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Abstract
Computing graph separators is an important step in many graph algorithms. A popular technique
for finding separators involves spectral methods. However, there is not much theoretical analysis
of the quality of the separators produced by this technique; instead it is usually claimed that spectral
methods “work well in practice.” We present an initial attempt at such analysis. In particular, we
consider two popular spectral separator algorithms, and provide counterexamples that show these
algorithms perform poorly on certain graphs. We also consider a generalized definition of spectral
methods that allows the use of some specified number of the eigenvectors corresponding to the
smallest eigenvalues of the Laplacian matrix of a graph, and show that if such algorithms use a
constant number of eigenvectors, then there are graphs for which they do no better than using only
the second smallest eigenvector. Further, when applied to these graphs the algorithm based on
the second smallest eigenvector performs poorly with respect to theoretical bounds. Even if an
algorithm meeting the generalized definition uses up to n¢ for 0 < € < % eigenvectors, there exist

graphs for which the algorithm fails to find a separator with a cut quotient within ni=¢ — 1 of the
isoperimetric number. We also introduce some facts about the structure of eigenvectors of certain
types of Laplacian and symmetric matrices; these facts provide the basis for the analysis of the
counterexamples.



1 Introduction

Spectral methods (i.e., methods using the eigenvalues and eigenvectors of a matrix representation of
a graph) are widely used to compute graph separators. Typically, the Laplacian matrix representation
B of a graph G is used; the Laplacian B of a graph G on n vertices is the n X n matrix with the degrees
of the vertices of G on the diagonal, and entry b;; = —1 if G has the edge (v;, v;) and O otherwise.
The eigenvector u; corresponding to A, (the second-smallest eigenvalue of B) is computed, and
the vertices of the graph are partitioned according to the values of their corresponding entries in
u; [PSL90, HK92]. The goal is to compute a small separator; that is, as few edges or vertices as
possible should be deleted from the graph to achieve the partition.

Although spectral methods are popular, there is little theoretical analysis of how well they
do in producing small separators. Instead, it is usually claimed that such methods “work well
in practice,” and tables of results for specific examples are often included in papers (see e.g.
[PSL90}). Thus there is little guidance for someone wishing to compute separators as to whether or
not this technique is appropriate. Ideally, practitioners should have a characterization of classes of
graphs for which spectral separator techniques work well; this characterization might be in terms
of how far the computed separators can be from optimal. As a first step in this direction, we
consider two spectral separation algorithms that partition the vertices on the basis of the values of
their corresponding entries in uj, and provide counterexamples for which each of the algorithms
produces poor separators. We further consider a generalized definition of spectral methods that
allows the use of more than one of the eigenvectors corresponding to the smallest non-zero
eigenvalues, and show that there are graphs for which any such algorithm does poorly.

The first algorithm is a popular technique that consists of bisecting a graph by partitioning the
vertices into two equal-sized sets based on each vertex’s entry in the eigenvector corresponding to
the second-smallest eigenvalue. A graph in our first counterexample class looks like a ladder with
the top 2/3 of its rungs kicked out (see Figure 1); a straightforward spectral bisection algorithm
cuts the remaining rungs, whereas the optimal bisection is made by cutting across the ladder above
the remaining rungs. (We refer to this graph as the “roach graph” because its outline looks roughly
like the body of a cockroach and two long antennae.)

It is possible to modify the spectral bisection algorithm in ways that ailow it to generate a better
separator for the roach graph. Some examples of possible modifications are presented in [HK92];
these examples still use a partition based on u;. We consider a simple spectral separator algorithm,
the “best threshold cut” algorithm, based on the most general of these suggested modifications,
and present a second class of graphs that defeats this algorithm. This class of graphs consists of
crossproducts of path graphs and graphs consisting of a pair of complete binary trees connected by
an edge between their roots.

Finally, we consider a more general definition of purely spectral separator algorithms that
subsumes the two preceding algorithms. This general definition allows the use of some specified
number of eigenvectors corresponding to the smallest eigenvalues of the Laplacian of a graph.
For any such algorithm that uses a fixed number of eigenvectors we show there are graphs for
which it does no better than using the “best threshold cut” algorithm. Further, the separator
produced when the “best threshold cut” algorithm is applied to these graphs is as bad as possible
(to within a constant) with respect to theoretical bounds on the size of the separators produced.
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Figure 1: The Roach Graph

We also show that if a purely spectral algorithm uses up to n¢ eigenvectors for 0 < € < 41, there
exist graphs for which the algorithm fails to find a separator with a cut quotient (i.e., the ratio
between the number of edges cut and the size of the smaller set in the vertex partition) within
ni=¢ — 1 of the optimum (the optimum cut quotient is called the isoperimetric number). We also
note that the counterexample graphs can be extended to graphs that could conceivably be used as
three-dimensional finite-element meshes — that is, graphs that could be encountered in practice.
This paper makes one additional contribution: Our counterexamples have simple structures and
intuitively would be expected to cause problems for spectral separator algorithms. The challenge
is to provide good bounds on A, for these graphs. For this purpose we have developed theorems
about the spectra of graphs with particular symmetries that exist in our counterexamples.
Specifics are given in the text that follows. Section 2 gives some history of spectral methods
and details of the algorithms we discuss in this paper. Section 3 gives the graph and matrix
terminology that we will use, and presents some useful facts about Laplacian matrices. Section 4
gives the counterexample for the spectral bisection algorithm; Section 5 gives the counterexample
for the “best threshold cut” algorithm. Finally, Section 6 discusses our generalized notion of spectral
separator algorithms, and shows that there are graphs for which any such algorithm performs poorly.

2 Spectral Methods for Computing Separators

The roots of spectral partitioning go back to Hoffmann and Donath {DH73], who proved a lower
bound on the size of the minimum bisection of a graph, and Fiedler [Fie73](Fie75], who explored
the properties of A, and its associated eigenvector for the Laplacian of a graph. There has been much
subsequent work, including Barnes’s partitioning algorithm [Bar82], Boppana’s work that included
a stronger lower bound on the minimum bisection size [Bop87], and the particular bisection and
graph partitioning problems that we are considering in this paper [HK92] [PSL90] [Sim91]. (We
note that spectral methods have not been limited to graph partitioning; work has been done using
the spectrum of the adjacency matrix in graph coloring [AG84] and using the Laplacian spectrum to
prove theorems about expander graph and superconcentrator properties [AM85] [Alo86] [AGM87].



The work on expanders has explored the relationship of A to the isoperimetric number; Mohar has
given an upper bound on the isoperimetric number using a strong discrete version of the Cheeger
inequality [Moh89]. Reference [CDS79] is a book-length treatment of graph spectra, and it predates
many of the results cited above.)

A basic way of computing a graph bisection using spectral information is presented in [PSL90].
We will refer to this algorithm as spectral bisection. Spectral bisection works as follows:

o Represent G by its Laplacian B, and compute uy, the eigenvector corresponding to A of B.

e Assign each vertex the value of its corresponding entry in up. This is the characteristic
valuation of G.

¢ Compute the median of the elements of u;. Partition the vertices of G as follows: the vertices
whose values are less than or equal to the median element form one part of the partition; the
rest of the vertices form the other part. The set of all edges between the two parts forms an
edge separator.

e If a vertex separator is desired, it can be computed from the edge separator as described in
the next section.

Since the graph bisection problem is NP-complete {GJ79], spectral bisection may not give an
optimum result. That is, spectral bisection is a heuristic method. A number of modifications have
been proposed that may improve on its performance. These modified heuristics can give splits
other than bisections. In such cases, we will use the cut quotient or separator ratio (the separator
ratio is the ratio between the number of edges cut and the product of the sizes of the two sets in
the vertex partition) in judging how close the split is to optimal. Computing the separator with the
minimum ratio is NP-hard (see, e.g., [LR88]). The following modifications, all of which use the
characteristic valuation, are presented in [HK92]:

e Partition the vertices based on the signs of their values;

e Look for a large gap in the sorted list of eigenvector components, and partition the vertices
according to whether their values are above or below the gap; and

e Sort the vertices according to value. For each index 1 < ¢ < n — 1, consider the ratio for the
separator produced by splitting the vertices into those with sorted index < i and those with
sorted index > i. Choose the split that provides the best separator ratio.

Note that the last idea subsumes the first two. We will consider a variant of this algorithm below.
Since this algorithm does not consider the case where multiple vertices may have the same value,
we will specify that only splits between vertices with different values are considered (we refer to
such cuts as threshold cuts). We call this algorithm the “best threshold cut’ algorithm; the fact
that we’ve slightly changed the definition above does not alter its performance with respect to the
counterexamples below (other than slightly simplifying the analysis).

Also note that the idea of cutting at an arbitrary point along the sorted order can be extended to
choosing two split points, where the corresponding partitions are the vertices with values between



the split points, and those with values above the upper or below the lower split point. Again, the
pair yielding the best ratio is chosen.

The algorithms mentioned so far have only used the eigenvector u;. Another possibility is to
look at the partitions generated by the set of eigenvectors for some number of smallest eigenvalues:
for each vertex, a value would be assigned by computing a function of that vertex’s eigenvector
components. Partitions could then be generated in the same way as they are for u; in the various
algorithms given above.

Given the variety of heuristics cited above, it would be nice to know which ones work well
for which classes of graphs. It would be particularly useful if it were possible to state reasonable
bounds on the performance of these heuristics for classes of graphs commonly used in practice
(e.g., planar graphs, planar graphs of bounded degree, three-dimensional finite element meshes,
etc.). Unfortunately, this is not the case. We start by proving that spectral bisection may produce a
bad separator for a bounded-degree planar graph in Section 4; first, however, we need to introduce
some terminology and background results.

3 Terminology, Notation, and Background Results

We assume that the reader is familiar with the basic definitions of graph theory (in particular, for
undirected graphs), and with the basic definitions and results of matrix theory. A graph consists of
a set of vertices V and a set of edges E; we denote the vertices (respectively edges) of a particular
graph G as V(G) (respectively E(G)) if there is any ambiguity about which graph is referred to.
The notation |G| will be sometimes be used as a shorthand for |V(G)|. When it is clear which
graph we are referring to, we will use n to denote |V/|.

We use capital letters to represent matrices and bold lower-case letters for vectors. For a
matrix A, a;; or [A);; represents the element in row : and column j; for the vector x, z; or [x];
represents the i entry in the vector. The notation with square brackets is useful in cases where
adding subscripts to lower-case letters would be awkward (e.g., where the matrix or vector name
is already subscripted). The notation x = O indicates that all entries of the vector x are zero; 1
indicates the vector that has 1 for every entry. For ease of reference, we will index the eigenvalues
of an n» X n matrix in non-decreasing order. )\, represents the smallest eigenvalue, and A, the
largest. For 1 < i < n, we have A\i—; < A; < Aiy1. We use the notation A;(A) (respectively
2i(@)) to indicate the i™ eigenvalue of matrix A (respectively of the Laplacian of graph G) if there
is any ambiguity about which matrix (respectively graph) the eigenvalue belongs to. u; represents
the eigenvector corresponding to A;.

We use the term path graph for a tree that has exactly two vertices of degree one. That is, a
path graph is a graph consisting of exactly its maximal path.

The crossproduct of two graphs G and H (denoted G x H) is a graph on the vertex set
{(u,v) | u € V(G),v € V(H)}, with ((u,v),(«/,v")) in the edge set if and only if either u = v’
and (v,v") € E(H)orv = v' and (u,v') € E(G). Itis easy to see that G x H and H X G are
isomorphic. One way to think of a graph crossproduct is as follows: Replace every vertex in G
with a copy of H. Each edge e in G is then replaced by | H| edges, one between each pair of
corresponding vertices in the copies of H that have replaced the endpoints of e. That is, for each



edge (v;, v;) in G, there is a copy 7 and a copy j of H. For each vertex u in H, add an edge between
vertex u in copy ¢ and the vertex u in copy j. An example is shown in the figure below.

Figure 2: A Graph Crossproduct Example

For a connected graph G, an edge separator is a set S of edges that, if removed, would break
the graph into two (not necessarily connected) components (' and G such that there are no edges
between G and G,. (We will assume that an edge separator is a minimal set with respect to the
particular G| and G,.) A vertex separator is a set S of vertices such that if these vertices and all
incident edges are removed, the graph is broken into two components G and G, such that there
are no edges between G and G (again, we’ll assume that such a separator is minimal). The goal
in finding separators is to find a small separator that breaks the graph into two fairly large pieces;
often this notion of “large pieces” is expressed as a restriction that the number of vertices in either
component be at least some specified fraction of the number of vertices in G. For edge separators,
this can be stated more generally in terms of the separator ratio p, defined as |S|/ (|G| - |Ga).
The optimum ratio separator p,,. is the one that minimizes the separator ratio over all separators
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for a particular graph [LR88].
A related concept (again, for edge separators) is the isoperimetric number ¢(G), defined as:

: |S|
min [ ————— | .
5 (mm(|G1|,|G2|)

We will refer to the quantity | S|/ min (|G|, |G2]) as the cut quotient for the edge separator S. It
is easy to see that npop: > t(G) 2> npopt/2. As noted in the Introduction above, finding a cut with
the minimum separator ratio or with a cut quotient equal to the isoperimetric number is NP-hard.

It is well known that an edge separator .S can easily be converted into a vertex separator S’ by
considering the bipartite graph induced by .S (where the parts of the bipartition are determined by
the components G| and G-), and setting S’ to be a minimum edge cover for that graph.

Graphs can be represented by matrices. For example, the adjacency matrix A of a graph G is
defined as a;; = 1 if and only if (v;, v;) € E(G); a;; = 0 otherwise. (For such representations we
will assume that the vertices have been numbered to correspond to the indices used in the matrix.)

A common matrix representation of graphs is the Laplacian. Let D be the matrix with
d;; = degree(v;) for v; € V(G), and all off-diagonal entries equal to zero. Let A be the adjacency
matrix for G as defined above. Then the Laplacian representation of G is the matrix B = D — A.

The following are some useful facts about the Laplacian matrix:

¢ The Laplacian is symmetric positive semidefinite, so all its eigenvalues are greater than or
equal to O (see e.g. [Moh88]).

o A graph G is connected if and only if O is a simple eigenvalue of the Laplacian of G (see
e.g. [Moh88]).

o The following characterization of A, holds (see e.g. [Fie73]):

o If G is a crossproduct of two graphs G and (G2, then the eigenvalues of the Laplacian of G
are all pairwise sums of the eigenvalues of Gy and G, (see e.g. [Moh88]).

o For any vector x and Laplacian matrix B of the graph G, we have (see e.g. [HK92]):

xTBx= ) (zi-g;) (1)

(vi,v;)EE(G)

e For a graph G and its Laplacian B, X, of B figures in upper and lower bounds on the
isoperimetric number for G [Moh89]. In particular, if G is not one of K|, K>, or K3, we

have:
2 <i(6) < Yal2a— ), )

where A is the maximum degree of any vertex in G. This implies the size of any bisection
is at least "—;\1.



The proof of the upper bound in (2) has interesting implications about the threshold cuts based
on the second eigenvector. For any connected graph G, consider the characteristic valuation. The
vertices of G will receive k < n distinct values; let ¢ > t; > ... > t) be these values. For each
threshold t;, i < k, divide the vertices into those with values greater than ¢;, and those with values
less than or equal to t;. Compute the cut quotient g; for each such cut, and let g, be the minimum
over all ¢;'s. The following theorem can be derived from the proof of Theorem 4.2 in [Moh89]:
Theorem 3.1 Let G be a connected graph with maximal vertex degree A with second smallest
eigenvalue )y. Further, let G not be any of K\, K, or K;. Let iy be as defined above. Then

A
F < Gmin < /2228 = Xa).

This can be extended to the separator ratio for the best u; cut in the obvious way.

A weighted graph is a graph for which a real value w; is associated with each vertex v;, and
a real, nonzero weight w;; is associated with each edge (v;,v;) (we consider a zero edge weight
to indicate the lack of an edge). For our analysis, we need a matrix representation for weighted
graphs. Fiedler extended the notion of the Laplacian to graphs with positive edge weights [Fie75];
he referred to this representation as the generalized Laplacian. However, we need an even more
general representation that can be used for any weighted graph. Hence we define the standard
matrix representation B of a weighted graph G as follows: B has b;; = w;; fori # 7 and
(vi,v;) € E(G), bij = —w;, and b;; = 0 otherwise. Note that the Laplacian matrix of a graph is
also the standard matrix representation of the graph with vertex weights set to be the degrees of the
vertices, and all edge weights set to 1.

Note that the standard matrix representation of any weighted graph is a real symmetric matrix,
and that any such matrix can be represented as a specific weighted graph. Any theorems about
symmetric, real matrices apply to standard matrix representations of graphs. The following two
theorems about the interlacing of eigenvalues are particularly useful when applied to standard
matrix representations.

The First Interlacing Property (the following statement is from page 411 of reference [GL89];
the proof is in [Wil65]): If A, denotes the leading 7 x 7 principal submatrix of an n X n symmetric
matrix A, then for r = 1 : n — 1 the following interlacing property holds:

/\r+l(Ar+l) 2 Ar(Ar) 2 /\r(Ar+l) 2 ...
cee 2 A(Argr) 2 M(A4r) 2 Mi(Argr)-

The Second Interlacing Property (the following statement is a restricted version of a theorem
from page 412 of reference [GL89]; the proof is in [Wil65]): Suppose B = A + acel, where A is
a real symmetric n X n matrix, c is a real unit-length vector, and a is real and greater than 0. Then
foralli, 1 <1< n—1we have:

M(A) € Xi(B) < Aigi(A)

The Second Interlacing Property implies that if an edge e is added to a graph G to produce the
graph G’, then \»(G) < X(G').



3.1 The Structure of Laplacian and Standard Matrix Representation Eigenvectors

The theorems and lemmas presented in this section are useful in proving resuits about the eigen-
vectors of the families of graphs presented in later sections. The proofs of some of these results
are long and technical; a reader who is interested only in understanding the counterexamples and
their implications presented later in this report is advised to look at the theorem statements and
examples, and to skip the proofs (although the rules for constructing odd and even components at
the end of Theorem 3.4 may be of interest to some readers).

The first set of results concern eigenvalues of Laplacian matrices of graphs with automorphisms
of order 2. A graph automorphism is a permutation ¢ on the vertices of the graph G such that
(vi,v;) € E(G) if and only if (vg(i), v4(j)) € E(G). The order of a graph automorphism is the
order of the permutation on the vertices.

For weighted graphs, we add two conditions to the definition of automorphism: the weights
of vertices v; and vy(;) must be equal for all i, and the weights of edges (v;, v;) and (vg(iy, Vg(j))
must be equal.

The next two theorems concern the structure of eigenvectors with respect to automorphisms of
order 2. They hold both for Laplacians of graphs under the standard definition of automorphism,
and for standard matrix representations of weighted graphs under the definition of automorphisms
for weighted graphs.

Let G be a graph with an automorphism ¢ of order 2. Let B be the Laplacian of G. A
vector x that has z; = z4(;) for all 7 in the range 1 < ¢ < nis an even vector with respect to the
automorphism ¢; an odd vector y has y; = —yg(; for all i. It is easy to show that for any even
vector x and odd vector y (both with respect to ¢), x and y are orthogonal.

Theorem 3.2 [Even-Odd Eigenvector Theorem] Let B be the Laplacian of a graph G that has
an automorphism ¢ of order 2. Then there exists a complete set U of orthogonal eigenvectors of B
such that any eigenvector u € U is either even or odd with respect to ¢. This also holds if G is a
weighted graph, B the standard matrix representation of G, and ¢ a weighted graph automorphism
of order 2. '

Proof: Let P be the permutation matrix that corresponds to the automorphism ¢. Then PTBP =
B. If u is an eigenvector of B with eigenvalue A, then so is Pu. We have the following by the
definition of automorphism:

(PTBP)u= Bu=u.

Since the automorphism is of order 2, PP = I. Multiplying each side of the equation above by P
thus gives
B (Pu) = P(Au) = A(Pu).

For an even vector x, Px = x; for an odd vector y, Py = —y.
P allows us to uniquely decompose any Vector X into an odd component X,q4q and an even
component Xeyen as follows:

x — Px x + Px

Xodd = , and Xeypen = >

For any non-zero X, at least one of the even or odd parts must also be non-zero.
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Let U4’ be any complete set of eigenvectors of B. For an eigenvector u € ', it is easy
to see that a non-zero even or odd component will be an eigenvector for the same eigenvalue.
Since uygq + Ueyen = U, the set of odd and even eigenvectors resulting from decomposing all the
eigenvectors spans the same space as I{. This implies the claimed result.

The proof generalizes to weighted graphs.

a

Corollary 3.3 Let B be the standard matrix representation of a weighted graph G that has one or
more automorphisms of order 2. Then the eigenvector for any simple eigenvalue is either even or
odd with respect to every such automorphism.

Proof: Let u be the eigenvector for some simple eigenvalue A. Consider the decomposition of
u into odd and even parts with respect to some automorphism ¢ with order 2. If both parts were
non-zero, they would be orthogonal and eigenvectors for A. Therefore either the odd part or the
even part must be zero.

a

Since Laplacians can be considered as standard matrix representations given the right weight
assignments, the preceding result aiso holds for Laplacians.

Theorem 3.4 [Even-Odd Graph Decomposition Theorem] For every weighted graph G with
standard matrix representation B and an automorphism ¢ of order 2, there exist two smaller
weighted graphs Goq4 and G cyen (the odd and even components respectively) such that the eigen-
values of B,dq (the standard matrix representation of Goq44) are odd eigenvalues of B, the eigen-
values of Beyen (the standard matrix representation Of Geyen) are even eigenvalues of B, and
[V(Goad)l + |V(Gever)l = |V(G)|. Further, a complete set of eigenvectors of B can be con-
structed from the eigenvectors of Bogd and Beyen in a straightforward way.

Proof: We will demonstrate a similarity transform that when applied to B gives a reducible matrix
with two blocks corresponding to Bogq and Beyer . First we need to introduce some notation.

The vertices of G can be divided into two disjoint sets on the basis of how ¢ operates on them.
Let V; be the set of vertices v; such that ¢(i) = i (i.e., the vertices fixed by #); and let V;,, be the
set of vertices v; such that ¢(j) # j (ie., the vertices moved by ¢). V;, consists of vertices in
orbits of length 2. We call a subset of V,,, that consists of exactly one vertex from each such orbita
representative set and denote it V;.. In the rest of the proof we will assume that we have arbitrarily
specified a particular V.. We use ny, nm, and n, respectively to denote the number of vertices in
each of these sets.

Without loss of generality, we can assume that the vertices have the following numbering: the
vertices in V; are numbered 1 through n; the vertices in V; are numbered from ns + ltongs + n,.
If v; € V,, then we set ¢(i) = ¢ + n,; that is, the vertices in Vi \ V; are numbered ny + n. + 1 to
n in the same order as the vertices in V;. with which they share orbits. Using this ordering and the
definition of the automorphism, we can write B in the following block form

F E; Egp
B=|Ef R E.gu |,
Ej, Eyr R

r

where



e Fisann; x ny submatrix containing the diagonal entries for the vertices in Vy and the
entries for edges between pairs of vertices in Vy;

e Risann, x n, submatrix containing the diagonal entries for the vertices in V. and the entries
for edges between pairs of vertices in V; (recall that the definition of an automorphism and

the numbering we’ve used together imply that the same submatrix applies for the vertices in
Vin \ Vi)

e Ey, contains the entries of B for edges between vertices in V; and V. (our numbering of
the vertices plus the automorphism condition that (v;,v;) is an edge of G if and only if
(vg(i)» Va(j)) is also an edge imply that the submatrix with entries for edges between Vy and
Vim \ V> will be the same); and

e E_4() contains the entries of B for edges between vertices in V; and V; \ V. (again, our
vertex numbering, the automorphism condition that (v;,v;) is an edge of G if and only if
(vg(i)» Va(;)) also is an edge, and the symmetry of B imply that E, ;) = Er:'[;p(r) = E4(ryr)-

We now define the orthogonal matrix T that we will use to transform B. T has the following
form:

I, 0 0
o - I, L7
T= N R
0 ;Inr _—.L_Inr
V@) V@)

where the I’s are identity matrices with the dimension specified in the subscript. We can transform
B as follows:

B' = TTBT
-Ir(;f _1_01 _£1 1B Ep Ex Igf ;01 —'O—I
— X \/lzz)Inr \{(lz)lnr gz} ER E,;;(T) . ﬁ;r \{('lz)Inr
i Tolv Tl | | Efr Erg(r) Jar Vo
-Igf '0.1 ‘OI 1 -EI; ' fﬁfé #ROE
_ il Jpte A —\@( + Erg(r)) \/(2)( = Erg(r)
| 0 72—)1”, _ﬁ;‘[ﬂr || Efr 7(2‘)(R+Er¢(r)) -\f(z—)(_R+Ef¢(’))

[ F V2E;, 0
= \/EE}; R+ ET¢(T) 0
L 0 0 R - E"'d’("')

Note that the resulting matrix is reducible. That is, when viewed as a weighted graph, that
graph has two components. We will show that the blocks of this matrix correspond to Be,en, and
B,g44 as follows:

F \/iEfr
Beuen = [ \/EE}‘T R } and Badd =R- Er¢(r)
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Since B’ is similar to B, it has a number of useful properties. Because B’ is reducible, every
eigenvalue of B,4q is an eigenvalue B'; likewise every eigenvalue of Beyen is an eigenvalue B'.
By similarity, they are also eigenvalues of B.

Now consider an eigenvector u of Beyen- Define v as follows: for 1 < 7 < ny + n, let
v; = uy; let v; = 0 otherwise. v is obviously an eigenvector of B’. We can use the matrix T to
transform v into an eigenvector w of B:

I n 0 0 Vs
/ I ! v 1
_ — 0 I, I, | ==V,
w=Tv= \/lfz) r \/(lz) r ve | = | V@
0 — —1

I, : 0 M
Ja'r o va

By our numbering, it is easy to see this is an even eigenvector of B. Since u, v, and w all have
the same eigenvalue ), the claim about eigenvalues of B.en corresponding to even eigenvalues of
B holds. It is easy to show that if two eigenvectors u; and ug of B.ye, are orthogonal, then the
corresponding eigenvectors w and wy are also orthogonal. Thus if an eigenvalue of Beyen has
multiplicity 2, there are two orthogonal even eigenvectors of B with that eigenvalue.

Now consider an eigenvector u of B,q4q4. As before, we can construct an eigenvector v of B':
forng+n, +1<i<n let v; = u;; let v; = 0 otherwise. We again use the matrix T to transform
v into an eigenvector w of B:

L, 0 0 0 0

. 0 —L-I, —i-IL L
w=Tv= Vot Ve 0 | =| Vo
In — In T —-= r
0 Ta' oyt LV J@) #tr)

This is an odd eigenvector of B. Since u, v, and w all have the same eigenvector A, the claim
about eigenvalues of B,4q corresponding to odd eigenvalues of B holds. It is easy to show that if
two eigenvectors uj and ug of B,g4q are orthogonal, then the corresponding eigenvectors wy and
wo are also orthogonal. Thus of an eigenvalue of B,4q has multiplicity 2, there are two orthogonal
odd eigenvectors of B with that eigenvalue.

Note that if we transform all eigenvectors of Bey,, and B,y this way we get n orthogonal
eigenvectors of B (i.e., a full set).

It is easy to construct the components Godqg and Geyen from G. We now give the rules for
these constructions; they are easy to verify from the matrix entries of B'.

Go4q is @ weighted graph on V;. Start with the subgraph of G induced by V;, with the weight
of vertex v; equal to the weight of v; in G and the weight of edge (vi,v;) equal to its weight in G.
Adjust the weights according to the following two rules:

o Degree weight adjustment rule: For each vertex v; € V., if there is an edge in G from v;
t0 Vg(;) (i.€., there is an edge from v; to its image under the automorphism), then increase the
weight of v; in Goda bY Wig(i)-

o Edge weight adjustment rule: For each pair of distinct vertices v;, v; € V; and i < j, if
there is an edge (v, vy(;)) in G (i.e., if there is an edge from v; in the representative set to
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the image of v; outside of the representative set), add an edge (v;, v;) with weight —w; 4;)
to G,44 (if there is already an edge (v;,v;) in G 44, Subtract w; 4(;) from its weight). To see
that this rule is well-formed with respect to permutations of the vertex numberings, note that
since ¢ is an automorphism of order 2, the existence of an edge (Vi vy j)) in G implies the
existence of an edge (vg(;), v;) in E(G) with the same weight. That is, for any + < j we
have

Godd

— G —wC . = w% — wC
Wi = W = Wiggy = Wi T Wiy

where the superscripts on the weights indicate the graph for which they’re defined. Thus, if

we renumbered the vertices in a way that assigns v; an index less than the new index of v;,
the weight of the corresponding edge in G 44 Would be unaffected.

Delete any zero-weight edges from Goq4.

G even is a weighted graph on V. U V. Start with the subgraph of G induced by V;. U V¢, with
the weight of vertex v; € V, U V; equal to its degree in G and the weight of each edge (vi,v5)
equal to its weight in G. Adjust the weights according to the following three rules:

o Degree weight adjustment rule: For each vertex v; € V;, if there is an edge in G from v;
to vy(;) (i-e., there is an edge from v; to its image under the automorphism), then decrease
the weight of v; in Geyen DY Wig(s)-

o V, -to-V¢ Edge weight adjustment rule: For each edge (vi,v;) in Geyen such that v; € V;.
and v; € Vs (i.e., for each edge between the fixed vertices and the representative vertices),
multiply its weight by V2.

e V,-to-V; Edge weight adjustment rule: For each pair of distinct vertices v;, v; € V; and
i < j, if there is an edge (vi, vy(;)) in G (i.e., if there is an edge from v; in the representative
set to the image of v; outside of the representative set), add an edge (v;,v;) with weight
W; 4(;) 1O Gleven (if there is already an edge (vi, v;) in Geven, add w; 4(;) to its weight). We
leave it to the reader to check that this rule is weil-formed with respect to permutations of
the vertex numberings; the argument is the same as for the edge weight adjustment rule in
the odd case.

Delete any zero-weight edges from Geyen-
Since
[V(Goad)| + IV (Geven)| = Vil + 2IVi| = |V5| + [Vim| = [V(G)],

the claim about the combined size of the two graphs holds.
O

It is useful to consider an example of even-odd graph decomposition before proceeding. We
will demonstrate one way in which a complete binary tree of three levels can be decomposed.
The initial graph is shown in Figure 3.1 below. The first automorphism we use maps leaves with
the same parent to each other. Applying the rules for constructing the odd and even components
given at the end of the proof above, we get the result shown in Figure 3.1. The odd component
is fully decomposed; we can apply one more step of decomposition to the even component using
the automorphism that maps the corresponding vertices at the lowest two levels to each other. The
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Figure 3: The Initial Graph

result is shown in Figure 3.1. This example will also be useful in arguments about bounding the
smallest nonzero eigenvalue of complete binary trees below.

The following technical lemmas about the eigenvalues and eigenvectors of weighted path
graphs will be useful in subsequent results.

Lemma 3.5 [Zero Entries of Path Graph Eigenvectors Lemma] Let B be the standard matrix
representation of a weighted path graph G on n vertices. For any vector X such that Bx = X for
some real )\, z, = O implies x = 0. Likewise, | = 0 implies x = 0. If there are two consecutive
elements z; and z;,| that are both zero, then X = 0.

Proof: We will prove the first result by induction. The base case is for a 2 X 2 matrix with
diagonal entries by and by, and off-diagonal entries bj2 = by = —c¢. Letx and A be as specified
by the lemma statement, and assume that z; = 0. The second element of the vector resulting from
multiplying Bx = Ax is —c -z = Azy = 0. Since ¢ # 0 by definition (G is a weighted path
graph), we must have z; = 0, which implies that x = 0.

For the induction step, assume that the result holds for all ¢ < k, and consider the standard
matrix representation of a weighted path graph on k + 1 vertices. Let the weight of the edge from
vk t0 V4| be c. Let x and A be as stated, and assume that 2,4, = 0. For the k + 1% entry of Bx
we have —c - £ = Azgyy = 0. Thas zx = 0. Let x' be the subvector of x consisting of the first £
entries. Note that with 4| = 0 we have that x’ and A meet the lemma conditions for the principle
leading minor By of B, and that zj, = 0. But the leading principle minor By is the standard matrix
representation for the weighted path graph derived from G by deleting the last edge and vertex.
Thus, by the induction hypothesis x’ must be 0; because zx4; = O this implies that x = 0

A symmetric argument implies the result for £; = 0. Details are left to the reader.

Again let B be the standard matrix representation of a weighted path graph G. Letxbea
vector meeting the lemma conditions for A, and assume that x has two consecutive zero elements
z; and z,4. If eitherz = 1 or i+ 1 = n, x = 0 by the previous argument. Otherwise, z;41 = 0
implies that the first i elements of x and A meet the lemma conditions for the leading principle
minor B; of B. Note that B; is the standard matrix representation for some weighted path graph.
Thus by our previous result the first ¢ entries of x are zero. By a symmetric argument for the trailing
principle minor, the last n — ¢ entries must also be zero, which gives x = 0.
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Figure 4: After the First Decomposition Step

a

Since eigenvectors are by definition not equal to the zero vector, the theorem above implies
that for eigenvectors of the standard matrix representation B of any weighted path graph, neither
the first nor the last entry is zero. Likewise, such an eigenvector cannot have two consecutive zero
entries. We can use this to give a simple proof of the following lemma (for a different proof, see
e.g. pp- 910-911 of [YG73]).
Lemma 3.6 All eigenvalues of the standard matrix representation B of a weighted path graph G
on n vertices are simple (i.e., have multiplicity one).
Proof: Let u and u’ be any two eigenvectors of B for the eigenvalue A. By the Zero Entries of
Path Graph Eigenvectors Lemma (Lemma 3.5), we have u, # 0and u/, # 0. Let a be u},/un;
is non-zero and real. Then B (au — u’) = A (au — u’). But the n™ element of (au - u’) is 0,
so by Lemma 3.5, we must have au = u’, so u must be a scalar mulitiple of u’; it is not a distinct
eigenvector.
a

A path graph on n vertices has exactly one automorphism of order two: ¢(i) = n — i+ 1.
Thus we can talk about odd and even eigenvectors of a path graph without ambiguity; they are
always with respect to this automorphism.
Lemma 3.7 The eigenvector u, corresponding to the second smallest eigenvalue )\ of the Lapla-
cian B of a path graph G on n vertices is odd.
Proof: By Lemma 3.6, we know that u is simple, so by Corollary 3.3, u; must be either even or
odd. Assume that it is even. We will show that this leads to a contradiction.
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Figure 5: Result of Decomposing Odd Component

Recall the characterization
- xTAx
Az = min ——.
xii X*X

There are two cases we must keep track of: n is odd, and n is even. If n is odd, there is a single
center vertex vra) (we will index the vertices along the path from 1 to n). If n is even, there are
two center vertices with indices 5 and 3 + 1; since we have assumed u; is even, their entries in
u, are equal. Thus, by Lemma 3.5, if n is even the eigenvector entries corresponding to the center
vertices are non-zero. If n is odd, u, is even, and the eigenvector entry for the center vertex is O,
it is easy to check that changing the signs of all eigenvector entries with index less than the center
index gives an odd eigenvector with eigenvalue >, which contradicts the simplicity of A;. Thus,
our assumption that u; is even implies that the eigenvector entries corresponding to the center
vertex or vertices must be non-zero. Let this value be c.

Now consider the vector x = (—¢) - T + us. Recall that u; is orthogonal to 1. Itis easy to see
that x is even, and since ¢ # 0, we have that

xTAx 2. (TTAI) +ul Au, _ ulAuw 3 ul Au,
Ty — - T /. - T2 T T :
XX ((—c)-l+u2) ((—C)'1+U2) c°n + up Uy W2

However, the entries of x corresponding to the center vertex or vertices are 0, so as we did above,
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we can create an odd vector y such that

yT Ay _ xT Ax
yTy

xTx

as follows: set y; = z;, © < % and y; = —x;, 1 > % y is orthogonal to 1, so it meets the criteria
for the characterization of A5, so our assumption that u; is even gives Az < A2, a contradiction.
O

3.2 Bounds on ), for Trees and Double Trees

We now use the results from the preceding section to prove some upper and lower bounds on A; for
the Laplacian of the complete binary tree and for the Laplacian of a graph we refer to as the double
tree. We define a double tree as two complete binary trees of k levels for some k& > O connected by
an edge between their respective roots. The bounds developed below will be useful in Section 5.

To bound the size of )\, of a complete binary tree, we first apply the Even-Odd Decomposition
Theorem (Theorem 3.4) a number of times to show that the eigenvalues of a balanced binary tree
can be computed from a few simple types of weighted graphs. We then bound the eigenvalues for
these types of graphs using the interlacing theorems and matrix perturbation techniques. We show
that for £ > 3, a complete binary tree on k levels with n = 2% — 1 vertices, \; = G)(%). More
specifically, % <A< %

For the following argument, we will assume that we are working with a complete binary tree
of k > 2 levels. Asabove, n = 2F — 1.

We start by applying the Even-Odd Graph Decomposition Theorem with respect to the auto-
morphisms that each map one pair of neighboring leaves to each other. There are 2*~! leaves and
2%-2 guch automorphisms. For the odd eigenvalues, we get A = 1 for each of the 252 single-vertex
graphs that comprise the odd components. The result for k = 3 was shown above in Figure 3.1.

To help in understanding the structure of the even component that results from the preceding
sequence of decompositions, we introduce the following terminology: for i > 3, the i odd
collapsed tree graph is a weighted graph on i — 1 vertices, with every edge having weight V2,
vertex vy having weight 1, and all other vertices having weight 3 (the odd collapsed tree graph for
i = 5 is shown in Figure 3.2 below). With this terminology, we can describe the resulting Gyer, in
the following way: the even component has the structure of a complete binary tree of k — 1 levels,
except that the leaves of the tree are replaced by the odd collapsed tree graph for ¢ = 3; the vertices
at level k — 2 are connected to the pseudo-leaves by edges of weight 1 to the vertices v, of the odd
collapsed tree graphs. This is illustrated for k = 3 in Figure 3.1 above.

We now repeat the process for the 2%=3 automorphisms that map neighboring pairs of the
odd collapsed tree graphs to each other. The odd eigenvalues found during these steps are the
eigenvalues of the odd collapsed tree graph for ¢ = 3, each occurring 253 times, plus the
eigenvalues of the new even component, a weighted graph that looks like a complete binary tree
with k — 2 levels, except that the leaves are replaced by odd collapsed tree graphs for ¢ = 4. Once
again, each pseudo-leaf is connected to its parent by an edge of weight 1 from vertex v3 of the odd
collapsed tree graph.
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Figure 6: Odd Collapsed Tree Graph, : = 5

We continue this process; at the j th series of reductions we get eigenvalues for the odd collapsed
tree graph for i = j + 1 and an even component that is a weighted graph that looks like a complete
binary tree with k — j levels, except that the leaves are replaced by odd collapsed tree graphs for
t=J7+2.

At the last decomposition step, we start with a weighted graph that looks like a complete binary
tree with 2 levels, except that the leaves have been replaced by odd collapsed tree graphs for: = k.
Applying the Even-Odd Decomposition Theorem one last time, we find that the eigenvalues for
this graph are those of the odd collapsed tree graph for ¢ = k plus the eigenvalues for a graph on
I vertices that consists of the odd collapsed tree graph for i = k plus vertex v with weight 2, and
edge (vk—y, vx) With weight v/2 (we will refer to this latter graph as the even collapsed tree graph
for i = k; the even collapsed tree graph for i = 5 is shown in Figure 3.2 below). Recall that the

3 3 3

1 ® —— —e < @ 2

L]

S
5—»

Figure 7: Even Collapsed Tree Graph, ¢ = 5

eigenvalues not represented by either of these final components are either 1 (from the first set of
decompositions) or eigenvalues for the odd collapsed tree graphs fori, 3 <7< k.

Let u(¥) be the smallest eigenvalue of the odd collapsed tree graph for ¢ = k. We claim that
), for the complete binary tree on k levels is equal to 1) ulk) is less than p(¥) for any i < k by
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the First Interlacing Theorem. We will show in the argument below that p®) < 1fork >3 It
is easy to show that the standard matrix representation for the even collapsed tree graph for: = k
is singular, so its smallest eigenvalue is 0. Thus, an application of the First Interlacing Theorem
gives us that the smallest eigenvalue of the odd collapsed tree graph for i = k is less than or equal
to the first non-zero eigenvalue of the even collapsed tree graph for : = k (the standard matrix
representation of the former is a leading principle submatrix of the latter).

Bounds on p(¥) can be computed using perturbation techniques. Note that the standard matrix
representation for the odd collapsed tree is nonsingular, so the smallest eigenvalue is the one of
interest.

For the rest of this argument, we will use two matrices. The first, B, is the standard matrix
representation for the odd collapsed tree graph for ¢ = k. The determinant of B is 1 (this is an easy
induction proof on k). The vertex ordering is as given in the description of the graph given above.
The second matrix, B’, has

1 1 n—3

b, :b _  =1- =
=T T T_1 -1

and all other entries are the same as for B. The determinant of B’ is O (again, easily shown via an
easy induction proof).

Let v be the eigenvector of B’ corresponding to A = 0 (we’ll assume that it’s scaled to unit
length). Then we have ,
Yl

VTB/V = VTBV - F—:—I

=0
2
By the Courant-Fischer Minimax Theorem (see, e.g., [GL89]), 5,:”,1-_—‘ is an upper bound on p(¥)
for B. We will now show that for k£ > 3, this upper bound is strictly less than % Note that this
will immediately imply that u"‘) is less than 1.
v2
Because 2F~! — 1 = 2 , we will have that ﬂ_‘}'—l <z lf v} < 2=l Assume that this is not

so; we will show that this assumption contradicts the fact that v is unit length Since B'v = 0, the
definition of B’ gives us that

n—3 1 /(n=-3
b||vl—\/§v2—n_lv|—\/§vz—0 — v2—7§-<n_1)v1,

and by our assumption

, 1 /n-3)\? 1 (n-3)?
v = = > 5o
2\n-1 2n n-—1

Since v is unit length, our assumption yields

k-1 2
s 1 I1{n-3
1=vTv=§ v,-2_>_v‘|'+v%=——<n—l+—(l—)—>>l.

prs n 2 n—1

a contradiction (the last inequality holds because for k > 3, we have n > 7, and thus (" 3) > 2).
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To get a lower bound on £, let u be the unit-length vector such that u? Bu is minimized
(i.e, uTBu = u(k)). We have:

2
Uy

uTB'u = uTBu - sz:'—l

Y O B
The last inequality holds by a version of the Second Interlacing Property with o < 0; B’ has a zero
eigenvalue, and all its other eigenvalues will be greater than or equal to the (positive) eigenvalues
of B. B’ is thus positive semidefinite.

The above equation implies that if we can show that u; > .

V2 2*23
Since B is tridiagonal, this is easily done by using B and u'*) to generate a recurrence for the
entries of u.

Consider the first entry of Bu. We have u| — V2uy = p*Fu,y. Since 1 > p¥) > 0, we have
U < % This provides the base case for a proof by induction that u;4 < % The details are left

to the reader; the previous inequality serves as the induction hypothesis; the matrix B gives us

, we will have pu(¥) > > o

3ui — V2(uing + uigr) = pFu;,

which can be used to prove the desired result for u;4.
Since u is unit length, we have

T k-1 ) k-1 1 2(i-1) 5 2k—l 1 (-1 )
l=uu= u; < (———) uy=u (—) < 2ujy,
; ; \/5 ! IZ 2 1

=1 =1

which gives the desired result that u; > %

Thus we have proved the following lemma:

Lemma 3.8 For a complete balanced binary tree on k > 3 levels and n = 2% — 1 vertices, we
have % <M< %

For double trees where each of the component trees has k levels and n = 2k+1 _ 2 vertices,
we have the following lemma:

Lemma 3.9 For a double tree on n > 14 vertices, we have % <M< %.
Proof: The proof will make use of a number of facts from the proof of the A2 bounds for complete
binary trees given above.

We start by noting that we can apply the Even-Odd Decomposition Theorem starting from the
leaves of the trees as we did above. The odd eigenvalues determined at each step are the same as
for the complete binary tree.

At the last decomposition step (the one that divides between the two roots) results in two
components: the even component G, which is the same as even component for a tree of k levels,
and the odd component G,, which is like the k& + 1% odd collapsed tree graph, except that the
weight of vertex k is 4 rather than 3. Again, the standard matrix representation is singular for G.
and non-singular for G,,; an application of the Second Interlacing Theorem thus implies that A; for
the double tree is the smallest eigenvalue for G,.

Next, note that the standard matrix representation of the odd collapsed tree for ¢ = kisa
principle submatrix of the standard matrix representation for G,. By the First Interlacing Theorem
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and the analysis of the odd collapsed tree above, we immediately have that A, < 2—,;2_—1; since the

double tree has n = 25! — 2 vertices, this implies that A, < 2.

Finally, note that G, is the odd collapsed tree for i = k + 1 with 1 added to the weight of vertex
k. We can thus apply the Second Interlacing Theorem and the results for the odd collapsed tree
above (recall that in the proof we showed that u(¥) > '2‘41__2) to show that A, > p(s+1) > 5;5,—_—2

since the double tree has n = 25+! — 2 vertices, this implies that A, > ni
This completes the proof of the lemma.
O

4 A Bad Family of Bounded-Degree Planar Graphs for Spectral Bisec-
tion

In this section we present a family of bounded-degree planar graphs that have constant-size sepa-
rators. However, the separators produced by spectral bisection have size ©(n) for both edge and
vertex separators. Since there are algorithms that produce O(y/n) vertex separators for planar
graphs, and hence O(+/n) edge separators for bounded-degree planar graphs, spectral bisection
performs poorly on these graphs relative to other algorithms.

The family of graphs is parameterized on the positive integers. G consists of two path graphs,
each on 3k vertices, with a set of edges between the two paths as follows: label the vertices of one
path from 1 to 3k in order (the upper path), and label the other path from 3k + 1 to 6k in order (the
lower path). For 1 < ¢ < k there is an edge between vertices 2k + i and 5k + ¢. This was shown
in Figure 1 in the Introduction. It is obvious that G is planar for any k, and that the maximum
degree of any vertex is 3.

Note that the graph has the approximate shape of a cockroach, with the section containing
edges between the upper and lower paths being the body, and the other sections of the paths being
antennae. This terminology will allow us to refer easily to parts of the graph.

G has one automorphism of order 2 that maps the vertices of the upper path to the vertices
of the lower path and vice versa. For the rest of this section, the terms “odd vector” and “even
vector” will be used with respect to this antomorphism. Thus, an even vector x has z; = T34 for
all i in the range 1 < ¢ < 3k; an odd vector y has yi = —¥y3k+ forall:, 1 < i< 3k.

We can now discuss the structure of the eigenvectors of the Laplacian of G.

Lemma 4.1 Any eigenvector u; with eigenvalue ); of the Laplacian By of G can be expressed
in terms of linear combinations of even and odd eigenvectors with eigenvalue \;. In particular, u;
can be expressed as a linear combination of:

e an even eigenvector of By in which the values associated with the upper path are the same
as for the eigenvector with eigenvalue ); (if it exists) of a path graph on 3k vertices, and

e an odd eigenvector of By, in which the values associated with the upper path are the same as
for the eigenvector with eigenvalue A; (if it exists) of a weighted graph that consists of a path
graph on 3k vertices for which the vertex weights of vax4| through vsy have been increased
by 2.
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Proof: The first claim follows by the Even-Odd Eigenvector Theorem applied with respect to the
automorphism that maps the vertices of the upper path to the vertices of the lower path and vice
versa.

The claim about the specific structure of the u;’s follows by a direct application of the
construction used in the proof of the Even-Odd Graph Decomposition Theorem with respect to the
same automorphism.

O

We now give the proof that spectral bisection gives bad separators for the family of graphs G.
Theorem 4.2 Spectral bisection produces ©(n) edge and vertex separators for Gy for any k.
Proof: The first step is to show that u; is odd. Intuitively, this implies that the spectral method
will split the graph into the upper path and the lower path.

. T . .
Recall that A, = min, - 225X We will construct an odd vector x such that the quotient
r r Dy i "XTx q
x—x-%} is less than Li%x for any even eigenvector y orthogonal to 1 (1 is the smallest even

eigenvector). To do this, we need to show that gc%*g is less than the second smallest even
eigenvalue. From Lemma 4.1 above, we know that the second smallest even eigenvalue of By is
the same as the second smallest eigenvalue of the Laplacian of a path graph on 3k vertices; it is
well-known that this value is 4 sinz(&) (see for example [Moh88]).

Let z be the eigenvector corresponding to the second smallest eigenvalue 1, for the Laplacian
B of the path graph G on 4k vertices (12 = 4 sin?( ). Construct x as follows:

Z; 1 <1i< 2k,
;= { 27k-i+1 3k+1<1i< 5k, and
0 otherwise.

That is, we assign the first 2k values from the path G to the upper antenna of the roach, working
in the direction towards the body, and we assign the last 2k entries from G to the lower antenna,
working from the body outward. Since z and x have the same set of non-zero entries, x'x = z7 z.
Likewise, since z is orthogonal to the “all-ones” vector, so is x.

In order to see that xT Bix < zT Bz, recall (1) from Section 3: for Laplacian A and vector y
we have

yiay= Y (wi-v)
(viyv;)EE

For every edge in G except one, there is an edge in G that contributes the same value to this sum.
The one exception is the edge (vak, V2k+ 1)- Since z is an odd vector by Lemma 3.7, and since z
has an even number of entries, zox = —Zz2x+1. By the Zero Entries of Path Graph Eigenvectors
Lemma (Lemma 3.5), it is not possible for both z;; and zzk+1 to be zero, so 2y is equal to some
non-zero value ¢, and this edge contributes 4¢? to the value of zT Bz. On the other hand, there are
two edges in G that contribute non-zero values and that do not have corresponding edges in G:
(vak, Vax+1) and (vsk, vsk+1). Each of these edges contributes ¢? to xT By x. Thus we have

xTBix = 2T Bz — 4 +2c2 =zTBz - 22 < zT Bz.
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Since xTx = z7z, this gives us

T T
x' Byx z" Bz
<
A (Gi) < Tx < T,

= 4sin2(-é%) < 4sin2(67r—k).

That is, the second smallest eigenvalue of By is less than any non-zero even eigenvalue, and is thus
odd by the Even-Odd Eigenvector Theorem (Theorem 3.2).

There are a few details to finish off. In particular, we need to show that there aren’t too many
zero entries in u, (spectral bisection as defined in this paper won’t separate vertices with the same
value). Since u; is an odd vector and since the odd component of G is a weighted path graph,
Lemmas 3.5 (the Zero Entries of Path Graph Eigenvectors Lemma) and 4.1 imply that u; cannot
have consecutive zeros, and the values corresponding to vertices 3k and 6k are non-zero. Thus the
edge separator generated by spectral bisection must cut at least half the edges between the upper
and lower paths; since none of these edges share an endpoint, the cover used in generating the

vertex separator must include at least this number of vertices. The theorem follows.
]

5 A Bad Family of Graphs for the “Best Threshold Cut” Algorithm

While the roach graph defeats spectral bisection, the second smallest eigenvector can still be used to
find a small separator using the “best threshold cut” algorithm. In particular, Theorem 3.1 implies
that considering all threshold cuts induced by u, will let us find a constant-size cut: If ¢,y is the
minimum cut quotient for these cuts, then

gmin < \/A2(24 = A2) < %,

which implies gmin 1S 0(%). Since the denominator of gy, is less than or equal to 3, the number
of edges in this cut must be bounded by a constant.

In this section we show that there is a family of graphs for which the “best threshold cut”
algorithm does poorly. Recall that in Section 3.2 we defined adouble tree as a graph that consists of
two complete binary trees of k levels for some k > 0, connected by an edge between their respective
roots. The tree-cross-path graph consists of the crossproduct of a double tree on p; vertices anda
path graph on p, vertices. We will show below that there are tree-cross-path graphs that will defeat
the “best threshold cut” algorithm. To do so, we will use the bounds from Section 3.2 on Ay for
trees and double trees.

We can formally state the result for this section as follows:

Theorem 5.1 There existsa graph G for which the “best threshold cut” algorithm finds a separator
S such that the cut quotient for S is bigger than i(G) by a factor as large (to within a constant) as
allowed by the theoretical bounds provided by Theorem 3.1.

Proof: Let G be the tree-cross-path graph that is the crossproduct of a double tree of size p and a
path of length Cp% for some c in the range 3.5 < ¢ < 4. To insure that we have integer sizes for the
tree and the path, we restrict p to integers of the form 2k _ 2 for k > 2. Then we choose c in the
range specified such that cp% is an integer (by our choice of p there will be an integer in this range).
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Recall that the eigenvalues of a graph crossproduct are all pairwise sums of the eigenvalues
from the graphs used in the crossproduct operation. Let v, be the second smallest eigenvalue of
the double tree on p vertices, and let y» be the second smallest eigenvalue for the path on cpz
vertices. If uy < 17, then A; for the crossproduct will be u (i.e., y2 added to the zero elgenvalue
of the double tree). But we have that y; = 4 sin?(—= T ), and that v, is greater than or equal to, 1

2¢cp 2

1
4sin2( WI) < -,
2cp2 p

Reorganizing, simplifying, and noting that sin(§) < 6 for0 < § < 7, we want

Therefore we need to show that

s

- < Ll, or T < c.
2cp?  2p?
Clearly by our choice of ¢ this inequality holds.

Since path graph eigenvalues are simple (Lemma 3.6), the second smallest eigenvalue of G
will also be simple.

We note that the tree-cross-path graph can be thought of as cpz copxes of the double tree,
each corresponding to one vertex of the path graph. Each vertex in the i copy of the double tree
is connected by an edge to the corresponding vertex in copies ¢ — 1 and ¢ + 1. This description
allows us to construct the eigenvector for the second smallest tree-cross-path eigenvalue as follows:
Assign each vertex in double tree copy i the value for vertex 1 in the path graph eigenvector for p,.
Note that this is the only possible eigenvector since the eigenvalue is simple.

Now consider any copy of the double tree: every vertex in that copy gets the same value in the
characteristic valuation. Thus the cut S made by the “best threshold cut” algorithm must separate
at least two copies of the double tree, and thus must cut at least p edges. There is a bisection S*
of size cp% (cut the edge between the roots in each double tree); because this cut is a bisection, the

ratio between the cut quotient q for S and i(G) is at least as large as the ratio between the sizes of
these cuts:

(G 215 2 o= (pr).

From Theorem 3.1, we have that

A )
72 <i(G) < ¢ < /A28 = N).

This plus the fact that the tree-cross-path graph has bounded degree (A = 5) implies we must have

N N A
z'((é;)S s ‘O("\/Azz)-o(l’)~

These two bounds imply that, to within a constant factor, the ratio is as large as possible, and the
theorem holds.

O
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6 A Bad Family of Graphs for Generalized Spectral Algorithms

The results of the previous section can be extended to more general algorithms that use some
number k£ (where k might depend on n) of the eigenvectors corresponding to the £ smallest
non-zero eigenvalues. In particular, consider algorithms that meet the following restrictions:

e The algorithm computes a value for each vertex using only the eigenvector components
for that vertex from k eigenvectors corresponding to the smallest non-zero eigenvalues (for
convenience, we refer to these as the k smallest eigenvectors). The function computed can
be arbitrary as long as its output depends only on these inputs.

o The algorithm partitions the graph by choosing some threshold ¢ and then putting all vertices
with values greater than ¢ on one side of the partition, and the rest of the vertices on the other
side.

e The algorithm is free to compute the break point ¢ in any way; e.g., checking the separator
ratio for all possible breaks and choosing the best one is allowed.

We will call such an algorithm purely spectral.

The following theorem gives a bound on how well such algorithms do when the number of
eigenvectors used is a constant:
Theorem 6.1 Consider the purely spectral algorithms that use the k smallest eigenvectors for k
a fixed constant. Then there exists a family of graphs G such that G € G has a bisection S* with
1S > (kzn)%, and such that any purely spectral algorithm using the k smallest eigenvectors will

produce a separator S for G such that | S| > (;lr%%) 2.

Proof: We will show that G is the set of tree-cross-path graphs that are the crossproducts of double
trees of size p (where p is an integer of the form 2k — 2 for k > 3) and paths of length cp% , where
c is a constant chosen such that 7k < ¢ < 7k + 1 and cp% is an integer.

Recall that the eigenvalues of a graph crossproduct are all pairwise sums of the eigenvalues
from the graphs used in the crossproduct operation. Assume for the moment that the £ smallest
nonzero eigenvalues of any G € G are the same as the k smallest nonzero eigenvalues of the path
graph used in defining G. This will clearly hold if we can show that these k eigenvalues are smaller
than )\, of the double tree; in that case the k smallest non-zero eigenvalues of the crossproduct will
be these eigenvalues from the path graph added to the zero eigenvalue of the double tree. Since
the path graph eigenvalues are simple (Lemma 3.6), the corresponding tree-cross-path eigenvalues
will also be simple.

We note that the tree-cross-path graph can be thought of as cp% copies of the double tree,
each corresponding to one vertex of the path graph. Each vertex in the ™ copy of the double tree
is connected by an edge to the corresponding vertex in copies ¢ — 1 and ¢ + 1. This description
allows us to construct an eigenvector for each of these k tree-cross-path eigenvalues as follows:
Assign each vertex in double tree copy ¢ the value for vertex i in the path graph eigenvector for this
eigenvalue. Note that these are the only possible eigenvectors since these eigenvalues are simple.

The purely spectral algorithm will produce a cut S with cut quotient g. Recall our assumption
about the k smallest eigenvectors and consider any copy of the double tree: since every vertex in
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that copy gets the same value for each eigenvector, the same value will be assigned to each vertex
in this copy by the algorithm. This implies that S must separate at least two copies of the double
tree, and thus must cut at least p edges.

C . 1 .
There is bisection S™ of size cp2 (cut the edge between the roots in each double tree); because
3 2 1 . .
n = cp2 and ¢ > k we have |§*| > k3n3. It is obvious that

|5|>(M)2.
2\ )

since we have ¢ < mk + 1, the claim in the theorem statement holds if our assumption holds.
To prove that the assumption about the form of the £ smallest eigenvectors holds forall G € G,

we still need to prove that a path graph on cp% vertices has k nonzero eigenvalues smaller than
Az for a double tree on p vertices. Recall that the eigenvalues of a path graph on [ vertices are
4sin?(Z}) for 0 < i < [, and that A, for a double tree on p vertices is greater than or equal to %.

Therefore we need to show that
) 7rk 1
4 sin -] < -
2cp? p

Reorganizing, simplifying, and noting that sin(6) < 8 for0 < 6 < 7, we have

nk 1
- < —, or mk <ec.
2cp?  2p2

Clearly this inequality holds.
O

Note that for the case in which & is constant, we have the following results:

o the cut quotient gs will be no better than the best cut quotient g, produced by looking at
all threshold cuts for u,, and

o the gap between i(G) and gnmn is as large as possible (within a constant factor) with respect
to Theorem 3.1.

These results can be shown using techniques from the previous section. Thus, G is a graph for
which using k eigenvectors does not improve the performance of the *best threshold cut” algorithm.

These results also hold for certain variants of the definition of “purely spectral”. For example,
Chan, Gilbert, and Teng have proposed using the entries of eigenvectors 2 through d + 1 of the
Laplacian as spatial coordinates for the corresponding vertices of a graph [CGT94]. The graph is
then partitioned using a geometric separator algorithm [MTV91],{GMT95]. If this technique was
applied (using a fixed d) to the counterexample graph used in the proof above, all vertices in a
particular copy of the double tree would end up with the same coordinates; the geometric algorithm
would then have to cut between copies of the double tree, yielding the same bad cuts as in the
proof.

25



6.1 Purely Spectral Algorithms that Use More than a Constant Number of Eigen-
vectors

There are still a number of open questions about the performance of purely spectral algorithms that
use more than a constant number of eigenvectors (in particular, how well can such algorithms do
if they are allowed to use all the eigenvectors?). However, just using more than a constant number
of eigenvectors is not sufficient to guarantee good separators. In particular, the counterexamples
and arguments in the previous sections can be extended to prove the following theorem:
Theorem 6.2 For large enough n and 0 < € < %, there exists a bounded-degree graph G on n
vertices such that any purely spectral algorithm using the n® smallest eigenvectors will produce a
separator S for G that has a cut quotient greater than i(G) by at least a factor of n(%_‘) -1
Proof: Once again, we will take G to be the tree-cross-path graph. As in the previous two proofs,
we choose p; (the double-tree size) and p; (the path size) such that the smallest n¢ eigenvalues
of the crossproduct are the same as the smallest n eigenvalues of the path graph. Once again, a
purely spectral algorithm will separate two adjacent double trees, while a better cut would cut the
edges between the roots of the double trees. It remains to choose p; and p; such that the claim
about the smallest eigenvalues of the crossproduct holds, and to show that the resulting cut is bad.
We set p, to some arbitrary p, subject to the conditions presented below that p be sufficiently

large. Then p2 = [p(%"'z‘).‘ . Note that we can choose p large enough such that

p>plit) 115 p,.

Thisimplies thatp > n 2 ,where n = p;p,. Note that this allows us to show easily that n¢ < P < P2
(i.e., that there are sufficiently many eigenvalues from the path graph). We also note that even for
fairly small p, py < 2p(3*29, which implies that n < 2p(3+%).

Now consider the ratio of the cut produced by cutting the double-tree edges versus the cut
produced by a purely spectral method under the assumption that the n¢ smallest eigenvalues are the
same as for the path graph. As in previous proofs, this ratio is at least as large as the ratio between

the number of edges cut:
p

The inequality will hold for p chosen sufficiently large. Using the fact that p is also big enough
that p > n%, we have

> p(%_zc) -1.

p %_26) —-1> n%(%—ZC) —-1= n(%—-c) — 1.

All that is left to prove is the assumption about the smallest eigenvalues. If we leta = % - 2¢,
then o > 0 and one of the inequalities above can be written as n < 2p(2=2). Recall that the
eigenvalues of a path graph on k vertices are 4 sin?( ) for 0 < i < k, and that A3 for a double tree
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on p vertices is greater than or equal to %. We need to show that for p large enough,

mnt

2 [p(%“f)]

Reorganizing, simplifying, noting that sin(6) < 6 for 0 < 6 < %, and applying the inequality
above, we want to show that there is a p large enough such that

4sin? <

1
P

€ s 2p(2‘°‘) ‘ 2€p—ac 1
77rln < ( 1_2)=7rpl <— or m2° < p*.
2 [p(5+2c).l 2p(2+ t:) 2p2 2p2

Clearly this inequality holds for large enough p.
a

6.2 A Final Note About Tree-Cross-Path Graphs

While the tree-cross-path graph appears to be very specialized, we can make the following argument
that it has some relation to practice: We noted in Section 3 that the Second Interlacing Theorem
implies that adding an edge to a graph G gives a new graph G’ with A greater than or equal to
X, for G. Therefore the preceding results holds if we replace each tree in the double trees with
a graph that has a complete binary tree as a spanning tree (the edge between the two graphs will
be between the vertices at the roots of the spanning trees, and connections between copies of the
“double graphs” in the crossproduct will be between corresponding vertices in the spanning trees).
We could therefore construct a three-dimensional finite element mesh from our example that would
represent the channel tunnel (the Chunnel) between England and France; the chunnel is a pair of
long tubes with a small connection between the center.
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