis-
tancer, where

(4.21)

This law can be phrased in terms of conductors. Using the fact that conductance is the reciprocal of resistance, we
have that two conductors of conductancesc1 andc2 connected in series may be replace by a single conductor of con-
ductancec, where

(4.22)

When resistors are connected in parallel, then the formulas above hold with the roles of resistance and conductance
reversed. That is, two resistors of resistancesr1 andr2 in parallel can be combined into a single resistor of resistance
r, where

(4.23)

And two conductors of conductancesc1 andc2 connected in parallel can be combined into a single conductor of con-
ductancec, where

(4.24)

Figure 4.6 illustrates the rules for circuit reduction.

Since we have demonstrated that Laplacian matrices and resistive networks are isomorphic, it should come as no sur-
prise that there exist matrix operations which correspond to the rules for circuit reduction.

The rule for combining parallel conductors corresponds to matrix addition, and yields the important property of lin-
earity for the networks that we are dealing with. IfA = A1 + A2, then for every vectorx, Ax = A1x + A2x. Similarly, if
we have two networks defined over the same set of nodes, and with corresponding matricesB1 and B2, then we can
short together corresponding nodes of the two networks to form a combined network with matrixB = B1 + B2. An
example is shown in Figure 4.7.

τB A– w1 n,
wi i 1+,
w j j 1+,
------------------ei i 1+,

w j j 1+,
wi i 1+,
------------------ej j 1+,–

 
 
  wi i 1+,

w j j 1+,
------------------ei i 1+,

w j j 1+,
wi i 1+,
------------------ej j 1+,–

 
 
 t

j i 1+=

n 1–

∑
 
 
 

i 1=

n 2–

∑=

τ 1–() w1 n,
1

wk l,

k l,() H∈
∑⋅=

r r 1 r2+=

1
c
--- 1

c1
----- 1

c2
-----+=

1
r
--- 1

r1
----- 1

r2
-----+=

c c1 c2+=

 62

The rule for combining conductors in series corresponds to a single step of Gaussian elimination in which only a sin-
gle row/column (a single node) is reduced. Consider the example in Figure 4.8, where we have replaced the series
rule for conductors by the equivalent . and ordered the nodes for convenient elimination. In Fig-
ure 4.8a, a simple path on 3 points is illustrated, along with its corresponding Laplacian matrix. To eliminate v1, the
central node, the off-diagonals in row and column 1 of the Laplacian must be eliminated. Elimination ofA(2,1) and
A(1,2) is performed by addingα1 times row1 to row2, andα1 times column 1 to column 2, where

. This adds fill of to entriesA(2,3) andA(3,2), and subtracts
from entryA(2,2), yieldingA1(2,2) = . A similar analysis shows that the second step of Gaussian
elimination changes onlyA1(3,3), yieldingA2(3,3) = . From Figure 4.8c, the 2x2 block at the lower
right of A2 is easily recognized as the Laplacian matrix corresponding to a network with two nodes and a single con-
necting edge of conductance .

Gaussian elimination also explains the more generalstar-delta transformation of circuit theory [Bollabas (1979)]. In
fact, the reduction of conductors in series is simply the star-delta transformation with only two input conductors. Fig-
ure 4.9 illustrates the star-delta transformation with three input conductors; the configurations of the input and output
networks for this case are the star and delta for which the transformation was named.

Figure 4.9 suggests a formula for determining the conductance of any wire obtained through star-delta transforma-
tion. Letv0 be the central node with neighborsv1,...,vn in a star configuration. Letci be the conductance of the wire
connectingv0 to vi. Reduction ofv0 will connect all the other nodes. Examination of the figure suggests thatcij , the

r1 r2

c1 = 1/r1 c2 = 1/r2

r = r1 + r2

1/c = 1/c1 + 1/c2

r1

c1 = 1/r1

r2

c2 = 1/r2

1/r = 1/r1 + 1/r2

c = c1 + c2

=

=

a)

b)

Figure 4.6:Rules for circuit reduction.
a) resistors/conductors in series

b) resistors/conductors in parallel

3 1– 1– 1–

1– 1 0 0

1– 0 1 0

1– 0 0 1

1 0 0 1–

0 1 0 1–

0 0 1 1–

1– 1– 1– 3

4 1– 1– 1– 1–()
1– 2 0 1–

1– 0 2 1–

1– 1–() 1– 1– 4

4 1– 1– 2–

1– 2 0 1–

1– 0 2 1–

2– 1– 1– 4

1

1

1
+ = =

+ = =

Figure 4.7:The linearity of resistive networks.
The top of the figure illustrates combining resistive networks to form a single network.

The bottom figure illustrates the operation with the matrices corresponding to the networks.

1 1

1

1

1

1

1

1

1

1

1

1

1 2

c c1c2 c1 c2+()⁄=

α1 c1 c1 c2+()⁄= c1c2– c1 c2+()⁄ c1
2 c1 c2+()⁄

c1c2 c1 c2+()⁄
c1c2 c1 c2+()⁄

c1c2 c1 c2+()⁄

 63

conductance of the wire connectingvi to vj, is given by

(4.25)

That is, the conductance of the wire connectingvi to vj upon reduction ofv0 is given by the product of the conduc-
tances of the wires fromv0 to vi andvj, divided by the sum of the conductances of all the wires connecting tov0. This
formula is easily proved by performing Gaussian elimination onv0. This formula is useful because it allows us to eas-
ily determine conductances resulting from circuit reduction.

Resistive networks and linearity provide a clear physical intuition for Lemma 4.6 above. Consider supporting a cycle
on n nodes with edges of unit weight by a simple path onn nodes, also with edges of unit weight. Figure 4.10 illus-
trates the example. The cycle contains two paths from nodev1 to nodevn: a path of length 1 and conductance 1, and a
path of lengthn-1 and conductance 1/(n-1). The total conductance in the cycle fromv1 to vn is therefore

. The total conductance in the path fromv1 to vn is 1/(n-1). Therefore, for the path to

c1 c2+ c1– c2–

c1– c1 0

c2– 0 c2

v1v2 v3

c1 c2

1 0 0

c1– 1 0

0 0 1

c1 c2+ c1– c2–

c1– c1 0

c2– 0 c2

1 c1– 0

0 1 0

0 0 1

c1 c2+ 0 c2–

0
c1c2

c1 c2+

c1c2

c1 c2+
----------------–

c2–
c1c2

c1 c2+
----------------– c2

=

1 0 0

0 1 0

c2– 0 1

c1 c2+ 0 c2–

0
c1c2

c1 c2+

c1c2

c1 c2+
----------------–

c2–
c1c2

c1 c2+
----------------– c2

1 0 c2–

0 1 0

0 0 1

c1 c2+ 0 0

0
c1c2

c1 c2+

c1c2

c1 c2+
----------------–

0
c1c2

c1 c2+
----------------–

c1c2

c1 c2+

=

c1c2

c1 c2+

c1c2

c1 c2+
----------------–

c1c2

c1 c2+
----------------–

c1c2

c1 c2+

c1c2

c1 c2+

v1 v2

a)

b)

c)

d)

Figure 4.8:Gaussian elimination and circuit reduction.
a) Laplacian matrix corresponding to the path on three points shown

b) First step in reducing graph/matrix froma
c) Second step in reducing graph/matrix froma

d) Laplacian matrix corresponding to the path on two points shown.

ci j

ci c j⋅

ck
k
∑
-------------=

1 1 n 1–()⁄+ n n 1–()⁄=

 64

support the cycle, the conductance of the path must be increased by a factor ofn. This multiplication factor corre-
sponds to the support number.

v2

v4 v3

v1

v2

v4 v3

c2

c3c4

c2c3

c2 c3 c4+ +

c3c4

c2 c3 c4+ +

c2c4

c2 c3 c4+ +

c2 c3 c4+ + c2– c3– c4–

c2– c2 0 0

c3– 0 c3 0

c4– 0 0 c4

c2 c3 c4+ + 0 0 0

0
c2c3 c2c4+

c2 c3 c4+ +

c2c3

c2 c3 c4+ +
----------------------------–

c2c4

c2 c3 c4+ +
----------------------------–

0
c2c3

c2 c3 c4+ +
----------------------------–

c2c3 c3c4+

c2 c3 c4+ +

c3c4

c2 c3 c4+ +
----------------------------–

0
c2c4

c2 c3 c4+ +
----------------------------–

c3c4

c2 c3 c4+ +
----------------------------–

c2c4 c3c4+

c2 c3 c4+ +

a)

b)

Figure 4.9:Gaussian elimination and the star-delta transformation.
a) Laplacian matrix and corresponding graph

b) Matrix after Gaussian elimination of row/column 1, and corresponding graph.

v1

v2 vn-1

vn

v1

v2 vn-1

vn
v1

v1

vn

vn

v1

v1

vn

vnc1 = 1

c2 = 1/(n-1)

c = n/(n-1)

c = 1/(n-1)

c = 1/(n-1)

a)

b)

Figure 4.10:Support numbers and conductances.
a) In a simple cycle, the effective conductance from v1 to vn is n/(n-1)
b) In a simple path, the effective conductance from v1 to vn is 1/(n-1)

For the path to support the cycle, its conductance must be increased by a factor of n.
This gain factor is equivalent to the support number.

 65

We can compute the support number of any ordered pair of matrices (A,B), whereA andB are Laplacian matrices, by
applying the physical intuition above. Consider breaking upA into piecesA1+A2+...+Am in such a way that the pieces
are particularly simple in structure. Next we break upB into corresponding piecesB1,...,Bm, splitting conductors if
necessary, so that Bi supportsAi. The following lemma shows how to analyze the support numbers of the pieces to
determine the overall support number.

4.7 Lemma: Let A and B be Laplacian matrices corresponding to resistive networks G and H such that H is a
subnetwork of G. Let{ G1, G2,..., Gm} be any partitioning of G such that G = ∑ Gi, and let{ A1, A2,...,Am}
be the matrices corresponding to the Gi. Let { H1, H2,..., Hm} be a corresponding partitioning of H, with
associated matrices{ B1,B2,...,Bm}. Thenσ(A,B) ≤ max{ σ(Ai,Bi)}.

proof:

We want to find the minimumτ such that (τB-A) is positive semi-definite. Equivalently, this
means finding the minimumτ such that for any vectorx ≠ 0, we have the following inequali-
ties:

Clearly, if we can find anyτ such that for allx andi, then
for all x, and so . Therefore,σ(A,B) ≤ max{ σ(Ai,Bi): i = 1,...,m}.

■

The lemmas and examples of this section provide some physical intuition for the concept of support. The key in
boundingλmax(A,B) is to determine aτ such thatτB-A is positive semi-definite. The method which we have elabo-
rated shows thatτ may be considered to be the minimum number of copies ofB that are necessary to replace each
conductor (edge) ofA by a path of conductors inB. We determine the number of copies needed by partitioning B so
that every edge of A is supported by the edges in a single partition of B (although several edges of A may be sup-
ported by a single partition of B), and finding the partition with the greatest support requirement.

To see how to apply this general combinatorial procedure for bounding generalized eigenvalues, consider bounding
the maximum finite generalized eigenvalueλmax(A,B) for the matrices/networks shown in Figure 4.11. The networkB
can be partitioned into three pieces as shown, one supporting the edges ofA in common withB, and one each for the
edges ofA not inB. In the first partition, each edge ofB1 supports the corresponding edge ofA1. The minimum sup-
port is for the diagonal edge: the wire with conductance 1/3 must be multiplied by a gain factor of 6 in order to sup-
port the corresponding wire of conductance 2. Hence,σ(A1,B1) ≤ 6. In each of the next two partitions, a single wire of
conductance 1 must be supported by a path of length 2 with conductances of 1/3 and 1/2. The total conductance of the
path is 1/5, so a gain factor of 5 is required for the path to support the edge. For each partitioni, σ(Ai,Bi) ≤ 6, so by the
lemma above,σ(A,B) ≤ 6. By the Support Lemma,λmax(A,B) ≤ σ(A,B) ≤ 6. In fact, using Matlab [Mathworks, Inc.
(1992)], we obtainedλmax(A,B) = 4.7321.

It is useful to assign some terminology to associate with our combinatorial procedure for bounding generalized eigen-
values. Let the edges inB be calledsupport edges. Then the edges inA aresupported edges. For each partitioni, we
can compute the total conductance of the edges inAi that are supported, at least in part, bye ∈ Bi. For edgee, we call
the ratio of total supported conductance to support conductance thecongestion of e in partition i of the support map-
ping, and denote it byγe(A,B). Similarly, if f is an edge inA, thenf is supported by a path inB; that is, the current
flowing throughf is routed via some path inB. We call the length of the support path thedilation of f in the support

xt τB A–()x 0≥

xt τ B1 … Bm+ +() A1 … Am+ +()–()x 0≥

xt τB1 A1–()x … xt τBm Am–()x+ + 0≥

x
t τBi Ai–()x 0≥ x

t τB A–()x 0≥
σ A B,() τ≤

 66

mapping, and denote it byδf(A,B). Note that congestion and dilation as used here are generalizations of the notions of
congestion and dilation of graph embeddings (see the review in Chapter 2). For any support mapping of (A,B), the
support number is bounded above by the maximum product of dilation and congestion, where dilation is determined
for each edge inA, and congestion is determined over all the edges inB supporting the given edge inA. That is,

. (4.26)

For example, consider again the two networks in Figure 4.11. The dilation for each of the edges ofA1 is 1, since each
edge is supported by a single edge ofB1. The congestion for the horizontal edge ofB1 is 2, as is the congestion for the
vertical edge. The congestion for the diagonal edge ofB1 is 6. The maximum product of congestion times dilation in

partition 1 is therefore . Similarly, the dilations for the edges inA2 andA3 are both 2,
since both edges are routed over paths of length 2. The maximum congestion along either support path is 3, so the
support numbers for partitions 2 and 3 are both 6. The support number obtained using the maximum product of con-
gestion times dilation is 6, as was obtained when path conductances were computed, but the bounds for partitions 2
and 3 were not as tight. The congestion times dilation approach is, in general, simpler, but not as accurate as comput-
ing exact path conductances.

4.5 Condition Number Bounds for Support Trees: Preliminary Lemmas

The PCG method for coefficient matrixA and preconditionerB is known to have a convergence rate of

, where the condition number ofB-1A, κ(B-1A), is given by

1

11 2

1

1

1

1

3 1– 1– 1–

1– 1 0 0

1– 0 1 0

1– 0 0 1

4 1– 1– 2–

1– 2 0 1–

1– 0 2 1–

2– 1– 1– 4

A = = B = =

1/2

1/2 1/3

1

1 2A1 =

B1 =

σ(A1,B1) ≤ 6

1

1A2 =

B2 =

A3 =

B3 =

σ(A2,B2) ≤ 5 σ(A3,B3)≤ 5

Figure 4.11:Partitioning matrices/networks for eigenvalue analysis.At the top of the
figure, networks A and B are illustrated. An upper bound onλmax(A,B) is obtained by

partitioning A and B and determining the support number of the partitions.

λmax(A,B) ≤ σ(A,B) = ?

4.7321 = λmax(A,B) ≤ σ(A,B) ≤ maxi{ σ(Ai,Bi)} = 6

1/2 1/3

1/2

1/3

σ A B,() max δ f A B,() γe A B,(): f EAi
∈ e EBi

∈ e supportsf∋,⋅{ }≤

max 2 1⋅ 2 1⋅ 6 1⋅, ,{ } 6=

O κ B
1–
A()() κ B 1– A() λmax B 1– A() λmin B 1– A()⁄=

 67

(see Theorem 2.12 and the discussion of PCG in §2.4.2.3).

If , then for some vectorx. By multiplying both sides byB, this implies that

. That is,λ is a finite generalized eigenvalue of the ordered pair of matrices (A,B). Hence, bounding the
condition number of a preconditioned system involves bounding generalized eigenvalues. The lemma below shows
how to use the technology developed in the previous subsection to bound the condition number of a preconditioned
system, which we will refer to as thegeneralized condition number.

4.8 Lemma:Let A and B be non-singular Laplacian matrices, and suppose that B is a preconditioner for A.
Then,

proof:

■

In Chapter 3, we addressed the problem of using a support tree matrixT as a preconditioner for a matrixA. The diffi-
culty for application purposes was the difference in size betweenT andA. We proved that Gaussian elimination could
be applied to the problem to yield an equivalent preconditionerK for A that was the same size asA. However, we did
not useK, but rather showed how to use the more computationally efficientT by adding and then deleting variables.
We now need to show how to analyze the condition number that results from preconditioningA with T, which means
that once again we have to find a way to deal with the difference in sizes.

4.9 Lemma: Let A and B be Laplacian matrices. Let G be a matrix representing 1 or more reduction steps of
Gaussian elimination. Thenλ(A,B) = λ(GAGt,GBGt).

proof:

Let λ ∈ λ(A,B), andx a corresponding generalized eigenvector. Then

Furthermore,G is non-singular, so there existsy such thatGty = x. Making this substitution
yields

So .

SinceG is non-singular, we can perform the same sequence of operations in reverse for any

λ λ B 1– A()∈ B 1– Ax λx=

Ax λBx=

κ B 1– A() σ A B,() σ B A,()⋅≤

κ B 1– A() λmax B 1– A() λmin B 1– A()⁄=

λmax A B,() λmin A B,()⁄=

λmax A B,() λmax B A,()⋅=

σ A B,() σ B A,()⋅≤

Ax λBx=

G Ax⋅ G λ⋅ Bx=

GAx λGBx=

GAGt y λGBGt y=

λ λ GAG
t

GBG
t,()∈

 68

 to show thatλ ∈ λ(A,B), which proves the lemma.

■

Lemma 4.9 allows us to apply Gaussian elimination in our analysis without fear of changing the generalized eigenval-
ues. From a physical standpoint, this was expected — since Gaussian elimination is equivalent to circuit reduction, it
is natural to reduce the complexity of circuits before attempting to analyze them. However, we still haven’t dealt
explicitly with the fact that the coefficient matrix and the support tree matrix are different in size. The following
lemma is useful for this.

4.10 Lemma: Let A be an nxn non-singular Laplacian matrix, and let T be the mxm matrix of a support tree for

A, ordered consistently with A. Let be the mxm matrix which contains A in the first diagonal nxn block,

and is zero elsewhere. Let be obtained from T by Gaussian elimination of the internal nodes of the sup-
port tree with diagonal blocks K and Sd, where K is nxn and corresponds to the nodes of A. Then,

i

ii is in with multiplicity m-n

iii

proof:

We assume that the nodes ofA, which are the leaves ofT, are orderedv1,...,vn, so that any node
vj with is an internal node of the support tree.

To provei), let G be the matrix that implements Gaussian elimination of the internal nodes of
T. Gaussian elimination of the internal nodes adds multiples of the rows and columnsn+1
throughm to other rows and columns. Since rows/columnsn+1 throughm are identically zero
in , we have

And, by Lemma 4.9,

To proveii), let yi be the (m-n)-vector that has a 1 in positioni and is zero elsewhere. Letzi be

them-vector given by ;zi has a 1 in positionn+i, and is zero elsewhere. Then, for

, , and , so with multiplicity

m-n.

To proveiii), we have fromi) andii) thatλ = 0 is a generalized eigenvalue of (,) with mul-
tiplicity m-n. Furthermore, as inii), them-vectorszi are eigenvectors corresponding toλ = 0.
Since is symmetric and is symmetric and non-singular, there arem orthogonal generalized
eigenvectors of (,). The vectorszi comprisem-n of the orthogonal generalized eigenvec-
tors, so the remainingn must have the form , with v = λ v for someλ ∈ λ(,

). But then we have

λ λ GAG
t

GBG
t,()∈

Ã

T̃

λ Ã T,() λ Ã T̃,()=

λ 0= λ Ã T,()

λ λ Ã T,()∈ :λ 0≠{ } λ A K,()=

j n>

Ã

GÃGt G A 0

0 0
Gt A 0

0 0
Ã= = =

λ Ã T,() λ GÃGt GTGt,() λ Ã T̃,()= =

zi 0t yi
t,[]t=

i 1 … m n–, ,{ }∈ Ãzi
A 0

0 0

0

yi
t

0= = λTzi 0= λ λ Ã T,()∈

Ã T̃

Ã T̃
Ã T̃

v xt 0t,[]t= Ã T̃ Ã
T̃

 69

and

Therefore, we must have Ax = λKx, soλ ∈ λ(A, K).

■

4.11 Corollary: Let A be a non-singular Laplacian and T the matrix of a support tree constructed for A. Let,

, and K be as defined in Lemma4.10. Then .

proof:

From Lemma 4.8, .

From Lemma 4.10,λmax(A,K) = λmax(,) = λmax(,T), soσ(A,K) = σ(,T)

■

Lemma 4.10 and Corollary 4.11 accurately reflect our physical intuition that equivalent circuits should have equiva-
lent effects. That is, the tree and the reduced tree have equivalent effects on the original network. We can now use the
network obtained from the support tree by circuit reduction operations to analyze the effects of the support tree.

4.6 Condition Numbers for Regular Meshes

In this section, we prove condition number bounds for regular meshes ind-dimensions. The meshes are assumed to be
d-dimensional cubes withn nodes on a side, wheren = 2k. Each mesh can be embedded in the unitd-dimensional
cube with nodes located at all points given by (i1∆, i2∆,...,id∆), where∆ = 1/(n-1). Each nodev is connected to all
other nodesw for which the distance betweenv andw is equal to∆. Thus, ford=1, we have a unit weight path, for
d=2 a square mesh, ford=3 a cubic mesh, and so on. We further assume that all edges have unit weight. The proof
techniques demonstrated in these sections hold for regular meshes with non-unit weights, as long as the difference
between maximum and minimum edge weights is bounded by a constant.

We assume that all support trees are constructed using recursive coordinate partitioning. Therefore, at each step, the
current subgraph is partitioned into 2d pieces by coordinate bisection with respect to each coordinate axis. Sincen =
2k, the support trees are all regular 2d-ary trees of uniform depth log2n. All edges are weighted by the total weight of
the edges on the boundary of the induced subgraph.

To simplify the presentation, we will cease to distinguish between a matrix and its corresponding graph. Therefore,
the coefficient matrixA will correspond to the meshA = (VA,EA). The support tree matrixT will correspond to a sup-
port treeT = (VT,ET). will denote themxm matrix which containsA in the first diagonalnxn block, and is zero else-
where. will denote the matrix obtained fromT by Gaussian elimination of the internal nodes of the support tree
with diagonal blocksK andSd, whereK is nxn and corresponds to the nodes ofA. We will refer to K as thereduced
tree.

The basic proof technique demonstrated here is straightforward and based directly on the results from the previous
section. We have, from Lemmas 4.9 and 4.10, that the effect of the tree on the mesh is the same as the effect of the
reduced treeK on the mesh. Furthermore, from Corollary 4.11, . Therefore, we will
prove a bound on the condition number by first embedding the mesh in the tree and determiningσ(,T) then embed-
ding the reduced tree in the mesh and determiningσ(K,A).

Ãv A 0

0 0

x
0

Ax
0

= =

λT̃v λ K 0

0 Sd

x
0

λ Kx
0

= =

Ã

T̃ κ K 1– A() σ Ã T,() σ K A,()⋅=

κ K 1– A() σ A K,() σ K A,()⋅≤

Ã T̃ Ã Ã

Ã
T̃

κ K 1– A() σ Ã T,() σ K A,()⋅=
Ã

 70

In the proofs which follow, we only consider the support of edges between nodes of the mesh, and do not examine the
support of the ground connections. Recall, however, that by construction, the support tree leaves have the same
ground connections as the mesh. Therefore, the support of the ground connections is unity.

4.6.1 Regular meshes in 1D

In this section, we assume that the mesh corresponding to the coefficient matrixA is a path onn points with unit
weight edges.A might be the matrix from a finite difference discretization of the Dirichlet problem in the unit inter-
val, for example. For this example, we obtain κ(K-1) = . While this is a simple example, it will serve to
illustrate the flavor of the proofs to follow. Figure 4.12 illustrates the mesh and tree forn = 8.

In Chapter 3, we constructed support trees with edges weighted by the size of the frontier of the induced subgraph. In
this section, such a support tree would have most of the edges of weight 2, instead of 1. This difference does not affect
the asymptotic size of the condition number and simply complicates the analysis.

We are setting up the following methodology. First, to computeσ(,T), we route all the wires ofA along paths inT.
This is fairly easy to do because of the wayT is constructed. Next, to computeσ(T,), we need to reduceT to K, and
route all the wires ofK throughA and find the maximum support number; this gives usσ(K,A), which, by Lemma
4.10, is an upper bound onλmax(T,). To do this, we need an upper bound on the conductance values of the wires in
K, which requires some analysis of the circuit reduction procedure.

Recall from §4.4 that, for graphsA andB of compatible sizes, and given a mapping ofA into B, γe(A,B) denotes the
congestion of edgee ∈ VB, andδf(A,B) denotes the dilation of edgef ∈ VA. We further define

γ(A,B) = max{γe(A,B) : e ∈ VB}, and

δ(A,B) = max{δf(A,B) : f ∈ VA}.

From section 4.4 we have that

4.12 Lemma: Let A be the Laplacian matrix of a 1d mesh with n vertices, and let T be the Laplacian matrix of

the support tree with unit edges constructed for the mesh. Thenσ(,T) = O(logn).

proof:

Let V = {v1,...,vn} be the nodes ofA, and assume that they are ordered from left to right. Since
the only edges of are edges ofA, we only need to mapA into T.

Ã O n nlog()

v1 v2 v3 v4 v5 v6 v7 v8

Figure 4.12:Support tree for a 1D mesh.
The 1D mesh is at the bottom of the figure — a simple path on 8 points with unit edges. The support tree
with unit edges is illustrated above the mesh. The leaves of the tree correspond to the nodes of the mesh.

Ã
Ã

Ã

σ A B,() max γe A B,() δ f A B,()⋅{ }= γ A B,() δ A B,()⋅≤

Ã

Ã

 71

Any edge inT must support at most two edges ofA. To see this, consider any nodevt of T. vt
implicitly defines a subgraph ofA consisting of all the leaf nodes that havevt as an ancestor;
call this subgraphAt. At has at most two boundary edges, so the edge fromvt to its parent must
support at most two edges (since edges internal toAt do not have to be mapped through the
ancestor tovt). But, the edges ofT are weighted by the number of boundary edges in the
induced subgraphs ofA. Therefore, we can partition each edge inT into pieces of unit weight,
each of which supports exactly one edge ofA. Hence, the maximum congestion inT is 1, so
γ(A,T) = 1.

The maximum dilation for any edge inA clearly comes from the edge that must be mapped
through the root ofT. The length of this path is 2log2n, soδ(A,T) = 2log2n.

Therefore, .

■

In order to boundσ(T,), we will computeσ(K,A). To simplify this computation, we will consider sets of edges ofK
that all have the same conductance. We will then partitionA so that each set of edges is supported by a separate parti-
tion. From Lemma 4.7, the maximum support number over all the partitions is an upper bound onσ(K,A).

4.13 Lemma: Let T be a balanced binary tree with unit weight edges, n leaves, and height log2n. Let K be the
reduction of T to its leaves. Then the edges of K can be classified into log2n sets such that all the edges in
a set have the same conductance.

proof:

Since circuit reduction is equivalent to Gaussian elimination, the order in which nodes are
reduced does not affect the final conductances. Consider reducing the tree from the root to the
leaves one level at a time. Each reduction combines all pairs of input edges and creates a single
edge for each pair. The output conductance is given by the product of the input conductances
divided by the sum of the input conductances. Since we are reducing from the root down, every
node has two edges of conductance 1, so the total conductance at an internal node is at least 2.
Therefore, since all conductances are less than or equal to 1, the output conductance of a wire
can be no greater than 1/2 times the smallest of the two input conductances.

We can state this observation another way. Letl1 andl2 be two leaves of the tree. Then, after
reduction of all the internal nodes of the tree, the conductance betweenl1 and l2 will be
bounded above by 1/2m, wherem is the number of internal nodes on the path joiningl1 to l2 in
the original tree.

The root of the treeT divides the original graphA into two subgraphsA0 andA1. The conduc-
tances inK between nodes ofA0 andA1 will all be the same, sinceT is perfectly balanced.
Moreover, the conductances will be bounded above by 1/22h-1, whereh is the height ofT.

Now, consider all the internal nodesvl1,...,vlm at levell of T, where the root is at level 0, andm
= 2l. Eachvlk defines a subtree containing two disjoint subgraphs. As above, the conductances
in K of all the wires between nodes in different subgraphs will be the same, and these conduc-
tances will be bounded above by 1/22(h-l)-1.

Therefore, each set of internal nodes of the same height define a set of edges inK that all have
the same conductances. There are log2n different heights, and the conductances are a function
of the height of the subtrees.

■

σ Ã T,() γ Ã T,() δ Ã T,()⋅≤ 1 2log2n⋅ O logn()= =

Ã

 72

4.14 Lemma: Let A and T be as defined above. Thenσ(T,) = O(n)1.

proof:

We reduceT to K and computeσ(K,A). By Lemma 4.10,σ(T,) = σ(K,A).

Let h = log2n. Let the root ofT be at level 0, and the leaves at levelh.

Using the results of the previous lemma, we partitionK into subgraphs such that each subgraph
contains edges of roughly the same conductance. The edge weights inT are all either 1 or 2. By
assuming all edge weights are 2, we increase the total conductance ofT, and makeT harder to
support. We therefore assume that all the edges inT are of weight 2; by computing the support
number with uniform edge weights, we obtain an upper bound on the actual support number.
Let Ki, i = 1,...,h denote the subgraph made up of edges that cross subtree roots at leveli; the
edges ofKi have conductances bounded above by 2/22(h-i)-1. We must therefore partitionA
similarly. LetA0, A1,...,Ah be partitions ofA constructed by splitting the edges ofA such that all
the edges ofAi, i > 0, have weight 1/2i. That is, .A0 contains the remaining con-
ductance and will not be used further. Figure 4.13 illustrates the partitioning of K for the mesh
and tree of Figure 4.12.

The mapping ofKi into Ai is the obvious one. EmbedAi in a line so that the nodes are ordered
linearly from left to right. EmbedKi with the same ordering. Then an edge ofKi is mapped
along the simple path inAi that joins its endpoints.

Consider supporting the edges ofKi by the edges ofAi. There are nodes in each subgraph
with a common ancestor at leveli in T. (Equivalently, every internal node ofT at leveli is the
root of a subtree with leaves and defines a subgraph ofKi with nodes.) There is one
edge between every node in one subgraph to every node in the opposite subgraph of a pair;
since , the total edge count per pair is

(4.27)

A single edge ofAi only supports those edges ofKi which connect nodes that have a common
ancestor at leveli in the tree. Therefore,

(4.28)

Ai is simply a linear path. So, by the construction ofT, the edges ofKi have a dilation that is
one less than the number of nodes in a connected subgraph. Therefore,

(4.29)

Now, when the edges ofA andB are of unit conductance. In
our case we must multiply the right hand side by the maximum conductance of the edges inA
to determine the maximum conductance that must be supported byB. Similarly, the left hand
side must therefore be multiplied by the minimum conductance inB. Therefore, the formula
for the case of non-unit conductances is

1. In reading a preliminary version of this work, Dr. John Rief of Duke University found an error in the calculations and reduced the
asymptotic bound toO(n) instead ofO(nlogn).

Ã

Ã

Ai 1 2i⁄ A⋅=

n 2
i⁄

n 2
i⁄ n 2

i⁄

n 2
h

=

n
2

2
2i⁄ 2

2 h i–()
=

γ K i Ai,() 2
2 h i–()

=

δ K i Ai,() 2 n 2
i⁄() 2

h i– 1+
= =

σ A B,() γ A B,() δ A B,()⋅=

 73

(4.30)

Applying (4.30) for and , we obtain

(4.31)

This expression on the right of (4.31) is independent ofi, so all the partitions have the same
support. Therefore,

(4.32)

■

We now have a complete bound on the condition number.

v1 v2 v3 v4 v5 v6 v7 v8

a)

b)

c)

Figure 4.13:Partitioning of the reduced support tree.
a) Mesh and support tree. The subtrees rooted at level 1 induce subgraphs of the mesh.

b) Gaussian elimination of the subtrees yield complete graphs on the leaves.
c) K1 consists of only the edges between nodes on opposite sides of the subtree root.

σ A B,()
γ A B,() δ A B,() kmax A()⋅ ⋅

kmin B()
---=

A Ki= B Ai=

σ K i Ai,() 22 h i–() 2h i– 1+ 2 2– h i–() 2+⋅ ⋅
1 2i⁄

--- 2h 2+= =

σ K A,() 2h 2+ 4n O n()= = =

 74

4.15 Theorem: For A and T as defined, .

proof:

From Lemma 4.12, we haveσ(,T) = O(logn). From Lemma 4.14, we haveσ(T,) = O(n).
Applying Lemma 4.8 yields the result.

■

4.6.2 Regular meshes ind dimensions (d>1)

Let A correspond to a cube ind dimensions, withn=2h nodes on a side. ThenA containsN = nd = 2dh total nodes.
Assume that the edges ofA have unit weight. The treeT is constructed by recursive coordinate bisection, and each
edge of T is weighted by the number of edges in the frontier of the subgraph of A induced by the edge (see §3.2).T is
h = log2n in height, and each internal node has 2d children. The root ofT is at level 0, and the leaves are at levelh. We
will show in this section that the condition number obtained by usingT as a preconditioner forA is

First, we show thatσ(,T), the support ofT for , isO(logn).

4.16 Lemma: Let A and T be as defined above. Thenσ(,T) = O(logn).

proof:

Any edge inT must support all the boundary edges of the induced subgraph ofA. The edges of
T are weighted by the number of boundary edges in the induced subgraphs ofA. Therefore, we
can partition each edge inT into pieces of unit weight, each of which supports exactly one edge
of A. Hence, the maximum congestion inT is 1, so γ(A,T) = 1.

The maximum dilation for any edge inA clearly comes from an edge that must be mapped
through the root ofT. The length of this path is 2log2n, soδ(A,T) = 2log2n.

Therefore, .

■

Let K be the complete graph formed by reducing the internal nodes ofT. Next we show thatσ(K,A), the support ofA
for the reduced treeK, isO(n). As in the case ford=1, we computeσ(K,A) by mapping sets of edges ofK into uniform
partitions ofA. The sets of edges ofK are all those with subtree roots at the same level, and define subgraphs
K0,...,Kh. Ki is the subgraph ofK that contains only the edges between nodes in different components resulting from
the ith partitioning step. Hence, ife is an edge inKi connecting nodesu andv, then inT the highest internal node on
the only path between u andv is at leveli. Ki consists of 2di components, each of which is a 2d-partite graph.

To compute the support number, it is necessary to have an upper bound on the conductance of edges inKi. Letv be an
internal node ofT at leveli. Thenv has 2d children, but not all the children have the same boundary size, so the con-
necting edges have different weights. By assuming each edge has the weight of the maximum edge at leveli, all the
edges inKi will have the same upper bound. Moreover, the conductance ofK will only increase, makingK harder to
support. Therefore, the support number resulting from this assumption will be an upper bound on the true support
number. We formalize this approach and determine the support number in the lemma below.

κ T 1– Ã() O nlogn()=

Ã Ã

O d
2
n nlog()

Ã Ã

Ã

σ Ã T,() γ Ã T,() δ Ã T,()⋅≤ 1 2log2n⋅ O logn()= =

 75

4.17 Lemma: Let A, T, and K be as defined above. Then .

proof:

We prove this by performing conductance experiments. Let the subgraphsKi be as defined
above. We will show a support mapping such that the support for eachKi is independent ofi.
Consider a subtree ofT rooted at nodeu at leveli-1. Then,u has 2d children. Each of the chil-
dren ofu is a node at leveli. Each node at leveli defines an induced subgraph ofA, which is a
cube characterized by the following parameters:

• the length of an edge is

(4.33)

• the size of a face is

(4.34)

• the size of the boundary is

(4.35)

• the number of nodes in the subgraph is

(4.36)

• since the tree is boundary weighted, each edge betweenu and a child ofu has
weight , since this is the maximum size of the frontier of any subgraph ofA
induced by a subtree ofT rooted at leveli.

Now we perform our electrical experiment. Apply the same voltage to every leaf node of every
subtree rooted at a child ofu, and let the other nodes in the tree be harmonic. Then the edges of
each subtree can be combined from leaves to root so that the net effect of applying the same
voltage to the leaves can be summed up as applying that voltage to a single conductor con-
nected tou.

Figure 4.14 illustrates the electrical experiment for a binary tree. Leaf nodesl1 andl2 have a
common parentv1 and are each connected tov1 by an edge of weightβv. If the voltage applied
to l1 andl2 is identical, then the effect is the same as ifv1 were connected to a single nodel12 of
the same voltage with a conductor of conductance 2β. v1 is connected to its parentw1 by an
edge with conductanceβw. We now reducev so thatl12 is connected tow1 by a single edge of

conductance , in accordance with the circuit reduction rules discussed in

§4.4.

The edge weights inT reduce geometrically, so in the electrical experiment above, each subtree
rooted at level i reduces to a single node connected tou by a conductor with conductance
bounded above by . (Doyle and Snell (1984) use this procedure to show that an infinite
binary tree of unit resistors has a total root-to-leaf resistance of 1/2, or a total conductance of
2.)

σ K A,() O d
2
n()=

ei n 2
i⁄=

f i ei
d 1–

n 2
i⁄()=

d 1–
=

βi 2d f i≤ 2d n 2
i⁄()

d 1–
=

ni ei
d

n 2
i⁄()= =

d

2d f i

βw′
βw 2βv⋅
βw 2βv+
----------------------=

4d f i

 76

Thus, u effectively has 2d children, each connected tou by a conductor of conductance
. We are now interested in the effective conductance between each of these children

of u. An upper bound on this conductance can be obtained by reducingu, while ignoring the
connection betweenu and its parent (this connection can only decrease the effective conduc-
tance). Letgi denote this upper bound, thengi can be computed as in (4.37), below.

(4.37)

Now, each edge of conductanceg represents the total conductance in all the edges in the bipar-
tite subgraph ofKi that joins all the leaf nodes in two of the subtrees rooted at children ofu at
level i-1 in T. Each such bipartite subgraph contains identical edges. Each of these edges
has conductanceki given by (4.38).

(4.38)

Therefore,ki is an upper bound on the conductance of every edge inKi.

Now we need to look at supporting each edge ofKi by a path inA. Let A0,...,Ah-1 be partitions
of A obtained by dividing each edge ofA into h=log2n pieces, with the pieces inAi each con-
ductance 1/2i. We embedKi in Ai as follows. Let (u,w) be an edge ofKi, whereu andw are
nodes of the mesh with coordinates (u1,...,ud) and (w1,...,wd) respectively. We map (u,w) to a
path inAi by reducing the difference in each dimension in order. That is, we map (u,w) first to
v1 = (w1,u2,...,ud), thenv2 = (w1,w2,u3,...,ud) and so on. This is not an optimal mapping, in that
the boundary edges that cross the first dimension are more heavily congested than edges on
other boundaries. However, it is sufficient for this proof. This is a standard construction, and
additional details can be found in many books on algorithms, such as Leighton (1992).

Every edge inKi arises from the reduction of a subtree ofT rooted at some nodev at leveli. Let
w be some child ofv andAi(w) the induced subgraph ofAi. In the worst case, a boundary edge
of Ai(w) with must support an edge from every node inAi(w) with the same first coordinate to
every edge in the half space ofAi(v) on the opposite side of the first coordinate partition from
Ai(w). There areei/2 nodes that have the same first coordinate, and in the
half space. Therefore, since this is the worst case,

l1 l2 l3 l4

v1 v2

w1

βv βv βv βv

βw βw

v1 v2

w1

βw βw

l12 l34

2βv 2βv

w1

βw’ βw’

l12 l34

combine reduce

Figure 4.14:Reduction of a tree when leaves have the same voltage.
A tree can be recursively reduced to a single edge when all leaves have the same voltage.

gu 4d f i≤

gi

4d f i 4d f i⋅

2
d

4d f i⋅

4d f i

2
d

-----------= =

ni
2

ki

4d f i

2
d

 
 
 

ni
2⁄

4d f i

2
d
ni

2
-----------= =

ni 1– 2⁄ 2
d
ni() 2⁄=

 77

(4.39)

The longest path in Ai(v) is from some corner to the diagonally opposite corner. Given the
mapping defined above, the length of this path isdei. Therefore,

(4.40)

Again, as in thed=1 case, we need to weight the congestion by the maximum conductance of
the edges being mapped, and divide the product by the conductance of the edges inAi, which is
1/2i. Taking (4.38), (4.39), and (4.40), this yields

(4.41)

Applying Lemma 4.7 yields for constantd.

■

With both support numbers determined, we can now bound the generalized condition number.

4.18 Theorem: For A, T, and K as defined,

proof:

From Lemma 4.12, we have

σ(A,K) = σ(,T) = O(logn). (4.42)

From Lemma 4.17, we have

. (4.43)

(4.42) and (4.43), together with Lemma 4.8, yield

■

4.6.3 Extensions to the regular case

In the preceding portion of this subsection, we have showed that, for regular rectangular meshes ind dimensions with
n = 2k nodes on a side, the condition number obtained with a support tree preconditioner is . The restriction
thatn = 2k was for ease of proof. Examination of the proof shows that the important conditions are that the depth of
the tree beO(logn) and that the size of the boundary of each set be within a constant factor of the size of the separator
of the set. Both of these conditions hold for arbitraryn.

Similarly, increasing the connectivity by adding diagonal edges does not affect the asymptotic size of the condition
number. Increasing connectivity by a constant factor only increases the sizes of boundaries and separators by a con-
stant factor, which does not affect the asymptotic bound on the condition number. On the other hand, the edge weights

γ K i Ai,()
2

d
niei

4
---------------=

δ K i Ai,() dei=

σ K i Ai,()

2
d
niei

4

 
 
 

dei()
4d f i

2
d
ni

2

 
 
 

⋅ ⋅

1 2
i⁄

--
d

2
f iei

2
2

i

ni
--------------------- d

2
n 2

i⁄()
d 1+

2
i

n 2
i⁄()

d
------------------------------------- d

2
n= = = =

σ K A,() maxiσ K i Ai,() O d
2
n()= =

κ K 1– A() O d
2
n nlog()=

Ã

σ K A,() O d
2
n()=

κ K 1– A() σ A K,() σ K A,()⋅ O logn() O d
2
n()⋅ O d

2
n nlog()= = =

O n nlog()

 78

in the mesh must be bounded by a constant for the proofs to hold.

4.7 Summary

In this chapter, we demonstrated an isomorphism between Laplacian matrices, undirected edge-weighted graphs, and
resistive networks. We used this isomorphism to prove that the convergence rate of STCG for a regular mesh ind
dimensions was , wheren is the number of nodes on a side of the mesh. While an interesting result, a
more general result, applicable to a wider variety of meshes, is desirable. In certain special cases, the results of this
chapter can be generalized, but the proofs are quite intricate.

In the next chapter, we show how the results can be generalized to a wider variety of graphs using results from multi-

commodity flow. The generalization comes at the cost of an additional factor of log3n. That is, using multicommodity

flow, we are able to prove that STCG converges as for regular meshes. For more complex graphs, the
convergence depends on a quantity known as theflux of the graph, which is a measure of the graph connectivity.

O nlogn()

O nlog
4
n()

 79

 5
Extended Analysis

This chapter extends the analytical results of the previous chapter to more general cases. The work reported here was
done jointly with Gary Miller and Bruce Maggs.

The analysis of the previous chapter is similar to analysis presented elsewhere for other techniques. For example, the
textbooks of Hageman and Young (1981) and Hackbusch (1994) use the 2D regular rectangular mesh as the model
grid for presentation of general iterative methods. In the research domain, Greenbaum,et al (1989) also used the 2D
regular rectangular mesh in their comparative study of various CG methods. However, application problems rarely
exhibit the kind of regular structure associated with the model grids of the previous chapter.

Moreover, several assumptions were implicit in the model grids of the previous chapter. Some assumptions are easily
dealt with by straightforward modifications of the proofs. The assumptions that cannot be handled by modifications
of previous results are the following:

1. irregular graph structure

Despite the utility of the rectangular mesh as a model problem, many application problems are defined on
irregular grids. Convergence proofs for support trees require embedding the reduced tree into the mesh.
For a regular mesh, this is difficult but possible to do explicitly. For an irregular mesh, explicit mapping is
so difficult as to be effectively impossible. An approach that permits implicit mapping is required.

2. unequal partitions

In the earlier proofs of convergence rate, we relied on the fact that the support tree had depth logn. This
depth ensured that the tree could support the mesh with a logn gain factor, and that the conductance of any
reduced tree edges was bounded above by (1/2)2i, wherei was the depth of the root of the subtree being
considered. However, these bounds imply that all partitioning steps produce subgraphs that are approxi-
mately equal in size. Not all separators produce equal-sized subgraphs. For example, the sphere separator
of Miller, et al (1992) may produce subgraphs of sizesn/3 and 2n/3, wheren is the number of nodes in the
original graph. The Leighton-Rao separator [Leighton and Rao (1988)] has no guarantee on the relative
size of the resultant subgraphs; the separator simply minimizes the ratio of boundary edges to internal

 80

nodes of the smallest subgraph.

Rao (1987) defined ak-ratio edge separatoras a binary edge separator for which the ratio of subgraph
sizes is (k-1)/k. From the discussion above, a 3-ratio separator is sufficient to make the convergence analy-
sis of the previous chapter fail (the conductance of the edges in the reduced tree could be too large). Many
separators (Leighton-Rao, for example) cannot even guarantee a boundedk for every step of the construc-
tion of a support tree.

3. unbounded frontier sizes

A close look at the convergence analysis of the previous chapter shows that a key factor in determining the
support of the mesh for the tree is the ratio of the size of the frontier of a subgraph to the size of the sub-
graph’s own separator. Recall that the frontier of a subgraph is the set of edges with exactly one endpoint
in the subgraph. Intuitively, the importance of this ratio can be justified. The size of the separator is a mea-
sure of the connectivity of a subgraph, and a subgraph must be sufficiently well connected to support paths
between all of the frontier edges.

The separators used in the convergence analysis were nice in the sense that they always produced sub-
graphs for which the frontier/separator ratio was bounded by a constant. For example, for a rectangular
mesh ind dimensions, the frontier/separator ratio is bounded above by 2d. In general, for arbitrary graphs
and arbitrary separators, no such bound may be possible.

In the subsections that follow, these problems will be addressed.

5.1 Irregular Graphs and Implicit Embedding

The solution to dealing with the problems of irregular graphs and explicit embeddings comes from the area of combi-
natorial optimization — specifically from results in multicommodity flow. A brief review of multicommodity flow
was presented in §2.2.2. Recall the definition of the flux of a graphG = (V,E), denoted by :

(5.1)

The flux is a measure of the connectivity of a graph. IfG is a graph withn nodes and fluxα, andS is any subset ofG
with , then the frontier ofS has at least edges; that is,S is connected to the rest ofG by at least
edges.

Now, suppose thatH andG are both graphs withn nodes and that we wish to embedH into G. Recall from §2.1, that
embeddingH into G means that for every edge inH, we must specify a path inG. Any edge inG may lie on one or
more paths of the embedding, and the number of paths that include an edgee is thecongestion of e. Thecongestion of
the embedding is the maximum congestion of any edge in G. Thedilation of the embedding is the maximum length of
any path of the embedding.

Intuitively, the congestion and dilation of an embedding is related to the flux,α(G), of the target graphG. LetG1 and
G2 be graphs with , andα(G1) < α(G2). Consider the embeddings of anothern-node graphH into
each ofG1 andG2. Any subsetS of nodes inH corresponds to subsetsS1 andS2 in G1 andG2 respectively. Since
α(G1)<α(G2), there are fewer edges out ofS1 than out ofS2, so the congestion of the embedding intoG1 is larger than
the congestion of the embedding intoG2. Similarly, letv be a vertex inH with corresponding nodesv1 andv2 in G1
andG2, respectively. Becauseα(G1) < α(G2), the number of nodes ofG1 within edge radiusr of v1 is less than the
number of nodes ofG2 within edge radiusr of v2. Thus, it takes longer paths inG1 to reach all nodes fromv1 than it
does inG2 to reach all nodes fromv2. Therefore, the dilation of the embedding ofH is larger inG1 than inG2.

α α G()=

α minS V⊆

c x y,()
x S∈ y S∈,

∑
min S S⋅()

--=

S n 2⁄≤ α S α S

G1 G2 n= =

 81

Leighton and Rao (1988) bounded the congestion and dilation of embeddings with respect to the flux of the target
graph. We repeat here the key result, Theorem 2.5 of §2.2.2.

2.5 Theorem: (Leighton-Rao)Consider any n-node bounded degree graph H, and any 1-1 embedding of the
nodes of H onto the nodes of an n-node bounded degree graph G with fluxα. The edges of H can be routed

as paths in G with congestion and dilation .

Equation 4.26 bounds support using congestion and dilation. Theorem 2.5 supplies us with bounds on congestion and
dilation,without explicitly mapping edges onto paths! This implicit mapping comes at the cost of a complexity factor
of log2n, as we show below. We can now prove the following:

5.1 Theorem: Let G = G(A) be a graph in d dimensions with unit edges corresponding to a Laplacian matrix
A. Let T be a boundary-weighted support tree constructed for G by some process of recursive bisection.
Suppose that there exists a constant k such that, for any subgraph Gi of G constructed during the parti-

tioning process with Gi0 and Gi1 obtained by partitioning Gi, the following conditions hold:

i. ;

ii. , whereβ(Gi) denotes the weight of edges on the boundary of Gi.

Then , where S is the Laplacian matrix obtained by reducing the interior nodes of T.

proof:

: Recall from the previous chapter that we determine this quantity by mapping each
edge ofG onto a path inT and examining the support. SinceT is boundary weighted, each edge
of T can be partitioned to provide unit support for each edge ofG. The maximum length path in
T has length , so the conductance of the path isO(logn). Hence,

: Let K be the reduction (Schur complement) ofT obtained by applying Gaussian elim-
ination toT, eliminating all the internal nodes and stopping at the leaves. ThenS is the Lapla-
cian matrix corresponding toK.

T is a support tree of depth , where the root is at level 0, and the leaves are at lev-
elsh-1 and h. As before, we partitionK, the reduced tree, into subgraphsK0,...,Kh-1 such that
Ki consists of all the edges inK between nodesu andw such that the highest node on the path
in T from u to w is at leveli. Similarly, we partitionG into G0,...,Gh-1 by dividing each edge of
G into logn pieces, each of equal conductance. We will mapK into G by mapping eachKi into
the correspondingGi.

Let v be an internal node ofT at leveli. Let Gv be the subgraph ofG induced byv. There are
 nodes inGv, and hence inKv, the subgraph ofKi induced byGv. The conduc-

tances of the edges ofKv are bounded above by .
Consider embeddingKv into Gv.

By the Leighton-Rao Theorem (Theorem 2.5), the dilation of the embedding is
. Since we are embedding the complete graph onnv points, rather than a

bounded-degree graph, the congestion of the embedding is .

We now have that

O
nlog

α
-----------()

α Gi0() α Gi1(), α Gi()≥

k α⋅ Gi() β Gi()≥

κ A S,() O
log

4
n

α G()
-------------()=

σ A S,()

2 logn 1+
σ A S,() O logn()=

σ S A,()

h logn=

nv n 1 2⁄()i⋅≤
β Gv() 1 2⁄()h i–⋅ kα Gv() 1 2⁄()h i–⋅≤

O lognv α Gv()⁄()
O nv log⋅ nv α Gv()⁄()

 82

Therefore,

■

This immediately yields the following.

5.2 Corollary : Suppose A is a Laplacian matrix with corresponding graph G that is a regular rectangular
mesh in d dimensions with n nodes on a side. Suppose T is a support tree for G constructed as in5.1 with
Laplacian matrix S corresponding to the graph obtained by reducing the interior nodes of T. Then,

.

proof:

It is easy to verify thatG satisfies the conditions of Theorem 5.1. Furthermore,
. Therefore,

■

Compare Corollary 5.2 with Theorem 4.19. Using Leighton-Rao, we were able to avoid explicitly embedding graphs,
yet obtained nearly the same result. Implicit embedding with Leighton-Rao essentially incurs a cost ofO(log3n),
which is a small price to pay for the additional simplicity and generality. Theorem 5.1 applies to a much larger class
of graphs than the rectangular grids considered in 4.19.

Theorem 5.1 addresses the problem of irregular graphs, but does not completely solve it. The requirement for a highly
regular graph structure has been replaced by a looser requirement that the flux of the subgraphs is monotonically
increasing with the partitioning process. For regular graphs such as rectangular meshes, this requirement can be met.
However, another requirement is that the partition is a bisection, and it is possible to construct a graph for which
bisection yields decreasing flux. Figure 5.1 illustrates a planar graph for which a bisection yields decreasing flux.

Finding a separator that will guarantee increasing flux is a difficult problem. Leighton and Rao (1988) proposed aflux
cut that would partition a graph using the separator that defined the flux. This would seem to be a good candidate for
a partitioning algorithm that would guarantee increasing flux. However, even a series of flux cuts does not provide
such a guarantee. The graph of Figure 5.1 provides a counterexample. The bisection illustrated is a flux cut, yet the
flux decreases after the cut.

For most graphs with a moderately homogeneous structure, the flux will generally increase with partitioning. Thus,
while we can deal with a larger class of graphs at this point, we still lack the analytic tools to handle all graphs.

σ S A,() kα Gv() 1 2⁄()h i– lognv

α Gv()

nv lognv⋅
α Gv()

----------------------- logn⋅ ⋅ ⋅ ⋅∼

k 1 2⁄()h i– log
3
n

α Gv()
-------------- n 1 2⁄()i⋅ ⋅ ⋅ ⋅≤

O
log

3
n

α G()
-------------()=

κ A S,() σ A S,() σ S A,()⋅ O
log

4
n

α G()
-------------()= =

κ A S,() O nlog
4
n()=

α G() O 1 n⁄()=

κ A S,() O
log

4
n

α G()
-------------() O

log
4
n

1 n⁄
-------------() O nlog

4
n()= = =

 83

5.2 Dealing with Unequal Partitions

Another unrealistic assumption that we have been making is that the partitioning process yields subgraphs of roughly
equal size. However, many of the best performing graph partitioning algorithms do not conform to this requirement.
The problem with unequal partitions is that some subtree may be relatively shallow, and yield conductances in the
Schur complement that are too large for the original graph to support.

To be able to build support trees using real separators, we need to be able to weight the tree in such a way as to yield
a common upper bound on the conductances in the reduced graph. To solve this problem, we work backwards from
the goal. Consider weighting a tree such that, when interior nodes are reduced starting with the parents of the leaves
and working upwards, all the conductances from the leaves to the lowest unreduced ancestor are proportional to the
number of leaves in the subtree. Figure 5.2 illustrates this property.

Referring to Figure 5.2, we need to determine the values ofx andy that will yield the desired conductances whenv0
andv1 are reduced. Nodev0 hass0 connections of conductanceg0, and 1 connection of conductancex. Therefore,
applying Gaussian reduction tov0 yieldss0 connections to the root of conductanceg, given by

G G1 G2

α(G) = 3/4 α(G1) = 1/2 α(G2) = 1/6

Figure 5.1:A bisection that yields decreasing flux.

x y

s0 nodes s1 nodes

v0 v1

g0 = 1/s0 g1 = 1/s1

reduce v0, v1

s0+s1 nodes

g0 g1

g

g = 1/(s0+s1)

Figure 5.2:Reducing a tree for which leaf-to-subtree-root conductances
are proportional to the number of nodes in the subtree

 84

(5.2)

where the last step follow from the fact that .

Now, setting the value forg obtained above (by reducingv0) equal to the desired value in Figure 5.2, and solving for
x yields

(5.3)

A similar derivation yields

(5.4)

That is, by weighting the tree edges by the ratio of the sizes of the corresponding subtrees, the root-to-leaf conduc-
tances are all equal and given by the reciprocal of the number of nodes in the subtree. Now we can determine conduc-
tances in the reduced tree independently of the shape of the tree.

Unfortunately, the derivation above solves one problem, but causes another. We now can easily compute conduc-
tances in the reduced tree, but have lost the capability to support the mesh with the tree. To support the mesh, the
edges of the tree must be at least as large as the weight of the boundary edges in the induced subgraph of the mesh.
Weighting withx andy as defined in (5.3) and (5.4) above means that at least one branch of the tree will have an edge
of weight less than one, which is insufficient to support the induced subgraph. Equivalently, the leaf-to-root conduc-
tances, while identical, are too small to support the mesh.

However, the general idea has merit, and can be extended to provide the answer we need. To do so, we need to define
a new separator.

5.3 Definition: Let G = (V,E) be a graph. For any subgraph H induced by a set of nodes , let β(H)
denote the weight of the edges on the boundary of H. SupposeE is an edge separator that partitions G into
subgraphs G0 and G1. Then the boundary ratio ofE , τ(E) = τ(G0,G1) is given by

(5.5)

5.4 Definition: Let G = (V,E) be a graph. An optimal boundary ratio separator forG is an edge separatorE
that minimizesτ(E). That is, ifE is any edge separator of G, then

. (5.6)

Since the value of the optimal boundary ratio separator is unique, we can unambiguously refer to the value without
reference to the separator, and denote the value byτ(G).

Now, consider constructing and weighting a support tree using optimal boundary ratio separators. We want the con-
ductances in the reduced tree to be large enough to support the mesh, which means that the conductances of the edges
in a subtreeT0 with s0 nodes should be at leastβ(T0)/s0. We achieve this if the conductances are given byτ(G0),
whereG0 is the subgraph induced byT0.

g
g0 x⋅

s0 g0⋅ x+
------------------------ x

s0 s0 x⋅+
-----------------------= =

g0 1 s0⁄=

x
s0

s1
----=

y
s1

s0
----=

S V⊆

τ E() max
β G0()

G0

β G1()

G1
--------------,

 
 
 

=

τ E() min
E :G0 G1∪ G=

max
β G0()

G0

β G1()

G1
--------------,

 
 
 

 
 
 

=

 85

Now, what should the edge weights be in the tree? The situation is illustrated in Figure 5.3.

Following the same procedure as before, reducingv0 andv1 to find the values ofx andy yields:

(5.7)

(5.8)

Note first that the values forx andy are dependent only on information from the induced subgraph. This means that
the formulas (5.7) and (5.8) can be applied when more than two subgraphs result from a partitioning. Therefore, we
are no longer limited to binary partitions. However, the values forx and y in (5.7) only make sense as edge weights if
bothx>0, andy>0. This implies that we must have bothτ0, τ1 > τ. That is,τ must be monotonically increasing with
optimal boundary ratio cuts. That this is true is shown in the next lemma. First, we need a basic proposition.

5.5 Proposition: If , and a, b, c, d are all positive, then .

proof:

■

5.6 Lemma: Let G = (V,E) be a graph, andτ(E) be the boundary ratio of an edge separatorE . Suppose that G
is recursively partitioned using optimal boundary ratio separators. Then τ is monotonically increasing
with each partitioning. That is, if Gi is a subgraph produced at some stage of the partitioning process, and

Gi is partitioned into subgraphs Gi0 and Gi1, thenτ(Gi) < τ(Gi0) andτ(Gi) < τ(Gi1).

proof:

Let H be a subgraph produced at some stage of recursive partitioning, and consider the parti-

x
s0τ0τ
τ0 τ–
-------------=

y
s1τ1τ
τ1 τ–
-------------=

x y

s0 nodes s1 nodes

v0 v1

τ0 ≥ β(G0)/s0 τ1 ≥ β(G1)/s1

reduce v0, v1

s0+s1 nodes

τ0 τ1

τ

τ ≥ β(G)/(s0+s1)

Figure 5.3:Reducing a tree for which leaf-to-subtree-root conductances
are proportional to the boundary ratio of the subtree

a
b
--- c

d
---> a

b
--- a c+

b d+
------------>

a
b
--- c

d
---> ad bc> ab ad+ ab bc+> a b d+() b a c+()> a

b
--- a c+

b d+
------------>⇒ ⇒ ⇒ ⇒

 86

tioning ofH with an optimal boundary ratio separator. Referring to Figure 5.4,H has a bound-
ary made up of boundary segments of weighta and b, and is partitioned by an optimal
boundary ratio separator of weighte0 into subgraphsA andB. Thus,

Now, suppose that one of the two subgraphs is recursively partitioned with an optimal bound-
ary ratio separator. Without loss of generality, assumeA is partitioned into subgraphsC andD.
Referring to Figure 5.5 for the definition of the terms, we have:

To complete the proof, we need to show that . We consider four cases.

1. and

By the definition of the case being considered,

.

Applying 5.5, we obtain

τ H() max
β A()

A
------------ β B()

B
------------,

 
 
 

max
a e0+

A

b e0+

B
--------------,

 
 
 

==

A B
a

b
e0

Figure 5.4:Partitioning of subgraph H with an optimal boundary ratio separator into
subgraph A and B. a, b, and e0 are the weights of boundary segments.

τ A() max
β C()

C
------------ β D()

D
------------,

 
 
 

max
c e1 e3+ +

C

d e2 e3+ +

D
--------------------------,

 
 
 

==

B b

C

D

c

d

e1

e2

e3

Figure 5.5:Partitioning of subgraph A fromFigure 5.4 with an
optimal boundary ratio separator.

τ A() τ H()≥

τ H() β A()
A

c d e1 e2+ + +

C D+
-----------------------------------= = τ A() β D()

D

d e2 e3+ +

D
--------------------------= =

τ A()
d e2 e3+ +

D
--------------------------=

c e1 e3+ +

C
-------------------------- β C()

C
------------=≥

τ A()
d e2 e3+ +

D
--------------------------=

c d e1 e2 2e3+ + + +

C D+
--

c d e1 e2+ + +

C D+
-----------------------------------≥ ≥ τ H()=

 87

2. and

By the definition of the case being considered,

.

Applying 5.5, we again obtain

3. and

We prove this by contradiction. Suppose that . Then,

.

Applying 5.5 using the first and third fractions above, we obtain

.

From this inequality and the initial conditions defining this case, we have that

That is, partitioningD from B∪C yields a smaller boundary ratio that partitioning
A=C∪D from B. This contradicts the optimality of the (A,C∪D) partition. There-
fore, we must have .

4. and

We again prove this by contradiction. Suppose that . Then,

.

Applying 5.5 using the first and third fractions above, we obtain

.

From this inequality and the initial conditions defining this case, we have that

That is, partitioningC from B∪D yields a smaller boundary ratio that partitioning
A=C∪D from B. This contradicts the optimality of the (A,C∪D) partition. There-
fore, we must have .

The four cases above prove the lemma for the partitioning illustrated in Figure 5.4 and Figure

τ H() β A()
A

c d e1 e2+ + +

C D+
-----------------------------------= = τ A() β C()

C

c e1 e3+ +

C
--------------------------= =

τ A()
c e1 e3+ +

C
--------------------------=

d e2 e3+ +

D
-------------------------- β D()

D
------------=≥

τ A()
c e1 e3+ +

C
--------------------------=

c d e1 e2 2e3+ + + +

C D+
--

c d e1 e2+ + +

C D+
-----------------------------------≥ ≥ τ H()=

τ H() β B()
B

b e1 e2+ +

B
--------------------------= = τ A() β D()

D

d e2 e3+ +

D
--------------------------= =

τ H() τ A()>

τ H()
b e1 e2+ +

B
--------------------------=

d e2 e3+ +

D

c e1 e3+ +

C
--------------------------≥>

τ H()
b e1 e2+ +

B

b c 2e1 e2 e3+ + + +

B C+
--

b c e2 e3+ + +

B C+
-----------------------------------≥>= β B C∪()

B C∪
-----------------------=

τ H() max
β D()

D
------------ β B C∪()

B C∪
-----------------------,

 
 
 

>

τ H() τ A()≤

τ H() β B()
B

b e1 e2+ +

B
--------------------------= = τ A() β C()

C

c e1 e3+ +

C
--------------------------= =

τ H() τ A()>

τ H()
b e1 e2+ +

B
--------------------------=

c e1 e3+ +

C

d e2 e3+ +

D
--------------------------≥>

τ H()
b e1 e2+ +

B

b d e1 2e2 e3+ + + +

B D+
--

b d e1 e3+ + +

B D+
-----------------------------------≥>= β B D∪()

B D∪
------------------------=

τ H() max
β C()

C
------------ β B D∪()

B D∪
------------------------,

 
 
 

>

τ H() τ A()≤

 88

5.5. These cases and the associated figures also represent the general case. For any other parti-
tioning ofH andA into two pieces, no other boundary segments are added. Instead, some seg-
ments may go to zero. However, the conditions required by Proposition 5.5 still hold, and the
lemma follows.

■

Now, we build support trees using recursive optimal boundary ratio partitioning using a two-phase process. In the first
phase, the partitioning is performed, and the tree structure is built up. In the second phase, the edge weights of the
support tree are computed level-by-level from leaves to roots: edges that connect leaf nodes are weighted with the
value of the optimal boundary ratio separator that yielded the leaf; internal edges are weighted using (5.7).

We can now prove the following theorem, which is similar to Theorem 5.1, but relaxes two restrictions: that the parti-
tioning is binary, and that the subgraphs formed by partitioning are equal in size.

5.7 Theorem: Let G = G(A) be a graph in d dimensions with unit edges corresponding to a Laplacian matrix
A. Let T be a boundary-weighted support tree constructed for G by recursive partitioning using optimal
boundary ratio separators, and weighted as discussed above. Suppose that there exists a constant k such
that, for any subgraph Gi of G constructed during the partitioning process with Gi0 and Gi1 obtained by

partitioning Gi, the following condition holds: .

Then , where S is the Laplacian matrix obtained by reducing the interior nodes of T.

proof:

: Recall from Theorem 5.1 that we determine this quantity by mapping each edge ofG
onto a path inT and examining the support. In Theorem 5.1, sinceT was boundary weighted,
each edge ofT was partitioned to provide unit support for each edge ofG. All we need to do in
this case is to show that the support of each edge inT for each edge inG is O(1).

Consider an edgee at leveli in T, which connects nodesu andv, whereu is the node on the root
side ofe. Let the subgraphs ofG induced byu andv be denotedU andV, with optimal bound-
ary ratiosτi-1, andτi, respectively. Let denote the number of nodes inV. Let w be the
weight of edgee. Thenw is given by

We need only show thatw is at least as large asβ(V), the size of the boundary ofV. LetV1,...,Vk
be the other subgraphs of U produced by the partitioning process. Then we have the following:

That is,w is larger than the size of the boundary ofV.

Sincew is larger than the boundary size andV was chosen arbitrarily, each edge ofT can pro-
vide unit support to every boundary edge in its induced subgraph. The maximum length path in
T has length , so the conductance of the path isO(logn). Hence,

: As before, letK be the reduction (Schur complement) ofT obtained by applying
Gaussian elimination toT, eliminating all the internal nodes and stopping at the leaves.S is the
Laplacian matrix corresponding toK.

α Gi0() α Gi1(), α Gi()≥

κ A S,() O
log

4
n

α G()
-------------()=

σ A S,()

V

w
V τiτi 1–

τi τi 1––
-----------------------=

w
V τiτi 1–

τi τi 1––
-----------------------=

V τiτi 1–

τi
----------------------- V τi 1– V max

β V()
V

β V1()

V1
-------------- …

β Vk()

Vk
-------------, , ,

 
 
 

V
β V()

V
----------- β V()=⋅≥⋅==>

2 logn 1+
σ A S,() O logn()=

σ S A,()

 89

T is a support tree of depth , where the root is at level 0, and the leaves are at lev-
elsh-1 and h. As before, we partitionK, the reduced tree, into subgraphsK0,...,Kh-1 such that
Ki consists of all the edges inK between nodesu andw such that the highest node on the path
in T from u to w is at leveli. Similarly, we partitionG into G0,...,Gh-1 by dividing each edge of
G into logn pieces, each of equal conductance. We will mapK into G by mapping eachKi into
the correspondingGi.

Let v be an internal node ofT at leveli. Let Gv be the subgraph ofG induced byv. There are

 nodes inGv, and hence inKv, the subgraph ofKi induced byGv. By the way in

which T was constructed, the conductances of the edges ofKv are identical, and equal to

.Consider embeddingKv into Gv.

By Leighton-Rao (Theorem 2.5), the dilation of the embedding is . Since we
are embedding the complete graph onnv points, rather than a bounded-degree graph, the con-
gestion of the embedding is .

We now have that

Therefore,

■

h logn=

nv n 1 2⁄()i⋅≤

τ G()
n

---------- α G()
n

------------=

O lognv α Gv()⁄()

O nv log⋅ nv α Gv()⁄()

σ S A,()
α G()

n

lognv

α Gv()

nv lognv⋅
α Gv()

----------------------- logn⋅ ⋅ ⋅ 
 =

log
3
n

α Gv()
--------------≤

O
log

3
n

α G()
-------------()=

κ A S,() σ A S,() σ S A,()⋅ O
log

4
n

α G()
-------------()= =

 90

page 91

6
Support Trees: Evaluation

Previous sections presented the construction of support trees, the implementation of the support tree conjugate gradi-
ent method (STCG), and the theoretical analysis of the convergence properties of STCG. The theoretical analysis
showed that the condition number for annxn mesh was using STCG, while the presentation on imple-
mentation of STCG showed that the tree structure of support tree preconditioners should lead to efficient execution.
To examine the efficiency of the implementation, and to investigate the size of the constant in the condition number,
we performed an empirical evaluation of the performance of STCG, by comparison with the performance using diag-
onal scaling (DSCG) and incomplete Cholesky preconditioning (ICCG) using a single vector processor of a Cray C-
90. This evaluation was performed in collaboration with Marco Zagha, who was responsible for the Cray implemen-
tation. Cray C-90 time was provided by the Pittsburgh Supercomputing Center. A version of this section appeared as
a CMU technical report [Gremban, Miller, and Zagha, (1994)], and in abbreviated form as a conference paper [Grem-
ban, Miller, and Zagha, (1995)].

Similar performance evaluations of other conjugate gradient (CG) methods have been performed. Greenbaum, Li, and
Chow (1989) compared the performance of four different variations of the preconditioned conjugate gradient (PCG)
methods: diagonal scaling, incomplete Cholesky, hierarchical basis function, and Neumann-Dirichlet domain decom-
position. The latter two are instances of multi-level preconditioning, and will not be discussed further here. All their
tests were performed on a prototype of the NYU Ultracomputer and varied the number of processors used from 1 to 8.
Their model problem was a time-independent version of the diffusion equation defined on the unit square with
Dirichlet boundary conditions:

(6.1a)

(6.1b)

(6.1c)

The main conclusions to be drawn from the Greenbaum,et al (1989) study are the following:

1. In serial mode, ICCG requires nearly twice as much processing time per iteration as does DSCG. How-
ever, the reduction in the number of iterations is sufficiently large (more than a factor of three for the test

O nlog
2
n()

∇ ρ x y,()∇u x y,()⋅ f x y,()=

x y,() 0 1,() 0 1,()×∈

u 0 y,() u 1 y,() u x 0,() u x 1,() 0= = = =

page 92

cases reported) that ICCG is, overall, faster than DSCG.

2. As the number of processors grows, the advantage in using ICCG decreases. In the experiments reported,
on as few as 8 processors, DSCG outperformed ICCG in terms of total execution time. The reason for this
is the difficulty in parallelizing the triangular solves required by the ICCG preconditioning (see the next
subsection below for a more complete discussion).

A similar study was performed by Heroux, Vu, and Yang (1991). They compared DSCG, ICCG, least-squares poly-
nomial preconditioning, and the multifrontal sparse Cholesky method. We shall discuss only the results for DSCG
and ICCG. All experiments were performed on a Cray Y-MP using either 1 or 8 of the vector processors. The prob-
lems were obtained by assigning artificial values to various Harwell-Boeing matrices (most of which are pattern-
only).

The main conclusions to be drawn from the Heroux,et al (1991) study are the following:

1. ICCG produced significant reductions in the number of iterations for most problems as compared to
DSCG (at times by more than a factor of 1/4). However, on even a single vector processor, the total execu-
tion time of ICCG was greater than that of DSCG. On 8 processors, the ICCG:DSCG execution time ratio
typically increased. This is consistent with the results of the Greenbaum,et al (1989) study, since a single
vector processor of a Cray Y-MP can be viewed as collection of 128 parallel processors.

2. A breakdown of the solution time indicated that the primary reason for the increased execution time of
ICCG was in the application of the preconditioner. The breakdown further showed that little improvement
was gained in applying the preconditioner using 8 vector processors. Recall that application of the precon-
ditioner requires the solution of two triangular systems. In general, it is difficult to parallelize triangular
solves (see the discussion in Chapter 2, and Heath,et al, (1990)).

The Greenbaum,et al (1989) and Heroux,et al (1991) studies both point out the need for an effective parallel precon-
ditioner — one that significantly reduces the number of iterations, but is also efficient to execute on parallel architec-
tures. In the remainder of this section, we present an evaluation of STCG that suggests that both criteria, effectiveness
and efficiency, are met by support tree preconditioners.

We used the work of Greenbaum,et al (1989) as a guide in our evaluation procedure. We took a typical problem, dis-
cretized it at various levels of resolution to obtain problems of various sizes, and compared the performance of the
three PCG methods as a function of problem size. We took the model problem used by Greenbaum,et al (1989). as
our two-dimensional model problem, but also compared the results for more complicated right hand sides. Since the
model problem used regular meshes, we also compared the performance of the preconditioners on a sequence of
irregular two-dimensional meshes. Finally, we extended the study to three dimensions, and compared results for two
different sequences of three dimensional regular meshes. All experiments were performed on a Cray C-90, using a
single vector processor.

6.1 Empirical Evaluation of STCG

Greenbaum,et al (1989) and Heroux,et al (1991) both conducted empirical evaluations of preconditioner perfor-
mance with respect to convergence rates, and execution time (per iteration and total) on multiple processors. Green-
baum,et al conducted their research on a simple analytically defined PDE, which allowed them to scale the problem
by varying the mesh size, and examine the performance as a function of problem size. Heroux et al. used various
matrices from the Harwell-Boeing set with artificial values. Several conclusions were common to both studies. In par-
ticular, both studies found that ICCG significantly improved the convergence rate on even fairly small matrices. How-
ever, because ICCG lacks significant potential parallelism, both studies also found that the advantages of ICCG
essentially vanish on vector and parallel machines.

page 93

In this section, we will demonstrate that STCG is superior to ICCG for solving large problems using serial machines,
and is easily and effectively parallelized. Consequently, STCG vastly outperforms ICCG and DSCG for solving large
problems on vector and parallel machines.

Because we are interested in the effects on performance as the scale of the problem changes, we primarily follow the
methodology used by Greenbaum,et al in their study of preconditioners. We limit ourselves, to only comparing
DSCG (diagonally scaled conjugate gradient), ICCG (incomplete Cholesky conjugate gradient), and STCG (support
tree conjugate gradient). We compare the performance of the three solution methods versus problem size with respect
to number of iterations and total running time over all iterations. In separate sections, we present the results for prob-
lems defined on a 2D regular mesh, a 2D irregular mesh, and two kinds of 3D regular meshes.

In all the results reported below, we report only the time utilized by the iterative process, and do not include the time
required for formation of the preconditioners. While total time is important, in many instances the linear system will
be solved many times, and the cost of forming the preconditioner can be amortized over the number of times the sys-
tem is solved. Additionally, we are currently investigating the performance of various partitioning methods as one
step towards constructing a version of STCG that is optimized from end to end. Currently, the code used to generate
support tree preconditioners is written in NESL, an experimental data-parallel language [Blelloch (1993)]. The vari-
ous implementations of PCG were written in FORTRAN.

We made no attempt to go beyond the obvious optimizations to improve the performance of ICCG. Numerous other
authors have reported on the effects of ordering on ICCG [see, for example, Duff and Meurant (1989)], and on paral-
lel implementations of ICCG [see Dongarra,et al (1991), van der Vorst (1989a), and van der Vorst (1989b)]. Rather
than reproduce their work, we decided to extrapolate values for an optimistic implementation of ICCG.

We applied the results of other researchers discussed above in order to determine an optimistic execution time for
ICCG. First, we assumed that a good node ordering could be computed and that solving the preconditioned system
could be performed at the same Mflop rate as the sparse matrix-vector multiply performed at each iteration. We fur-
ther assumed that the relative amount of work per iteration of ICCG was roughly twice that of DSCG. These assump-
tions yielded an optimistic time per iteration of ICCG to be a little more than twice that of DSCG. To be generous, we
assigned a time per iteration for an optimistic ICCG to be exactly twice that of DSCG. We used this factor of two in
all comparisons reported in this paper. We refer to the extrapolated optimistic ICCG as ICCG_OPT.

All results were obtained using a single processor on the Cray C-90 at the Pittsburgh Supercomputing Center.

In the discussions of the experiments that follow, all experimental results are presented as graphs. The raw results in
tabular form can be found in §6.2.

6.1.1 Two-dimensional problem on regularnxn meshes

In their work, Greenbaum,et al (1989) considered the discretization of a time-independent version of the diffusion
equation defined on the unit square with Dirichlet boundary conditions (see equations 6.1). For our experiments on
regular meshes, we used the same equation withρ(x,y) = 1.0, which reduces (6.1a) to Poisson’s equation:

(6.2)

We discretized the equation using the 5-point finite difference operator for the Laplacian, and varied the size of the
nxn mesh usingn ranging from 8 to 512 in powers of 2. In graph-theoretic terms, the resulting coefficient matrices
correspond to graphs that arenxn meshes with unit weight edges and self-loops on all boundary nodes.

The support tree preconditioners for this problem were constructed using recursive coordinate partitioning in which,
for each subset of points, the subset was split into four parts by bisecting first with respect to the x-coordinates and
then with respect to the y-coordinates. Hence, each support tree had the form of a quadtree.

∇2
u x y,() f x y,()=

page 94

6.1.1.1 Smooth input data

For our initial experiments, we used the same forcing function as Greenbaum,et al:

Our starting vector was . We used as our stopping criterion the condition reported to be superior by Arioli,et
al (1992):

(6.3)

We halted whenω2 ≤ 1.0 x 10-10.

Figure 6.1a shows the results in terms of number of iterations for convergence. The figure clearly shows that, while
ICCG outperforms STCG in terms of number of iterations required for convergence on small meshes, the curves
cross, and STCG is superior as the meshes get fairly large.

The total execution times are plotted in Figure 6.1b, with the extrapolated optimistic ICCG plotted as ICCG_OPT.
Both STCG and ICCG_OPT outperform DSCG in total time, although STCG is the fastest method overall. Moreover,
as the problem size increases, the difference between STCG and ICCG_OPT is increasing.

6.1.1.2 Random input

The forcing function used in the previous subsection was very smooth, and the problem converged to the solution
fairly quickly. In a second set of experiments, we selected a more difficult right hand side. We used a random vector
in which each component was independently selected from the uniform distribution on [0,1].

f x y,() 2x 1 x–()– 2y 1 y–()–=

x0 0=

ω2

b A x̂⋅– ∞
A ∞ x̂ 1⋅ b ∞+

--=

0

50

100

150

200

250

300

350

Ite
ra

tio
ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

Figure 6.1:Results for 2D Regular Meshes, Smooth Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

a) b)

page 95

We used the same stopping criterion as before, and halted when≤ 1.0 x 10-10. Our starting vector was again

.

Figure 6.2a shows the results in terms of number of iterations for convergence. In this set of experiments, conver-
gence required as many as three times the number of iterations for the same size mesh as did the smooth input, and
differences between the preconditioners became more pronounced. STCG started out performing similarly to ICCG,
but improved rapidly, outperforming ICCG on the largest meshes.

Figure 6.2b shows total time for the iterative process. As above, we also show the results for an extrapolated optimis-
tic ICCG_OPT. STCG clearly had the best total execution time. Moreover, the difference between STCG and the
other methods increased with increasing mesh size.

6.1.1.3 Impulse function input

In a third set of experiments, we selected an additional difficult right hand side. We used an impulse function forb,
defined byb0 = 1.0, bi = 0.0 for i > 0. In our node ordering, node 0 is the lower left hand corner of the mesh.

We used the same stopping criterion as before, and halted when≤ 1.0 x 10-10. Our starting vector was again

.

Figure 6.3a shows the results in terms of number of iterations for convergence. In this set of experiments, conver-
gence required even more iterations for the same size mesh as did the random input, and differences between the pre-
conditioners became even more pronounced. Again, STCG started out with performance similar to that of ICCG, but
significantly outperformed ICCG on the largest meshes

Figure 6.3b shows total time for the iterative process. Since STCG requires less work per iteration than does
ICCG_OPT, and because STCG is highly vectorizable, STCG was the clear winner in terms of execution time.

ω2

x0 0=

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

50

100

150

200

250

300

350

400

Ite
ra

tio
ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

Figure 6.2:Results for 2D Regular Meshes, Random Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

a) b)

ω2

x0 0=

page 96

6.1.2 Two-dimensional problem on irregular meshes

The results for the PDE on a 2D regular mesh are one indication of the utility of STCG. Most application problems
are not defined on regular meshes, however, so it is worthwhile to investigate the relative performance of STCG on an
irregular case. We were fortunate to have available to us a nested sequence of meshes developed for an application
problem — the computation of stress on a two-dimensional cracked plate. There are 9 meshes in all, with 10x2i nodes
in each mesh,i = 0,1,2,3,4,5,6,8,9,10. (The data for the mesh withi = 7 was unavailable.) Each mesh is a refinement
of the next smaller (coarser) mesh. This sequence enabled us to investigate the performance of STCG as a function of
grid size for an irregular mesh.

Figure 6.4 illustrates the coarsest and finest of the meshes. The crack in the plate runs from the center to the left side,
parallel to the x-axis. The crack was defined by creating two nodes for each visible mesh point; the two nodes are not
connected to each other; one connects only to nodes above the crack, while the other connects only to nodes below
the crack.

The crack data consisted of pattern-only information and node coordinates. We used the pattern information to con-
struct non-singular coefficient matrices by augmenting the Laplacian matrices of the meshes with additional diagonal
weight added to the nodes corresponding to the four corners. Mesh edges were given unit weights.

The support tree preconditioners for this set of problems had the form of quadtrees and were constructed using recur-
sive coordinate partitioning.

We performed two sets of experiments. The first was conducted with a random vector (values selected uniformly
between 0.0 and 1.0) as the input. The second was conducted with an impulse function as input (b0 = 1.0,bi = 0.0, for
i > 0). For all the crack meshes, node 0 is the node at the lower left of the mesh.

For the experiments done with the crack meshes, we again usedω2 as the stopping criterion, and halted whenω2 ≤
1.0 x 10-10. Our starting vector was again .

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

30000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

100

200

300

400

500

600

700

800

900

1000
Ite

ra
tio

ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

a) b)

Figure 6.3:Results for 2D Regular Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

di 1.0=

x0 0=

page 97

Figure 6.5 illustrates the results of the experiments using the random vector as input. Figure 6.5a illustrates the num-
ber of iterations needed to converge to the specified tolerance as a function of the mesh size. The horizontal axis
(mesh size) is plotted logarithmically. Both ICCG and STCG converge more rapidly than DSCG. While ICCG ini-
tially outperforms STCG, STCG converges more rapidly on the larger meshes. Figure 6.5b illustrates the total time
taken to converge as a function of the mesh size. Again, we obtained a curve for ICCG_OPT by assuming that such an
implementation would require only twice the time per iteration of DSCG. However, even this optimistic ICCG per-
formed no better in overall time than DSCG; the two curves track each other almost perfectly. The advantage of
STCG over the other methods is apparent, and the advantage is increasing with increasing mesh size. The largest
crack mesh is only 10240 nodes, which is quite small for many applications.

Figure 6.6 illustrates the results of the experiments using the impulse function as input. Figure 6.6a illustrates the
number of iterations needed to converge, while Figure 6.6b illustrates the total time taken for the iterative process.
Again we see that STCG started off requiring more iterations than ICCG, but does not increase as fast as ICCG. On
the largest meshes, STCG required fewer iterations than did ICCG. Again, because of the vectorizable nature of the
support tree preconditioners, STCG was the clear winner in terms of execution time.

a) b)

Figure 6.4:Crack Meshes.
a) crack00 with 10 nodes.

b) crack10 with 10240 nodes.

page 98

0

50

100

150

200

250
Ite

ra
tio

ns

10 40 160 640 2560 10240
Mesh Size

DSCG

STCG

ICCG

Figure 6.5:Results on 2D Irregular Meshes, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

a)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

to
ta

l t
im

e
(m

se
c)

10 40 160 640 2560 10240
Mesh Size

ICCG

DSCG

STCG

ICCG-OPT

b)

0

50

100

150

200

250

300

350

Ite
ra

tio
ns

10 40 160 640 2560 10240
Mesh Size

DSCG

STCG

ICCGa)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

to
ta

l t
im

e
(m

se
c)

10 40 160 640 2560 10240
Mesh Size

ICCG

DSCG

STCG

ICCG-OPT

b)

Figure 6.6:Results on 2D Irregular Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

page 99

6.1.3 Three-Dimensional problem on regularnxnxn meshes

In Chapter 3, we showed that the advantage of STCG in terms of work required per iteration should increase with
increasing graph dimensionality. To investigate this empirically, we performed a number of experiments in three
dimensions using a regularnxnxn mesh.

In this set of experiments, we extended the two-dimensional problem from section 6.1.1 into three dimensions. That
is, we considered the discretization of Poisson’s equation defined on the unit cube with Dirichlet boundary condi-
tions:

(6.4a)

(6.4b)

(6.4c)

We discretized the equation using the 7-point finite difference operator for the Laplacian, and varied the size of the
nxnxn mesh usingn ranging from 8 to 512 in powers of 2. In graph-theoretic terms, the resulting coefficient matrices
correspond to graphs that arenxnxn meshes with unit weight edges and self-loops on all boundary nodes.

The support tree preconditioners for this set of problems had the form of oct-trees and were constructed using recur-
sive coordinate partitioning.

We ran two sets of experiments. The first was conducted with random vectors (values selected uniformly between 0.0
and 1.0) as the input. The second was conducted with impulse functions as input (b0 = 1.0,bi = 0.0, fori > 0). For the
nxnxn mesh, node 0 is a corner node.

For these experiments, we again usedω2 as the stopping criterion, and halted whenω2 ≤ 1.0 x 10-10. Our starting vec-

tor was .

Figure 6.7 illustrates the results of the experiments conducted with random vectors as input. Figure 6.7a illustrates the
number of iterations required for convergence, while Figure 6.7b illustrates the total execution time required for the
iterative process.

Figure 6.8 illustrates the results of the experiments conducted with impulse functions as input. Figure 6.8a illustrates
the number of iterations required for convergence, while Figure 6.8b illustrates the total execution time required for
the iterative process.

For both random vectors and impulse functions, the problem converged extremely quickly, so it is difficult to draw
definite conclusions. As for previous problems, in both of thenxnxn cases, STCG began by requiring more iterations
for convergence than did ICCG. As observed in the previous problems, the rate of increase in the number of iterations
for STCG appears to be less than that of ICCG. In terms of execution time, STCG is superior to STCG and roughly
the same as ICCG_OPT.

∇2u x y z, ,() f x y z, ,()=

x y z, ,() 0 1,() 0 1,()× 0 1,()×∈

u 0 y z, ,() u 1 y z, ,() u x 0 z, ,() u x 1 z, ,() u x y 0, ,() u x y 1, ,() 0= = = = = =

x0 0=

page 100

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64
cuberoot(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

10

20

30

40

50

60

70

80
Ite

ra
tio

ns

8 16 32 64
cuberoot(Mesh Size)

DSCG

STCG

ICCG

a) b)

Figure 6.7:Results on 3D nxnxn Meshes, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

0

20

40

60

80

100

120

140

160

Ite
ra

tio
ns

8 16 32 64
cuberoot(Mesh Size)

DSCG

STCG

ICCG

a)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64
cuberoot(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT
b)

Figure 6.8:Results on 3D nxnxn Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

page 101

6.1.4 Three-Dimensional problem on regular 8x8xn meshes

We stated in Chapter 3 that convergence is a function of the graph diameter. In three dimensions, the volume of a cube
increases so rapidly with respect to diameter that it is difficult to construct a cubic 3D problem with a diameter large
enough to require many iterations. Therefore, we defined an alternate 3D problem that would allow us to investigate
convergence as a function of the graph diameter.

In this set of experiments, we modified the three-dimensional problem of equation (6.4) by extending it along one of
the three dimensions. That is, we considered the discretization of Poisson’s equation defined on a box:

(6.5a)

(6.5b)

Furthermore, we used mixed boundary conditions: Dirichlet conditions on the long ends of the box, and Neumann
conditions on the sides:

(6.5c)

(6.5e)

(6.5f)

For our experiments, we discretized the equation using the 7-point finite difference operator for the Laplacian, and
varied the size of the 8x8xn mesh usingn ranging from 8 to 1024 in powers of 2. In graph-theoretic terms, the result-
ing coefficient matrices correspond to graphs that are 8x8xn meshes with unit weight edges and self-loops on all
boundary nodes of the 8x8 faces. The support tree preconditioners for this set of problems had the form of binary
trees and were constructed using recursive coordinate partitioning.

We ran two sets of experiments. The first was conducted with random vectors (values selected uniformly between 0.0
and 1.0) as the input. The second was conducted with impulse functions as input (b0 = 1.0,bi = 0.0, fori > 0). For the
8x8xn mesh, node 0 is a corner node. For these experiments, we again usedω2 as the stopping criterion, and halted

whenω2 ≤ 1.0 x 10-10. Our starting vector was .

Figure 6.9 illustrates the results of the experiments with random vectors as inputs. Figure 6.9a illustrates iterations
required to converge, while Figure 6.9b illustrates total time required for the iterative process.

Figure 6.10 illustrates the results of the experiments with impulse functions as inputs. Figure 6.10a illustrates itera-
tions required to converge, while Figure 6.10b illustrates total time required for the iterative process.

The results of this set of experiments are particularly interesting. The large diameters of the graphs and the Neumann
boundary conditions on the sides of the boxes led to problems that required very many iterations to converge. The dif-
ferences between the preconditioners is now very apparent. While in all cases, STCG required more iterations than
ICCG for small meshes, the number of iterations required for STCG is almost constant with respect to mesh diameter,
while that of ICCG is clearly increasing. By the time the mesh diameter is over 512, STCG requires fewer than half
the number of iterations of ICCG.

The difference in execution time is even more dramatic. As stated previously, STCG vectorizes extremely well. For
problems of the size considered here, the vector lengths at the lowest level of the support tree range from thousands to
hundreds of thousands.

∇2u x y z, ,() f x y z, ,()=

x y z, ,() 0 1,() 0 1,()× 0 8n,()×∈

u x y 0, ,() u x y 8n, ,() 0= =

x∂
∂

u x 0 z, ,()
x∂

∂
u x 1 z, ,() 0= =

y∂
∂

u 0 y z, ,()
y∂

∂
u 1 y z, ,() 0= =

x0 0=

page 102

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64 128 256 512 1024
Mesh Length

ICCG

DSCG

STCG

ICCG-OPT

0

100

200

300

400

500

600

700

800

900
Ite

ra
tio

ns

8 16 32 64 128 256 512 1024
Mesh Length

DSCG

STCG

ICCG

a) b)

Figure 6.9:Results on 3D 8x8xn Mesh, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

0

200

400

600

800

1000

1200

1400

1600

1800

Ite
ra

tio
ns

8 16 32 64 128 256 512 1024
Mesh Length

DSCG

STCG

ICCG

a)

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

to
ta

l t
im

e
(m

se
c)

8 16 32 64 128 256 512 1024
Mesh Length

ICCG

DSCG

STCG

ICCG-OPT

b)

Figure 6.10:Results on 3D 8x8xn Mesh, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

page 103

6.2 Tabulated Experimental Results

6.2.1 Results from 2D regular meshes

Table 6.1:Results of Experiments on 2D Square Meshes, Smooth Input

STCG

10
19
28
37
48
64
79

STCG

.39

.41

.54
1.03
2.90
8.91

37.73

STCG

3.9
7.8

15.1
38.0

139.0
570.4

2981.0

ICCG

9
13
21
29
40
56

101

ICCG

.43

.88
2.61
9.56

37.00
144.94
578.69

ICCG

3.9
11.4
54.8

280.0
1480.0
8116.7

58447.6

DSCG

2.9
6.2

14.4
48.0

222.0
1002.5
8164.9

DSCG

.29

.28

.36

.66
1.83
5.63

24.30

DSCG

10
22
40
73

121
178
336

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)

Table 6.2:Results of Experiments on 2D Square Meshes, Random Input

STCG

18
25
33
41
54
66
81

STCG

.35

.38

.50

.94
2.76
8.96

36.42

STCG

6.3
9.4

16.4
38.7

148.9
591.1

2950.0

ICCG

11
16
24
37
55
77

106

ICCG

.43

.86
2.60
9.44

36.73
144.95
578.78

ICCG

4.7
13.7
62.5

349.1
2020.4

11161.1
61350.7

DSCG

.26

.27

.34

.61
1.68
5.67

24.54

DSCG

25
44
76

123
184
257
357

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)

DSCG

6.6
11.8
25.8
75.3

308.9
1456.4
8761.8

Table 6.3:Results of Experiments on 2D Square Meshes, Impulse Input

STCG

20
28
40
54
74

101
125

STCG

.35

.38

.49

.87
2.66
8.50

35.58

STCG

6.9
10.5
19.4
46.9

195.8
858.1

4447.0

ICCG

11
17
29
54
98

178
300

ICCG

.43

.86
2.58
9.38

36.28
143.55
572.17

ICCG

4.7
14.6
74.7

506.3
3555.0

25551.7
171649.9

DSCG

7.0
14.2
32.2
99.2

537.6
3259.2

23266.5

DSCG

.26

.27

.34

.56
1.65
5.62

23.50

DSCG

27
53
96

176
326
580
990

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)

page 104

6.2.2 Results from 2D irregular meshes

STCG

10
16
22
29
39
48
52
77
88
98

STCG

.33

.34

.35

.35

.36

.40

.47

.76
1.26
2.02

STCG

3.3
5.5
7.6

10.1
14.2
19.3
24.2
58.8

110.9
198.0

ICCG

7
10
13
15
22
30
41
73
94

109

ICCG

.31

.33

.37

.44

.59

.89
1.50
4.97
9.46

18.35

ICCG

2.2
3.3
4.8
6.6

12.9
26.7
61.6

363.1
889.2

1999.9

DSCG

2.7
4.7
6.4
8.9

11.7
16.7
26.8
77.8

131.7
298.1

DSCG

.27

.28

.28

.26

.26

.28

.32

.53

.84
1.45

DSCG

10
17
23
34
45
60
83

148
156
206

n

10
20
40
80

160
320
640

2560
5120

10240

size iterations time/iteration (msecs) total time (msecs)

Table 6.4:Results of Experiments on 2D Irregular Meshes, Random Input.

Table 6.5:Results of Experiments on 2D Irregular Meshes, Impulse Input.

STCG

10
16
23
31
39
49
59
87
95

112

STCG

.33

.35

.34

.35

.37

.40

.47

.77
1.21
1.99

STCG

3.3
5.6
7.9

11.0
14.3
19.7
27.7
66.9

115.1
222.9

ICCG

7
10
13
17
24
33
48
93

130
174

ICCG

.31

.33

.36

.44

.58

.89
1.48
4.93
9.40

18.27

ICCG

2.2
3.3
4.7
7.4

14.0
29.4
71.2

458.3
1222.2
3178.4

DSCG

2.7
4.7
7.1
9.3

13.4
20.0
32.1
95.4

209.4
467.8

DSCG

.27

.28

.27

.26

.26

.28

.32

.53

.82
1.38

DSCG

10
17
26
36
51
72

101
181
255
338

n

10
20
40
80

160
320
640

2560
5120

10240

size iterations time/iteration (msecs) total time (msecs)

page 105

6.2.3 Results from 3D regular meshes (nxnxn)

STCG

20
26
29
33

STCG

.45
1.07
6.28

20.48

STCG

8.9
27.7

182.1
675.9

ICCG

11
15
23
23

ICCG

1.54
10.13
78.23

260.41

ICCG

16.9
152.0

1799.3
5989.4

DSCG

9.0
35.0

276.7
985.3

DSCG

.32

.78
4.46

13.88

DSCG

28
45
62
71

n

8
16
32
48

size iterations time/iteration (msecs) total time (msecs)

Table 6.6:Results of Experiments on nxnxn Regular Meshes, Random Input.

Table 6.7:Results of Experiments on nxnxn Regular Meshes, Impulse Input.

STCG

23
34
44
54

STCG

.43
1.05
5.53

18.69

STCG

9.8
35.6

243.1
1009.1

ICCG

12
20
34
45

ICCG

1.53
9.94

76.76
251.93

ICCG

18.3
198.8

2609.8
11336.8

DSCG

10.7
45.0

449.4
1818.4

DSCG

.31

.74
4.20

12.62

DSCG

34
61

107
144

n

8
16
32
48

size iterations time/iteration (msecs) total time (msecs)

page 106

6.2.4 Results from 3D regular meshes (8x8xn)

Table 6.8:Results of Experiments on 8x8xn Regular Meshes, Random Input.

STCG

29
31
29
32
38
53
72
90

STCG

.48

.58

.80
1.13
1.98
3.24
5.91

11.57

STCG

13.8
18.0
23.2
36.3
75.2

171.9
425.2

1041.7

ICCG

15
18
24
38
66
94

138
261

ICCG

1.49
2.68
5.01
9.54

18.66
37.67
72.95

145.01

ICCG

22.3
48.2

120.3
362.7

1231.8
3446.7

10066.6
37848.2

DSCG

11.5
19.2
35.4
76.3

214.6
580.9

1591.6
5741.8

DSCG

.30

.38

.49

.66
1.15
1.99
3.74
7.05

DSCG

38
51
72

115
186
292
426
815

n

8
16
32
64

128
256
512

1024

size iterations time/iteration (msecs) total time (msecs)

Table 6.9:Results of Experiments on 8x8xn Regular Meshes, Impulse Input.

STCG

35
39
41
45
54
63
83

111

STCG

.46

.57

.77
1.06
1.88
3.31
5.95

11.32

STCG

16.2
22.2
31.7
47.6

101.7
208.7
493.9

1256.7

ICCG

16
22
32
47
79

147
282
553

ICCG

1.48
2.65
4.94
9.47

18.57
36.58
72.62

144.32

ICCG

23.6
58.4

158.2
445.2

1467.1
5377.3

20479.8
79811.1

DSCG

14.8
23.2
46.7

100.7
285.3
881.3

3230.7
11935.6

DSCG

.30

.36

.48

.69
1.16
1.95
3.71
6.96

DSCG

49
64
98

145
246
453
870

1714

n

8
16
32
64

128
256
512

1024

size iterations time/iteration (msecs) total time (msecs)

page 107

6.3 Summary and Discussion

In this chapter, we presented an evaluation of support tree preconditioners. Through numerical experiments run on a
single vector processor of a Cray C-90, we have demonstrated that on both irregular and regular meshes:

• the performance of STCG, in terms of iterations to converge, meets or exceeds the performance of ICCG,
which in turn, outperforms DSCG.

In all but one of the sets of experiments reported here, STCG began to outperform ICCG on fairly small
matrices (2000 to 5000 nodes), with the difference in performance increasing with the size of the problem.
In the experiments in which STCG did not outperform ICCG in terms of convergence rate, convergence
was extremely rapid, so acceleration from preconditioning had a minimal effect, and STCG exhibited per-
formance very close to that of ICCG. On problems that take many iterations to converge, STCG requires
far fewer iterations than does ICCG.

• in terms of execution time, STCG outperforms both ICCG and DSCG on scalar processors, and far outper-
forms them on vector processors.

On a scalar machine, execution time is the product of the number of iterations and the time/work per iter-
ation. In comparison to DSCG, our analysis showed that STCG requires slightly less than twice the
amount of work per iteration, and our experiments showed that STCG requires fewer than half the number
of iterations. Hence, STCG is preferable to DSCG for large problems on a scalar processor. Analysis also
showed that STCG requires less work per iteration than ICCG, and our experiments showed that, in most
cases, STCG requires fewer iterations. Therefore, STCG is also preferable to ICCG on scalar processors.

All our experiments were performed on a single vector processor of a Cray C-90. Without exception, for
large meshes STCG outperformed both DSCG and ICCG, often by very wide margins.The reason for the
performance advantage is that the STCG preconditioner has a tree structure, which allows all nodes at a
given level to be evaluated in parallel.

STCG preconditioners can be easily and efficiently level scheduled by leaf raking. The lower triangular
matrices that appear in ICCG will not, in general, allow as many nodes to be evaluated in parallel as can be
evaluated in STCG. For example, in the case of square meshes, moderate parallel efficiency can be
obtained by ordering the nodes so that the incomplete Cholesky preconditioner is evaluated along diago-
nals of the mesh [Dongarra,et al (1991), Golub and Ortega (1993), van der Vorst (1989b)]; for annxn
mesh, this ordering requires 2n parallel steps with an average ofn/2 nodes evaluated in parallel at each
step. In contrast, the STCG preconditioner for annxn mesh yields parallel steps with an average
of n2/logn nodes evaluated at each step.

For irregular graphs, the ordering problem is even more complicated. Figure 6.11 shows the graph struc-
ture of the incomplete Cholesky preconditioner for the fifth mesh in the crack series (160 nodes). An
examination of the graph shows that it would be difficult to determine an optimal evaluation order for level
scheduling. In contrast, Figure 6.12 shows the graph structure of the support tree preconditioner for the
same graph. The simplicity of the support tree structure is apparent. Moreover, we believe that the regular
structure of the support tree also makes implementation easier on distributed memory machines by reduc-
ing the amount of communication and synchronization required.

Additional parallelism of STCG is possible due to the tree structure of the STCG preconditioner — sepa-
rate subtrees may be evaluated in parallel on multiple vector processors.

.

2 nlog

page 108

Figure 6.11:The graph structure of the incomplete Cholesky preconditioner for the 160
node crack mesh.

Figure 6.12:The graph structure of the support tree preconditioner for the 160 node crack mesh.

page 109

7
Extensions and Applications of Combinatorial Analysis

Chapters 3-6 of this thesis presented a description of a new class of combinatorial preconditioners. The theoretical
properties of these preconditioners were analyzed with a collection of tools based on the equivalence of Laplacian
matrices, resistive networks, and edge-weighted, undirected graphs. In this chapter, we show how the same set of
tools can be used to extend the domain of support trees to all symmetric diagonally dominant matrices. We also show
how the techniques used to analyze support tree performance can be used in the analysis of a standard problem in lin-
ear algebra.

7.1 Symmetric and Diagonally Dominant Matrices

In the preceding chapters, support trees were defined and analyzed for coefficient matrices that were symmetric, diag-
onally dominant, and had non-positive off-diagonal elements. There is a very straightforward way to extend support
trees to handleall symmetric and diagonally dominant matrices.

Consider the case of real symmetric diagonally dominant matrices with some positive off-diagonal elements. One of
the simplest examples is

(7.1)

Writing out the equation for the first component of yields . That is,i1 looks like
the current resulting from a resistive connection between noden1 and thenegative of noden2! Therefore, we get the
should get the same result fori1 andi2 usingM as we would from the matrix of a network twice as large in which
noden1 is connected to a node n2′ andn2 is connected ton1′, where u1′ = -u1 andu2′ = -u2. The corresponding linear
system is shown below.

M 1 1

1 1
=

i Mu= i1 u1 u2+ u1 u2–()–= =

page 110

(7.2)

A positive off-diagonal in some sense represents a negative conductance, but can be realized in a network of twice the
size using only positive conductances. The networks corresponding to the matrices in (7.1) and (7.2) are illustrated in
Figure 7.1.

We now formalize these observations. First, we expand the notion of a Laplacian matrix to that of ageneralized
Laplacian, which may include positive off-diagonals:

7.1 Definition: (generalized Laplacian)L is a generalized Laplacian matrix (generalized Laplacian) if L is
real, symmetric, and diagonally dominant.

Next, we define the notion of anexpanded matrix, which formalizes the relationship between generalized Laplacian
matrices like that in (7.1), and the larger related Laplacian matrices like that in (7.2).

7.2 Definition: (expanded matrix)Let L be an nxn generalized Laplacian matrix. Then L = N + P, where N is
a Laplacian matrix and P is symmetric and diagonally dominant with non-negative off-diagonals. Let M =
M1 + M2 be a 2nx2n matrix constructed as follows:

• M1(i,j) = M1(n+i,n+j) = N(i,j), 1 ≤ i,j ≤ n

• if P(i,j) = P(j,i) ≠ 0, then

• M2(i,i) = M2(n+i,n+i) = P(i,i);

• M2(j,j) = M2(n+j,n+j) = P(j,j);

• M2(i,n+j) = M2(n+j,i) = -P(i,j);

• M2(j,n+i) = M2(n+i,j) = -P(j,i).

M is a 2nx2n Laplacian matrix; we call M the expanded matrix, or expansion, of L.

Note that, ifM is a standard Laplacian, then the expansion ofM is simply .

i1
i2
i1–

i2–

1 0 0 1–

0 1 1– 0

0 1– 1 0

1– 0 0 1

u1

u2

u1–

u2–

=

v1 v2
c12= -1

1 1

1 1

v2

-v2

v1

-v1

c12′ = 1 c1′2 = 1

1 0 0 1–

0 1 1– 0

0 1– 1 0

1– 0 0 1

Figure 7.1:Resistive Networks with Negative Conductance.
a) A simple network with negative conductance.

b) The corresponding network with positive conductances.

M L 0

0 L
=

page 111

7.3 Lemma:Let L be an nxn generalized Laplacian matrix. Let M be the expansion of L. Let u be any vector of

applied voltages , and let , , and .

Then, for all , we have .

proof:

Let k ∈ {1,...,n}. From the construction ofM, we have thatL can be written asL = N + P, where
N is a Laplacian andP is symmetric and diagonally dominant with non-negative off-diagonals.
Let R = {r1,...,rm} be the set of non-zero indices of thekth row ofN, andS = {s1,...sq} be the
set of non-zero indices of the kth row ofP. Assume thatr1 ands1 are the indices of the diagonal
elements:r1 = k = s1. Then,

and,

And a similar derivation showsik = -jk+n.

■

The definitions and lemma above show that a generalized Laplacian formally corresponds to a Laplacian of twice the
size, the expansion. Since the expansion is a Laplacian, all the tools developed in the previous chapters can now be
applied. We can now construct a support tree for any symmetric diagonally dominant matrix L by first constructing
the expansionM, and then using the graph structure ofM to construct a support tree forM. STCG can then be applied
to the linear system defined byM, which is only a constant factor larger than that defined byL.

It may be the case that whileL is non-singular with some positive off-diagonals, the graph corresponding toM con-
sists of two unconnected components. This can be easily detected by running a connected components algorithm on
the graph of M. Such algorithms have run times of orderO(mlogn), wherem is the number of edges andn is the num-
ber of nodes. Since we are dealing with sparse graphs,m is O(n), so connectivity can be determined in nearly linear
time.

Let L be a generalized Laplacian with expansionM. It may be that the graph topology underlyingL contains informa-
tion that may be used to construct the support tree forM. This is an area of research that we have not pursued.

7.2 Bounding the Largest Eigenvalue

In this section, we show how the theoretical tools developed for support tree analysis can be applied to a standard
problem in linear algebra — bounding the eigenvalues of a matrix. This is a problem of both theoretical and practical
interest. For example, given a symmetric positive definite matrixA, for polynomial preconditioning and for Cheby-
shev acceleration, it is necessary to know an intervalIλ = [a,b] which contains the spectrum ofA, λ(A). [Ashby
(1987), Hageman and Young (1981)].

u u1 … un
t

= w u1 … un u1–() … un–()
t

= i Lu= j Mw=

k 1…n{ }∈ ik jk jn k+–= =

ik N k rl,()ur l
R
∑ P k st,()ust

S
∑+=

jk F k r l,()wr l
R
∑ F k st n+,()

S
∑+= wst

N k rl,()ur l
R
∑ P– k st,() ust

–() P k s1,()us1
+

S\s1

∑+=

N k rl,()ur l
R
∑ P k st,()ust

S
∑+=

ik=

page 112

A common method for finding an upper bound on the eigenvalues is the Gerschgorin Circle Theorem. Following the
treatment of Golub and Ortega (1993), letA be a square matrix of ordern, and define

,

,

Then theΛi are disks in the complex plane centered ataii with radiusr i.

7.4 Gerschgorin’s Theorem:All the eigenvalues of A lie in the union of the disksΛ1,...,Λn. Moreover, if S is a

union of m disks such that S is disjoint from all the other disks, then S contains exactly m eigenvalues of A
(counting multiplicities).

Thus, using Gerschgorin’s Theorem, the magnitude ofλmax, the largest eigenvalue ofA, must be less than or equal to
the furthest extent of any of the Gerschgorin disks. That is, for a matrix with all real eigenvalues:

Gerschgorin’s Theorem provides a quick and easy way to estimate eigenvalues. For a real symmetric matrix, simply
compute the sum of the absolute values of all the elements on a row/column of the matrix; the largest sum is an upper
bound onλmax.

The combinatorial techniques developed for the analysis of support tree preconditioners can be used to quickly sup-
ply a bound on the maximum eigenvalue for real symmetric non-diagonal matrices that can be tighter than that
obtained using Gerschgorin’s Theorem. In particular, Lemma 7.7 will show that for matrices corresponding to con-
nected graphs, the method is to simply find the largest sum of two diagonal elements that are connected by a non-zero
off-diagonal; that is,

. (7.3)

For many graphs, this method often provides a tighter bound than does Gerschgorin’s Theorem. A similar result for
all Laplacian matrices is presented in Theorem 7.8.

To illustrate the application of Gerschgorin’s Theorem and our combinatorial result, several example matrices are
presented in Figure 7.2. All of the eigenvalues were computed using Matlab [MathWorks (1992)].

• The Dirichlet matrix of order 4 shown at the top of the figure is derived from a finite difference discretiza-
tion of Laplace’s equation in one dimension with Dirichlet boundary conditions: the actual value ofλmax
is 3.6180, while the Gerschgorin and combinatorial bounds are both 4.0.

• The Poisson matrix of order 9 shown at the center of the figure is the Laplacian matrix of a 3x3 mesh: the
actual value ofλmax is 6.0, the Gerschgorin bound is 8.0, and the combinatorial bound is 7.0. For the
Dirichlet and Poisson matrices, the Gerschgorin bounds are quite good, and the combinatorial bound pro-
vides little improvement.

• The Laplacian matrix of a “wagon wheel” graph of order 9, is shown at the bottom of the figure: the actual
value ofλmax is 9.0, the Gerschgorin bound is 16.0, and the combinatorial bound is 11.0.

The theory behind this new method of combinatorial eigenvalue estimation is only the newest of many results that
combine the seemingly different areas of matrix theory, graph theory, and circuit theory. Fiedler (1973) was one of the
first to establish an interesting relationship between a graph and its corresponding connectivity matrix. He showed
that λ2, the second-smallest eigenvalue of the connectivity matrix of a graph, is non-zero if and only if the graph is

r i aij
j i≠
∑= i 1 … n, ,=

Λi z: z aii– r i≤{ }= i 1 … n, ,=

λmax maxi aii r i+{ }≤

λmax max ai i a j j+ :ai j 0≠{ }≤

page 113

connected; he calledλ2 the algebraic connectivity of the graph. Pothen,et al (1990), and Hendrickson and Leland
(1992) are among the proponents of thespectralapproach to graph partitioning, which uses the eigenvectors of the
connectivity matrix of a graph to partition the graph. Chandra,et al (1989), and Doyle and Snell (1984) discuss the
relationship between the resistance of the electrical network corresponding to a graph and properties of random walks
on the graphs.

Our theory builds primarily on these latter results dealing with the electrical resistance of a graph. In particular, we
show that the largest eigenvalue of a matrix is bounded by the gain factor needed for one type of circuit to conduct the
same amount of current as the circuit corresponding to the matrix.

Sinceλ(A) = λ(A,I), we can apply the same methods used for bounding finite generalized eigenvalues of Laplacian

W

3 1– 0 0 0 0 0 1– 1–

1– 3 1– 0 0 0 0 0 1–

0 1– 3 1– 0 0 0 0 1–

0 0 1– 3 1– 0 0 0 1–

0 0 0 1– 3 1– 0 0 1–

0 0 0 0 1– 3 1– 0 1–

0 0 0 0 0 1– 3 1– 1–

1– 0 0 0 0 0 1– 3 1–

1– 1– 1– 1– 1– 1– 1– 1– 8

=

D

2 1– 0 0

1– 2 1– 0

0 1– 2 1–

0 0 1– 2

=

Dirichlet matrix of order 4.
λmax = 3.6180, Gerschgorin bound = 4.0, combinatorial bound = 4.0

P

2 1– 0 1– 0 0 0 0 0

1– 3 1– 0 1– 0 0 0 0

0 1– 2 0 0 1– 0 0 0

1– 0 0 3 1– 0 1– 0 0

0 1– 0 1– 4 1– 0 1– 0

0 0 1– 0 1– 3 0 0 1–

0 0 0 1– 0 0 2 1– 0

0 0 0 0 1– 0 1– 3 1–

0 0 0 0 0 1– 0 1– 2

=

Poisson matrix of order 9.
λmax= 6.0, Gerschgorin bound = 8.0, combinatorial bound =7.0

“Wagon wheel” matrix of order 9.
λmax= 9.0, Gerschgorin bound = 16.0, combinatorial bound = 11.0

Figure 7.2:Example matrices with maximum eigenvalues,
Gerschgorin bounds, and combinatorial bounds.

page 114

matrices to bounding eigenvalues of any real symmetric matrices. We start by bounding eigenvalues of generalized
Laplacian matrices. The trick is to use the augmented matrix instead of the generalized Laplacian. This is justified
with the following lemma.

7.5 Lemma:Let A and B be Laplacian matrices with augmentations E and F respectively. Ifλ is a finite gen-
eralized eigenvalue with corresponding eigenvectorx such that

then

, where .

proof:

A andB are Laplacian matrices, so there exist matricesM, N, R, andS such thatA = M + R, B =
N + S, whereM andN have the zero row/column sum property, and bothR andS are diagonal.
let r = diag(R), ands = diag(S), wherediag(A) = [a11,...,ann]

t. The augmentation process yields
matricesE andF, where

, , and .

Let λ ∈ λ(A,B), with associated unit eigenvectorx. Then,

M andN have the zero column sum property, , so the equation above
yields

Now, let , and considerEy andλFy:

■

Ax λBx=

Ey λFy= y x
0

=

E
A r–

r– t r t1
= F

B s–

st– st1
= 1 1 … 1

t=

Ax λBx=

1tAx 1tλBx=

1t M R+()x 1tλ N S+()x=

1tMx 1tRx+ 1tλNx 1tλSx+=

1tMx 0 1tλNx= =

1tRx 1tλSx=

r tx λstx=

y xt 0[,] t=

Fy B s–

st– st1

x
0

Bx

st– x
= =

Ey A r–

r t– r t1

x
0

Ax

r tx–

λBx

λst– x
λFy= = = =

page 115

The lemma above holds for Laplacian matrices. To deal with generalized Laplacians (those with some positive off-
diagonal values), we need to first compute the expansion, then the augmentation. That an upper bound on the eigen-
values of the expansion is also an upper bound of the eigenvalues of the original generalized Laplacian is shown in
the next lemma.

7.6 Lemma: Let A be a generalized Laplacian matrix, and let M be the expansion of A. Thenλmax(A) ≤
λmax(M).

proof:

If A contains no positive off-diagonals, thenM is simply double the size ofA, with a copy ofA
at the upper left and lower right corners (and 0 elsewhere). Therefore the eigenvalues ofM are
simply the eigenvalues ofA with twice the multiplicity. Thus,λmax(A) ≤ λmax(M).

SupposeA contains at least one positive off-diagonal. ThenM is constructed so that, given any
vectoru,

Let x be a unit eigenvector corresponding toλm = λmax(A). Then

Soλm is also an eigenvector ofM. Thereforeλmax(A) = λm ≤ λmax(M).

■

Consider bounding the largest eigenvalue of the matrixA corresponding to a simple path on 4 points with no ground-
ing. That is, we are trying to boundλmax(A) = λmax(A,I). The steps in determining a combinatorial bound are illus-
trated in Figure 7.3. The first step is to augmentA to form E, and I to form J. Then, we use the combinatorial
techniques developed in Chapter 4 to boundλmax(E,J), the largest finite generalized eigenvalue of (E,J). To do this,
the network corresponding to J is partitioned to support each of the edges inE. The worst support is for the central
edge between nodesv2 andv3. This edge has conductance 1 and is supported by a path of length 2 with conductances
of 1/2, yielding a support number of 4. Thereforeλmax(A) ≤ 4.0, which in this case is identical to the Gerschgorin esti-
mate. The actual eigenvalue determined using Matlab is 2.6180.

This example previews the technique that will be used to prove the main result in this chapter.

M u
u–

Au
Au–

=

M x
x–

Ax
Ax–

λmx

λmx–
λm

x
x–

= = =

page 116

J

1 0 0 0 1–

0 1 0 0 1–

0 0 1 0 1–

0 0 0 1 1–

1– 1– 1– 1– 4

=

A

1 1– 0 0

1– 2 1– 0

0 1– 2 1–

0 0 1– 1

=

1 11

1

a)

B

1 1– 0 0 0

1– 2 1– 0 0

0 1– 2 1– 0

0 0 1– 1 0

0 0 0 0 0

=

1 11

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

1 1 1 1

b)

c)

Figure 7.3:Bounding Eigenvalues with Augmentation and Support Analysis.
a) A is the matrix of a path, while I is the identity matrix.

b) B is the augmentation of A; J is the augmentation of I; v0 is the ground node.
c) The edges of J have been partitioned to support the edges of B. The edges of B have

been disconnected from each other in order to clarify the support relationships.

1 1 1

1 11

1 1/2
1/2 1/2

1/2 1

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4v3v2

v0 v0

σ12=3 σ23=4 σ34=3

page 117

7.7 Lemma:Let A be a generalized Laplacian matrix corresponding to a connected graph. Let ,

. The largest eigenvalue of A, λmax, is bounded above by

proof:

Let A be a Laplacian matrix andB its augmentation. LetJ be the augmentation of the identity
matrix. Letvi be any node in the resistive network corresponding toB. Let αi0 be the weight of
the connection (if any) betweenvi and the ground node. Let the weights of the connections
from vi to other nodes be denotedαi1,...,αim(i). Since the graph of A is connected, every node is
connected to at least one other node. Suppose thatvj is adjacent tovi, and letαi1 = αj1 be the
weight of the edge betweenvi andvj. See Figure 7.4 for an illustration.

The network corresponding toJ consists only of edges unit weight between the ground node
and all the other nodes ofB. Each of these connections to ground must be partitioned to pro-
vide support to the edges ofB. Partition the edge from ground to nodevi into m(i)+1 pieces
such that the piece supporting the edge ofB with weightαik has itself weightγik given by

Similarly, partition the edge from ground tovj such that each edge of weightαjk is supported
by an edge of weightδjk given by

This weighting assigns support proportional to the product of the conductance of the edge
being supported and the length of the support path.

Now, consider supporting the edge betweenvi andvj; this edge has weightαi1 = αj1. This is
supported by a path of length 2, with total path conductance of

r i aij
j i≠
∑=

i 1 … n, ,=

λmax max ai i a j j+ :ai j 0≠{ }≤

αi2

αim(i)αj1=αi1

αj2

αjm(j)

αj0

...
...

Figure 7.4:Labeling the weights of connections to a node.

αi0

ground node

vivj

γ ik

αik

αi l
l 0=

m i()

∑
-----------------=

δ jk

α jk

α j l
l 0=

m i()

∑
-----------------=

page 118

The last equality follows from the fact thatαi1 = αj1.

The support number is the gain factor needed to make the path conductance greater than or
equal to the weight of the edge, and is therefore given by the ratio of the edge conductance to
the path conductance. Therefore, the support of the edge being considered,σij , is given by

From the relationship between Laplacian matrices and resistive networks, for any nodevk,

.

Therefore, we obtain

.

Similarly, from the definition of the support weighting, the support for the edge grounding
nodevi, σii , is

Applying the techniques from Chapter 4, we find thatσ(B,J) ≤ max{σij}. Then, by applying
Lemma 4.4, we have the result for Laplacian matrices.

Finally, any generalized Laplacian can be expanded to a Laplacian and the same procedure
applied. Expansion does not change any of the diagonal values, so the result holds on the orig-
inal matrix.

■

Now we have the tools needed to prove the main result.1

7.8 Theorem: Let A be a real symmetric matrix. Let , . The largest eigenvalue of A,

λmax, is bounded above by

proof:

1. We would like to acknowledge and thank Dr. J. Demmel at the University of California at Berkeley who reviewed an early version of
this chapter and found an error in a stronger version of this theorem.

ci j
1

αi l∑
αi1

α j l∑

α j1
--------------+

αi1

αi l∑ α j l∑+
----------------------------------= =

σi j

αi1

ci j
-------- αi1

αi1

αi l∑ α j l∑+

 
 
 

⁄ αi l∑ α j l∑+= = =

akk α j l
l 0=

m i()

∑=

σi j ai i a j j+=

σi i αi0 γ i0⁄ αi0

αi0

αi l
l 0=

m i()

∑

 
 
 
 
 
 

⁄ αi l
l 0=

m i()

∑ ai i= = = =

r i aij
j i≠
∑= i 1 … n, ,=

λmax max ai i a j j+():ai j 0≠{ } akk:akl 0 l k≠∀,={ }∪{ }≤

page 119

Lemma 7.7 handled the case in whichA was a generalized Laplacian corresponding to a con-
nected graph. Therefore, consider the case whenA is a generalized Laplacian, but correspond-
ing to a graph with two or more connected components. ThenA is calledreducible, and there
exists an ordering of the vertices in the graph corresponding toA such thatA is block diagonal
[Golub and Ortega (1993), Varga (1962)]. Each component with two or more vertices can be
dealt with as in the proof of Lemma 7.7, and the same result holds. The catch comes when a
component contains only a single, grounded node; this corresponds to a non-zero diagonal ele-
mentakk for which all other entries in row/columnk are zero. In such a case, only the grounded
edge needs to be supported, and the support number is the conductance of that edge:akk. Fig-
ure 7.5 illustrates a simple example.

Now, consider the case in whichA is symmetric, but not a generalized Laplacian. Assume that
A is irreducible(that is, the graph of A contains a single connected component). ThenA must
not be diagonally dominant. In this case,A = L + D, whereL is a generalized Laplacian with
the zero row/column sum property, andD is a diagonal matrix. At least one of the elements of
D must be negative.

1
1 1 5

1

1 1

A
2 1– 0

1– 2 0

0 0 5

= I
1 0 0

0 1 0

0 0 1

=

1

1 11 1
1

5

B

2 1– 0 1–

1– 2 0 1–

0 0 5 5–

1– 1– 5– 7

= J

1 0 0 1–

0 1 0 1–

0 0 1 1–

1– 1– 1– 3

=

1 1 1 5

1/2 11/21/21/2

σ11=2 σ12=4 σ22=2 σ33=5

a)

b)

c)

Figure 7.5: Support Analysis for a Two-Component Graph.
a) A is the matrix of a graph with two components; I is the identity matrix.

b) B is the augmentation of A; J is the augmentation of I.
c) The edges of J have been partitioned to support the edges of B. The edges

of B have been disconnected to clarify the support relationships.

v1 v2 v3 v1 v2 v3

v1 v2 v3 v1 v2 v3

v0v0

v0

v1 v1 v2 v2 v3

page 120

Let , and letB = A + δI. ThenB is a generalized Laplacian, and

,

By Lemma 7.7,

.

But, bii = aii + δ, so

Now, in the case that A is reducible, the argument above holds as long as all the components
have more that one vertex. In the case in which one or more components has a single, grounded
vertex, then essentially the same sequence of steps follows. B is a generalized Laplacian, so we
have:

As for the irreducible case, we then subtractδ from both sides, and the result follows.

■

As an example of the improved bounds possible with this combinatorial estimate, consider the matrix/graph shown in
Figure 7.6. The graph resulted from the finite element discretization of a cracked plate (the crack runs from the center
of the left side to the center of the plate), and is the first in a sequence of mesh refinements. The matrix shown is the
Laplacian of the graph in which all edges have been assigned unit weight.

• The Gerschgorin bound on the largest eigenvalue of the matrix is 18.0.

• The combinatorial bound using the formula from Theorem 7.8 is 12.0.

• The largest eigenvalue (obtained using Matlab) is 10.0.

7.3 Summary

In this chapter, we have shown how to extend the use of support trees as preconditioners to the class of generalized
Laplacian matrices, which are matrices which are symmetric and diagonally dominant. The method is straightfor-
ward, involving creation of a graph of double the size of the original graph (corresponding to the expansion of the
generalized Laplacian), and constructing a support tree for that graph. There may exist methods to construct support
trees for generalized Laplacian that do not involve creation of the expanded graph; we have not yet researched this
issue.

The class of generalized Laplacians are the largest class of matrices for which support trees can presently be con-
structed. The extension of support tree technology to the class of symmetric positive definite matrices is the next log-

δ maxi di i{ }=

λmax B() λmax A() δ+=

λmax B() max bi i b j j+() 2⁄ : bi j 0≠{ }≤

λmax A() λmax B() δ–=

max bi i b j j+() 2⁄ : bi j 0≠{ } δ–≤

max ai i δ a j j δ+ + +() 2⁄() : bi j 0≠{ } δ–=

max ai i a j j+() 2⁄ δ+() : bi j 0≠{ } δ–=

max ai i a j j+() 2⁄ : bi j 0≠{ }=

λmax B() max bi i b j j+() 2⁄ : bi j 0≠{ } bkk : bkl 0 l k≠∀,={ }∪{ }≤

page 121

ical step, and remains a research issue.

In addition to the extension of the support tree technology to generalized Laplacians, we also demonstrated the appli-
cation of combinatorial techniques to the problem of bounding the largest eigenvalue of a symmetric matrix. We
showed that, in some cases, the combinatorial estimate can be better than an estimate made using Gerschgorin’s The-
orem. The combinatorial estimate has a particularly simple form, and can be easier to compute that the Gerschgorin
estimate.

3 1– 0 0 1– 1– 0 0 0 0

1– 2 0 0 0 1– 0 0 0 0

0 0 2 1– 0 1– 0 0 0 0

0 0 1– 3 0 1– 1– 0 0 0

1– 0 0 0 3 1– 0 1– 0 0

1– 1– 1– 1– 1– 9 1– 1– 1– 1–

0 0 0 1– 0 1– 3 0 0 1–

0 0 0 0 1– 1– 0 3 1– 0

0 0 0 0 0 1– 0 1– 3 1–

0 0 0 0 0 1– 1– 0 1– 3

Figure 7.6:Finite Element Mesh and Laplacian Matrix
The graph was obtained from a finite element discretization of a cracked plate. The crack runs from

the left side to the center. Nodes 2 and 3 are colocated in space, but lie on opposite sides of the crack,
and are not connected. The matrix is the Laplacian of the graph with unit edges.

1

2
3

4

5

6

7

8

9

10

page 122

123

8
Discussion and Recommendations

This thesis presented a new approach to the parallel iterative solution of linear systems. In this chapter, we discuss the
results presented in the previous chapters, and present recommendations for future work in this area.

8.1 Support Tree Conjugate Gradients

The support tree conjugate gradients (STCG) method is a variation of preconditioned conjugate gradients (PCG), and
is characterized by the form of the preconditioner. Standard preconditioned conjugate gradients methods, like diago-
nal scaling (DSCG), incomplete Cholesky (ICCG), modified incomplete Cholesky (MICCG), or symmetric succes-
sive over-relaxation (SSOR-CG) are constructed based on the algebraic properties of the coefficient matrix. In fact,
each of the standard preconditioners can be defined by a straightforward algebraic equation involving a decomposi-
tion of the coefficient matrix into additive terms. In contrast, a support tree preconditioner is defined by a construction
procedure that is dependent upon the topological properties of the coefficient matrix.

STCG can only be applied when the coefficient matrix is a generalized Laplacian; that is, the coefficient matrix must
be symmetric and diagonally dominant. The construction procedure reported in Chapter 3 only applies to Laplacian
matrices (symmetric, diagonally dominant, with non-positive off-diagonals), although Chapter 7 reported a technique
that can be used on a linear system with a coefficient matrix that is a generalized Laplacian to construct an equivalent
linear system with a Laplacian coefficient matrix.

Unlike standard preconditioners, support trees were designed with parallel computation in mind. The construction of
support trees is a straightforward implementation of recursive divide-and-conquer, which can be easily parallelized.
The application of support trees takes advantage of the parallel efficiency obtainable with tree structures.

8.1.1 STCG performance

Three requirements for a “good” preconditionerB given a coefficient matrixA were stated in similar terms by both
Axelsson and Barker (1984), and van der Vorst (1989). We can evaluate STCG based on these requirements.

1. κ(B-1A) should be significantly less thanκ(A).

124

In Chapter 4, we defined a model problem discretized onto annxn mesh for which
[Guo(1990)]; we showed that forB the reduction of a support tree. In contrast, we
have the following for the standard preconditioners [Guo (1990)]:

• DSCG isO(n2);

• ICCG isO(n2);

• MICCG isO(n) with the optimal relaxation parameter;

• SSOR-CG isO(n) with the optimal relaxation parameter.

Therefore, STCG has a better condition number than the simple DSCG and ICCG preconditioners, but not
as good as the more elaborate MICCG and SSOR-CG preconditioners. However, these more elaborate
preconditioners require optimal relaxation parameters to achieve the best results, and the computation of
these parameters depends on algebraic properties of the coefficient matrices and can be difficult to com-
pute.

2. The preconditioner should be easy to compute.

Support trees are straightforward to compute using standard methods for graph partitioning. No elaborate,
special purpose data structures are required.

3. The preconditioned system should be easy to solve; that is, the time required to solve the preconditioned
system should be small with respect to the time required for an unpreconditioned iteration.

Support trees are very sparse; as shown in Chapter 3, support trees can be more sparse (that is, have fewer
non-zeros) than the original coefficient matrix. Moreover, the support tree provides an extremely regular
data structure for efficient execution. Therefore, STCG can be implemented at least as efficiently as gen-
eral versions of ICCG (recall from Chapter 3 that there is a particularly efficient implementation of ICCG
applicable to matrices whose corresponding graphs have no triangles), MICCG, or SSOR-CG; addition-
ally, the regular structure of STCG should provide more efficiency. Only DSCG is more efficient on a per
iteration basis than STCG, but DSCG requires significantly more iterations.

Conditions 1 and 3 are not independent. In practice, the reduction in the number of iterations (condition 1) must be
balanced against the time required to solve the preconditioned system (condition 3). A large reduction in condition
number can lead to a significant reduction in the number of iterations, and justify the user of a preconditioner that
requires a comparatively large amount of computation time to solve the preconditioned system. We have shown that
support trees yield a significant reduction in the condition number while also requiring little time to solve the precon-
ditioned system.

8.1.2 STCG parallel performance

STCG was designed with parallel performance in mind. The construction of a support tree is an application of a
recursive divide-and-conquer process. When bisection is used, each step of construction yields two smaller, simpler
subproblems. Therefore, a complete support tree for a mesh withn2 nodes can be constructed inO(logn) parallel
steps. Additionally, each partitioning step in support tree construction requires application of some graph partitioning
algorithm. There is parallelism inherent in the partitioning algorithm which can also be taken advantage of.

During application of STCG, each iteration involves solving the preconditioned system. As discussed in Chapter 3,
this can be done particularly efficiently in parallel by applying leaf raking and the parallel evaluation of subtrees. In
general, for a mesh withn2 nodes, STCG requiresO(logn) parallel steps to solve the preconditioned system. In con-
trast, with diagonal ordering, ICCG, MICCG, and SSOR-CG requireO(n) parallel steps. Again, DSCG is the most

κ A() O n
2

()=
κ B

1–
A() O nlogn()=

125

efficient, requiringO(1) diagonal steps, although requiring many more iterations.

8.2 STCG is not Multigrid

While similar in some respects to multilevel methods, STCG is not a multilevel method. The defining characteristic of
a multilevel method or a multilevel preconditioner is the approximate solution of the underlying PDE at multiple lev-
els of resolution. In contrast, STCG simply passes averaged information across the mesh using an alternate structure;
no solution is computed at any level except the original.

For most multilevel methods, each grid is a discretization of the underlying PDE, and the method depends on having
a nested sequence of grids. In contrast, STCG makes no claims about the underlying PDE, and multiple grids are not
required. Most multilevel methods, construction is bottom up, from coarse grids to fine. That is, the development of a
multilevel method requires grid refinement; an exception to this is AMG (Algebraic MultiGrid). In contrast, STCG
starts with the finest grid and does not utilize a nested sequence.

The general statements above about multilevel methods do not apply to AMG. However, AMG is a complicated algo-
rithm that applies local analysis to determine a coarse grid given an initial fine grid. AMG is applicable to the same
class of matrices that STCG was initially constructed for - Laplacian matrices, but we have shown how STCG can be
extended. Furthermore, we believe that STCG is a simpler algorithm.

An example helps to highlight the difference in behavior between full multigrid, STCG, and CG. All three algorithms
were run on the same problem, so that the number of iterations and the behavior of the iterates could be compared.

• Figure 8.1 illustrates the qualitative convergence behavior of full multigrid on a simple example for which
convergence took only 6 iterations of a complete V-cycle. The full multigrid used a single iteration of
Gauss-Seidel for smoothing at each step. Notice that the shape and magnitude of the solution are nearly
achieved at the first iteration. Succeeding iterations do little more than adjust the values of the iterates.

• Figure 8.2 illustrates the behavior of STCG on the same simple example. The support tree used was con-
structed using binary partitioning and was boundary weighted. STCG took 21 iterations to converge, but
only the first 5 iterates are shown. In the case of STCG, little of the solution’s final shape is exhibited in
the first iterate. Interestingly, though, the mesh partitioning is visible in the rough shape of the first iterate.
Succeeding iterations add both shape and value.

• illustrates the behavior of unpreconditioned CG on the same problem. CG took 28 iterations to converge,
but only the first 5 iterates are shown. In the case of CG, the first iterate exhibits much of the shape of the
final solution, but the values are too low. The figure shows that the iterates of CG change slowly, compared
to those of the other two methods.

The experiment reported in Figures 8.1 through 8.3 help place STCG within the taxonomy of iterative methods. CG is
the most local of the three methods compared. The behavior of CG shows that local information (e.g.: the shape of the
curves in Figure 8.3) is accurately communicated with the first iterate, but global information such as the average
magnitude of the solution values is slow to propagate. CG is easy to implement, and requires no special knowledge of
the PDE or the underlying mesh. The behavior of full multigrid shows that both local information and global informa-
tion is propagated rapidly. Full multigrid is the most complex of the methods to implement, and often requires infor-
mation beyond simply the coefficient matrix and the forcing function. STCG lies somewhere in between full
multigrid and CG, both in performance and difficulty of implementation. STCG propagates averaged global informa-
tion, but smooths out local variation in the early stages of iteration. STCG is straightforward to implement, and
requires only the coefficient matrix and forcing function for construction.

126

0 10 20 30 40 50 60 70
0

5

10

15

20

25

0 10 20 30 40 50 60 70
0

5

10

15

20

25

0 10 20 30 40 50 60 70
−10

−5

0

5

10

15

20

25

Figure 8.1: The convergence behavior of full multigrid.
The first five iterates of full multigrid are shown as dotted lines. k is the iteration number.

The solution is the solid line at the top of the figure.

Figure 8.2: The convergence behavior of support tree conjugate gradient.
The first five iterates of support tree conjugate gradients are shown as dotted lines.

The solution is the solid line at the top of the figure.

Figure 8.3: The convergence behavior of conjugate gradients.
The first five iterates of conjugate gradients are shown as dotted lines.

The solution is the solid line at the top of the figure.

 solution

k = 1

k = 2

k = 3k = 4

k = 5

k = 1

k = 2

k = 3

k = 4

k = 5 solution

 solution

k = 1

k = 2
k = 3

k = 4

k = 5

127

8.3 Recommendations for Future Work

8.3.1 Optimal support trees

In the preceding chapters, we chose simple rooted trees for the structure of our preconditioners. This topology was
simply chosen because it naturally reflected the properties of the recursive divide-and-conquer approach that was
used. The optimal shape for a preconditioner is an open question.

Reflecting on the similarities and differences between support tree preconditioners and multilevel preconditioners, it
is likely that the optimal shape includes some cycles. Recall that support trees are primarily characterized by support-
ing efficient communication across a mesh. Multilevel preconditioners, on the other hand, involve solving the prob-
lem on a coarser mesh. Figure 8.4 illustrates both types of preconditioners for a simple 4x4 mesh. The support tree
shown in a) is easy to construct and has excellent parallel properties, but does not converge as quickly as the multi-
level preconditioner shown in b) that is difficult to construct and has poorer parallel properties.

Recall that, for annxn square mesh, the condition number of the coefficient matrix isO(n2). With a support tree pre-
conditioner, the generalized condition number drops toO(nlog4n), while with a multilevel preconditioner, the gener-
alized condition number isO(1). Clearly, solving the equation at a coarser level (multilevel) is more powerful than
just passing averaged information (support trees). On the other hand, for an arbitrary graph, it is easier to construct a
support tree, given only a coefficient matrix, than it is to devise a multilevel solution.

A worthwhile research goal for the future would be investigate ways to combine the two techniques of STCG and
multigrid to develop an easy to implement and powerful preconditioning technique.

8.3.2 Efficient implementation for generalized Laplacians

In Chapter 7, we showed how to construct a Laplacian matrix equivalent to a generalized Laplacian. This construction
involved doubling the number of nodes in the graph, and then making connections based on the sign of the connection
in the original matrix. While this is satisfactory from a theoretical point of view, it is less than satisfactory from a
practical point of view to double the size of the problem.

a) b)

Figure 8.4: The topology of a support tree and a multilevel preconditioner.
a) Support tree preconditioner for a 4x4 mesh. b) Multilevel preconditioner for a 4x4 mesh.

128

The generalized Laplacian clearly contains all the information in the expanded Laplacian of twice the size. It should
therefore be possible to analyze the generalized Laplacian and construct the support tree without ever making the
transformation to the larger, equivalent, expanded Laplacian matrix.

A research goal for the future should be to focus on the mapping from a generalized Laplacian to its expansion and
develop techniques to construct support trees for generalized Laplacians without ever performing the expansion step.

8.3.3 Extension to all symmetric positive definite matrices

We discussed support trees initially in the context of Laplacian matrices, which are symmetric, diagonally dominant,
and have only non-positive off-diagonals. In Chapter 7, we showed how to extend the approach to generalized Lapla-
cians which are symmetric and diagonally dominant, but may have otherwise arbitrary off-diagonals. The next logical
step is to extend the methodology to all symmetric positive definite matrices.

8.3.4 Additional numerical experiments

Since STCG is a new method, more experimentation is needed to fully characterize it. The following additional
numerical experiments should be performed:

• Test STCG over a larger range of problems. In particular, problems should be used that have parameters
that vary across the mesh, and are defined on highly irregular meshes.

• Test STCG on multiple vector processors. In this thesis, we demonstrated the efficiency of STCG on a sin-
gle vector processor of a Cray C-90. The performance improvement should be even greater if multiple
vector processors are used and the support tree implementation takes advantage of both level scheduling
and multiple independent subtrees.

• Test STCG on a massively parallel processor. The structure of the support tree is very regular and involves
relatively little communication and should therefore be a good candidate for efficient implementation on
an MPP.

• End-to-end timings of STCG should be performed. The performance analysis presented in this thesis only
dealt with the performance of the iterative solution phase and ignored the timing for the construction
phase. The construction of support trees requires repeated application of some graph partitioning algo-
rithm, and the efficient parallel implementation of graph partitioning is a research topic in itself. A com-
plete study of the performance of STCG should be conducted that includes the timings for construction
using a variety of efficiently implemented graph partitioning algorithms.

8.3.5 Additional theory

The analysis of support trees involved an interesting application of graph theory to linear systems and should be con-
tinued to further explore the relationships between graph theory and linear systems.

129

9
References

[1] Alon, N., Seymour, P., and Thomas, R. (1990).A separator theorem for graphs with an excluded minor and its
applications. Proc. of the 22nd Annual ACM Symposium on Theory of Computing, pp. 293-299.

[2] Alvarado, F. L., and Schreiber, R. (1993).Optimal parallel solution of sparse triangular systems. SIAM J. Sci.
Comput. 14(2):446-460.

[3] Anderson, E., and Saad, Y. (1989).Solving sparse triangular linear systems on parallel computers. Int. J. of
High Speed Computing1(1):73-95.

[4] Arioli, M., Duff, I., and Ruiz, D. (1992).Stopping criteria for iterative solvers. SIAM J. Matrix Anal. Appl.
13(1):138-144.

[5] Ashby, S. F. (1987).Polynomial preconditioning for conjugate gradient methods. UIUCDCS-R-87-1355,
Department of Computer Science, University of Illinois at Urbana-Champaign.

[6] Axelsson, O. (1992).Bounds of eigenvalues of preconditioned matrices.SIAM J. Matrix Anal. Appl. ,
13(3):847-862.

[7] Axelsson, O. (1994).Iterative Solution Methods. Cambridge University Press.

[8] Axelsson, O., and Barker, V. A. (1984).Finite Element Solution of Boundary Value Problems. Academic
Press.

[9] Axelsson, O., and Lindskog, G. (1986).On the rate of convergence of the preconditioned conjugate gradient
method. Numer. Math. 48:499-523.

[10] Axelsson, O., and Vassilevski, P.S. (1989).Algebraic multilevel preconditioning methods. I. Numer. Math.,
56:157-177.

130

[11] Axelsson, O., and Vassilevski, P.S. (1990).Algebraic multilevel preconditioning methods. II. Numer. Math.,
56:157-177.

[12] Bank, R. E., and Dupont, T. F. (1981)An optimal order process for solving finite element equations. Math.
Comput. 36:35-51.

[13] Blelloch, G. E. (1993).NESL: A nested data-parallel language. CMU-CS-93-129, School of Computer Sci-
ence, Carnegie Mellon University.

[14] Blelloch, G. E. (1990).Vector Models for Data-Parallel Computing. MIT Press.

[15] Blelloch, G., Feldmann, A., Ghattas, O., Gilbert, J., Miller, G., O’Hallaron, D. R., Schwabe, E., Shewchuk, J.,
and Teng, S. -H. (1992).Automated parallel solution of unstructured PDE problems. Proc. of the 1992 DAGS/
PC Symposium.

[16] Blelloch, G. E., Heroux, M. A., and Zagha, M. (1993).Segmented operations for sparse matrix computation
on vector multiprocessors. CMU-CS-93-173, School of Computer Science, Carnegie Mellon University.

[17] Bollabas, B. (1979).Graph Theory: An Introductory Course . Springer-Verlag.

[18] Braess, D. and Hackbusch, W. (1983).A new convergence proof for the multigrid method including the V-
cycle. SIAM J. Numer. Anal., 20:986-975.

[19] Bramble, J. H., Pasciak, J. E., and Xu, J. (1990).Parallel multilevel preconditioners. Math. Comp. 55:1-22.

[20] Brandt, A. (1977).Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31:333-390.

[21] Brandt, A., McCormick, S. F., and Ruge, J. (1982).Algebraic multigrid (AMF) for automatic algorithm design
and problem solution. A preliminary report. Inst. Comp. Studies, Colorado State University.

[22] Briggs, W. L. (1987).A Multigrid Tutorial. SIAM.

[23] Chan, T. F., and Mathew, T. P. (1994).Domain decomposition algorithms. Acta Numerica, pp. 61-143.

[24] Chandra, A. K., Raghavan, P., Ruzzo, W. L., Smolensky, R., and Tiwari, P. (1989).The electrical resistance of
a graph captures its commute and cover times. Proceedings of the 21st Annual ACM Symposium on The-
ory of Computing, pp. 574-586.

[25] Chartrand, G. (1977).Introductory Graph Theory . Dover.

[26] Dagum, L. (1993).Automatic partitioning of unstructured grids into connected components.Proc. Supercom-
puting ‘93.

[27] Djidjev, H. N. (1982).On the problem of partitioning planar graphs. SIAM J. Alg. Disc. Meth. 3(2):229-240.

[28] Donath, W. E. (1988).Logic Partitioning. in Preas, B. T., and Lorenzetti, M. J., eds.,Physical Design Auto-
mation of VLSI Systems, pp. 65-86. Benjamin/Cummings.

[29] Donath, W. E., and Hoffman, A. J. (1972).Algorithms for partitioning of graphs and computer logic based on
eigenvectors of connection matrices.IBM Technical Disclosure Bulletin, 15:938-944.

[30] Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. (1991).Solving Linear Systems on Vec-
tor and Shared Memory Computers.SIAM.

131

[31] Doyle, P. G., and Snell, J. L. (1984).Random Walks and Electric Networks. Carus Mathematical Mono-
graphs #22, Mathematical Association of America.

[32] Duff, I. S., Erisman, A. M., and Reid, J. K. (1986).Direct Methods for Sparse Matrices. Clarendon Press.

[33] Duff, I. S., and Meurant, G. A. (1989).The effect of ordering on preconditioned conjugate gradients. BIT
29:635-657.

[34] Eisenstat, S. C. (1981).Efficient implementation of a class of preconditioned conjugate gradient methods.
SIAM J. Sci. Stat. Comput. 2:1-4.

[35] Farhat, C., and Lesoinne, M. (1993).Automatic partitioning of unstructured meshes for the parallel solution of
problems in computational mechanics. Int. J. Num. Meth. Eng. 36:745-764.

[36] Fiduccia, C. M., and Mattheyses, R. M. (1982).A linear time heuristic for improving network partitions. Proc.
19th Design Automation Conference, pp. 175-181.

[37] Fiedler, M. (1973).Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98): 298-305.

[38] Ford, L. R., and Fulkerson, D. R. (1956).Maximal flow through a network. Canad. J. Math., 8:399-404.

[39] Ford, L. R., and Fulkerson, D. R. (1962).Flows in Networks. Princton Univ. Press.

[40] Garey, M. R., and Johnson, D. S. (1979).Computers and Intractability . Freeman.

[41] Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976).Some simplified NP-complete graph problems. The-
oretical Computer Science, pp. 237-267.

[42] Gazit, H. and Miller, G. L. (1987).A parallel algorithm for finding a separator in planar graphs. Proc. of the
28th Annual Symposium on Foundations of Computer Science, pp. 238-248.

[43] George, A., and Liu, J. W. (1981).Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall.

[44] Gilbert, J. R. (1980).Graph Separator Theorems and Sparse Gaussian Elimination. Ph. D. Thesis, Department
of Computer Science, Stanford University.

[45] Gilbert, J. R., Hutchinson, J. P., and Tarjan, R. E. (1984).A separator theorem for graphs of bounded genus. J.
Algorithms 5:391-407.

[46] Gilbert, J. R., and Tarjan, R. E. (1987).The analysis of a nested dissection algorithm. Numer. Math.
50(4):377-404.

[47] Golub, G. and O’Leary, D. (1989).Some history of the conjugate gradient and Lanczos algorithms: 1948-
1976. SIAM Rev. 31:50-102.

[48] Golub, G., and Ortega, J. M. (1993).Scientific Computing: An Introduction with Parallel Computing .
Academic Press.

[49] Golub, G. H., and Van Loan, C. F. (1989).Matrix Computations . Johns Hopkins University Press.

[50] Greenbaum, A., Li, C., and Chao, H. Z. (1989).Comparison of linear system solvers applied to diffusion-type
finite element equations. Numer. Math. 56:529-546.

132

[51] Gremban, K. D., Miller, G. L, and Teng, S. -H. (1994).Moments of inertia and graph separators. 5th Annual
ACM-SIAM Symposium on Discrete Algorithms.

[52] Gremban, K. D., Miller, G. L., and Zagha, M. (1994).Performance evaluation of a new parallel precondi-
tioner. CMU-CS-94-205, School of Computer Science, Carnegie Mellon University.

[53] Gremban, K. D., Miller, G. L., and Zagha, M. (1995).Performance evaluation of a new parallel precondi-
tioner. Proc. of the 9th International Parallel Processing Symposium, pp. 65-69.

[54] Guattery, S. and Miller, G. L. (1994).On the performance of spectral graph partitioning methods. CMU-CS-
94-228. School of Computer Science, Carnegie Mellon University.

[55] Guattery, S. and Miller, G. L. (1995).On the performance of spectral graph partitioning methods. Proc. of the
6th Annual ACM/SIAM Symposium on Discrete Algorithms.

[56] Guo, X. -Z. (1992).Multilevel Preconditioners: Analysis, performance enhancements, and parallel algo-
rithms. CS-TR-2903, Department of Mathematics, University of Maryland.

[57] Gustafsson, I. (1978).A class of first order factorizations. BIT , 18:142-156.

[58] Hackbusch, W. (1994).Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag.

[59] Hageman, L. A., and Young, D. M. (1981).Applied Iterative Methods. Academic Press.

[60] Hajek, B. (1988).Cooling schedules for optimal annealing. Math. Oper. Res. 13:311.

[61] Harary, F. (1969).Graph Theory. Addison-Wesley.

[62] Heath, M. T., Ng, E., and Peyton, B. W. (1990).Parallel algorithms for sparse linear systems. in Parallel
Algorithms for Matrix Computations . SIAM.

[63] Hendrickson, B., and Leland, R. (1992).An improved spectral graph partitioning algorithm for mapping par-
allel computations.SAND92-1460, Sandia National Laboratories.

[64] Heroux, M. A., Vu, P., and Yang, C. (1991).A parallel preconditioned conjugate gradient package for solving
sparse linear systems on a Cray Y-MP. Appl. Num. Math. 8:93-115.

[65] Hestenes, M. R., and Stiefel, E. (1952).Methods of conjugate gradients for solving linear systems. J. Res.
Nat. Bur. Standards B 49:409-436.

[66] Hoffman, A. J., Martin, M. S., and Rose, D. J. (1973).Complexity bounds for regular finite difference and
finite element grids. SIAM J. Num. Anal. 10:364-369.

[67] Johnson, C. (1987).Numerical Solution of Partial Differential Equations by the Finite Element Method.
Cambridge University Press.

[68] Jordan, E. (1869).Sur les assemblages de lignes. Journal Reine Angew. Math, 70:185-190.

[69] Kernighan, B. W., and Lin, S. (1970).An efficient heuristic procedure for partitioning graphs. Bell Sys. Tech.
J., 49:291-307.

[70] Khaira, M. S., Miller, G. L., and Sheffler, T. J. (1992).Nested Dissection: A survey and comparison of various
nested dissection algorithms. CMU-CS-92-106R, Computer Science Department, Carnegie Mellon University.

133

[71] Lang, K. and Rao, S. (1994).Finding near-optimal cuts: an empirical evaluation.Proc. of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms.

[72] Leighton, F. T. (1983).Complexity Issues in VLSI. Foundations of Computing, MIT Press.

[73] Leighton, F. T. (1992).Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann.

[74] Leighton, F. T., and Rao, S. (1988).An approximate max-flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation algorithms. Proc. of the 29th Annual Symposium on
Foundations of Computer Science, pp. 422-431.

[75] Leiserson, C. E. (1983).Area Efficient VLSI Computation . Foundations of Computing, MIT Press.

[76] Lipton, R. J., Rose, D. J., and Tarjan, R. E. (1979).Generalized nested dissection. SIAM J. Num. Anal.
16:346-358.

[77] Lipton, R. J., and Tarjan, R. E.A separator theorem for planar graphs. SIAM J. Appl. Math. 36:177-189.

[78] MathWorks, Inc. (1992).MATLAB Reference Guide.

[79] Meijerink, J. A., and van der Vorst, H. A. (1977).An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix.Math. Comp. 31:148-162.

[80] Miller, G. L. (1986).Finding small simple cycle separators for 2-connected planar graphs. J. Comp. Sys. Sci.
32(3):265-279.

[81] Miller, G. L., Teng, S. -H., Thurston, W. and Vavasis, S. A. (1992).Automatic mesh partitioning. Proc. of the
1992 Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithms.

[82] Nour-Omid, B., Raefshy, A., and Lyzenga, G. (1987).Solving finite element equations on concurrent comput-
ers. in Noor, A. K., ed.,Parallel Computations and Their Impact on Mechanics, pp. 209-228. The Ameri-
can Society of Mechanical Engineers, AMD-Vol. 86.

[83] Oswald, P. (1991).On discrete norm estimates related to multilevel preconditioners in the finite element
method. Proc. of the Int. Conf. Theory of Functions.

[84] Pothen, A., Simon, H. D., and Liou, K. (1990).Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl . 11(3):430-452.

[85] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988).Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press.

[86] Press, W. H., and Teukolsky, S. A. (1991).Multigrid methods for boundary value problems. 1.Computers in
Physics, Sep/Oct:514-519.

[87] Rao, S. (1987). Finding near optimal separators in planar graphs.Proc. of the 28th Annual Symposium on
Foundations of Computer Science, pp. 225-237.

[88] Reid, J. K. (1971).On the method of conjugate gradients for the solution of large sparse systems of equations.
in Reid, J. K. ed.,Large Sparse Sets of Linear Equations, pp. 231-254. Academic Press.

[89] Reid-Miller, M., Miller, G. L., and Modugno, F. (1993).List ranking and parallel tree contraction. in Reif, J.,
ed.,Synthesis of Parallel Algorithms, Morgan Kaufmann.

134

[90] Shahrokhi, F. and Matula, D. W. (1990).The maximum concurrent flow problem. J. Association of Comput-
ing Machinery 37(2):318-334.

[91] Simon, H. D. (1991).Partitioning of unstructured problems for parallel processing. Comp. Sys. in Eng. 2(2/
3):135-148.

[92] Stuben, K. (1983).Algebraic multigrid (AMG): Experiences and comparisons. Appl. Math. Comp. 13:419-
451.

[93] Tarjan, R. E. (1983).Data Structures and Network Algorithms. SIAM.

[94] Teng, S. -H. (1991).Points, Spheres, and Separators: A unified geometric approach to graph partitioning.
CMU-CS-91-184, School of Computer Science, Carnegie Mellon University.

[95] van der Vorst, H. A. (1989a).ICCG and related methods for 3D problems on vector computers.Comp. Phys-
ics Comm.53:223-235.

[96] van der Vorst, H. A. (1989b).High performance preconditioning. SIAM J. Sci. Stat. Comput. 10(6):1174-
1185.

[97] Varga, R. (1962).Matrix Iterative Analysis . Prentice-Hall.

[98] Williams, R. D. (1991).Performance of dynamic load balancing algorithms for unstructured mesh calcula-
tions. Concurrency: Practice and Experience, 3(5):457-481.

