Efficient Parallel Algorithms for Directed Planar
Graphs ¥

Steve Guattery Gary L. Miller

Abstract

We show that computing the strongly connected components and testing reacha-
bility in a directed planar graph can be performed in O(log n) time using 7 processors
by a randomized algorithm. In the same complexity we can also compute such things
as ear decompositions. This improves the results of Kao and Klein [KK90] who
showed that these problems could be performed in O(Qlog n) time using n processors
for some unspecified constant k. In general we give a general paradigm for contract-
ing a directed planar graph to a point and then expanding it back. Using this new
paradigm we then “overlay” our application in a fashion similar to tree parallel tree
contraction for trees [MR85, MR89].

1 Introduction

Testing if there exists a path from a vertex x to y in a directed graph is known as the
reachability problem. Most graph algorithms either implicitly or explicitly solve this
problem. For sequential algorithm design the two classic paradigms for solving this
problem are BFS and DFS. They only require time at most proportional to the size of the
graph. Parallel polylogarithmic time algorithms for the problem now use approximately
oM(n)) proccssors. Ullman and Yannakakis give a probabilistic algorithm which that
works in O(y/n) time using n processors for sparse graphs, [UY90]. This blow-up in the
amount of work for parallel algorithms makes work with general directed graphs on fine

*School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213-3890.
tThis work was supported in part by NSF grant DCR-8713489.

grain parallel machines virtually impossible. One possible way around this dilemma is to
find useful classes of graph for which the problem is efficiently solvable. In pioneering
papers Kao and Shannon [KS89] and Kao and Klein [KK90] showed that the reachability
problem and many related problem could be solved in polylogarithmic time using only
a linear number of processors. Their methods require one to solve each of many related
problems by reducing one problem to another. Each reduction introduces more logarithmic
factors to the running time. In the end they used O(log®) time to solve the planar reachability
problem for multiple start vertices.

In this paper we give a general paradigm for contracting planar graphs to a point. We
will show that after O(log n) rounds of contraction an n-node directed planar graph will
be reduced to a point. There have been several contraction rules proposed for undirected
planar graphs [Phi89, Gaz91] but this is the first set for a directed planar graph. After
we present the rules for contraction it will be a relatively simple mater to “overlay” rules
necessary to compute reachability and strong connectivity.

Throughout the paper we will assume that the graph G = (V, E) is a directed embedded
planar graph. If an an embedding is not given we can construct one in O(log n) time using
n/ log n processors using the work for Gazit [Gaz91] and Ramachandran and Reif, [RR89].
We assume that the embedding is given in some nice combinatorial way such as the cyclic
ordering of the edge radiating out of each vertex.

We feel that the class of directed planar graphs are important for at least two reasons.
First, the class includes several important classes including tree and series parallel graphs.
Second, the flow graph for may structured programming languages without function calls
is planar. Our goal is to develop the basic algorithmic foundation for a class of planar

graphs so that a theory of planar flow graphs could be based on it.

The extended abstract is divided into 7 sections. In the second is given the main
definitions necessary to define a analyze the diplanar contraction algorithm. In the third we
give the contraction algorithm for special case of of a planar DAG. In section 4 we prove
the main lemma which make it all work. In section 5 we explain how randomization is
used to break symmetry. In section 6 we explain how to test reachability for the general

case.

2 Preliminaries

Let G(V, E) be a connected embedded planar digraph with faces F. We say that a vertex
of G is a source(sink) if its indegree(outdegree) is zero. The alternation number of a
vertex is the number of direction changes as we cyclically examine the arcs radiating from
a vertex. Thus, a source or a sink vertex is a vertex with alternation number zero. Observe
that the alternation number is always even. Formally, a source/sink vertex is a vertex with
alternation number zero. A vertex is said to be a flow vertex if the alternation number is
two. It is a saddle vertex if the alternation number is 4 or more. The alternation number
of a face can be defined in a similar way. Here we count the number of time the arcs on
the boundary of the face change direction as we traverse its boundary. Thus, a cycle face
has alternation number zero, a flow face has alternation number two, and a saddle face has
an alternation number greater than two. We denote the alternation number of vertex v; by
a(v)), and the alternation number of face f; by a(f.).

Our approach will be based on the following simple but fundamental theorem which
we refer to as the Poincaré index formula. We show that it follows directly from Euler’s

formula.

Theorem 2.1 For every embedded connected planar digraph, the following formula holds:

Y (a/2 =1+ Y(a(f)/2— 1) = -2

[74% fEF

Proof: We note that if at each vertex we cycle through its incident edges in order according
to the embedding, each transition from one edge to the next results in exactly one alternation
either for the vertex or for the face for which the two edges lie on the boundary. If we sum
the number of alternations over all vertices, we see that the total number of alternations in
the graph is equal to the sum of the degrees of all the vertices, which is equal to twice the
number of edges in the graph:

daW)+ Y a(f)=2-|E|.

veV S E€EF

Dividing by two and applying Euler’s formula, we get

d-a)/2+ > al(f)/2=|V|+|F| -2,

veV f€F

which gives us

Y aW/2—|V|+3 alf)/2—|F| =) (a()/2 = 1)+ (a(f)/2 — 1) = 2.

veVv f€F vevV fEF

This formula is important because it tells us a great deal about the structure of a planar
digraph embedding. For example, the discussion above about alternation number tells us

the following about the contributions of various types of faces and vertices in this formula:

e Sinks, sources, and cycle faces each contribute —1. These are the only elements
that make negative contributions; since the sums must come to —2, it is clear that
every embedded planar digraph must have at least two such elements. For example,
a strongly connected planar digraph cannot have any sinks or sources, so it must

have two cycle faces.

e Flow faces and flow vertices contribute 0. There can be an arbitrary number of such

elements.

o Saddle vertices and saddle faces will contribute a positive (integer) amount that de-
pends on their alternation number. Since the sum must always be —2, the embedded
graph must contain a sink, source, or cycle face for every pair of alternations beyond

the first on some saddle.

We will use the formula below to develop invariants and to help us count (for example, we

use it to count particular types of edges).

3 Graph Reduction

In this section we introduce a collection of reduction rules and an associated data structure
for planar directed acyclic graphs (DAGs). The procedure discussed is a simplification
of a general procedure for planar digraphs; however, in the interest of a straightforward
presentation, we have restricted it to work in a special case. We show that a constant
proportion of the edges are “operable;” thus, the rules could be implemented as an O(log n)
reduction procedure for planar DAGs.

We preprocess the graph such that the following are true of G. These three properties

will remain true throughout the algorithm.
1. All vertices are either of type flow, source, or sink.

2. All saddle faces are strictly alternating. That is, the number of arcs counting multi-

plicity on a saddle face f is a(f).

3. No vertex has both indegree and outdegree of 1. Such vertices are considered to be
internal vertices of topological edges; such edges are treated as single edges with

5

respect to the algorithm, though operations on these edges may require the internal

vertices to perform operations such as pointer splicing.

It’s not hard to sec that any planar DAG can be transformed in O(log n) time so that
the first two conditions are true without changing the reachability of the graph. However,
DAGs with saddle vertices will not remain DAGs (saddle vertices will be expanded out

into cycles), so we don’t consider them in the reachability algorithm presented below.

3.1 Reduction Rules

The reduction rules presented below allow us to convert a graph into a smaller graph such
that we can recursively solve the problem on which we’re working. Once the problem is
solved for the reduced graph, we can expand the graph out in reverse order and generate a
solution for the original graph. In applying the rules we may modify the connectivity of
the graph. Therefore we will keep a data structure of pointers to maintain this information;
this data structure is described in the following subsection.

To make the rules simpler to state, we introduce some terminology before we present
the rules. The first set of terms is related to flow faces: Let f be a flow face; then the
edges on its boundary decompose into two paths, a left and a right (we refer to any edge
that is both on the left and the right path as an internal edge). There is also a unique
top and a unique bottom vertex on f . Thus the left path starts at the top vertex and in a
counter-clockwise fashion goes to the bottom vertex, and the right goes from top to bottom
in a clockwise fashion. A top(bottom) edge of f is any edge out of(into) the top(bottom)
vertex. An edge may be both a top and a bottom for the same face. An edge is simply a
top(bottom) if it is the top(bottom) for some flow face.

We associate a data structures with flow faces that will allow us to maintain connectivity
information. For each vertex on a flow face that is not top or bottom we have a cross-

6

pointer, pointing from left to right or right to left. Initially each cross-pointer is set to
bottom. Intuitively, the connectivity onf as determined by its cross-pointers and boundary
edges should be the same as obtained using using arcs and vertices on the boundary of f
or those removed from the interior of f by the reduction rules.

Further, the rank of the left(right) vertices will be maintained on each flow face. Each
arc will know the two faces common to it. Using concurrent reads, a leader for each face
and topological edge, and a ranking on the faces, the vertices can now coordinate their
actions. For example, pointers can now be tested in constant time to see if they are forward
pointers: simply test if the head and tail are on the same side of the face.

We also mark edges as follows: an edge is red if it is the unique edge into a vertex and
blue if it is the unique edge out. An edge can be both red and blue. Observe that the red
edges of a planar DAG form a forest of divergent trees. The set of blue edges is similar,
except that the forest will consist of convergent trees. We note that there are two classes
of red and blue edges: those that are red(blue) and have no pointer into their head(out
of their tail), which we will refer to as true red(true blue) edges, and those that have
such pointers, which we will refer to as pointer red(pointer blue) edges. In the case of
topological edges, a true red(true blue) edge will have no pointers into(out of) any internal
vertices.

We refer to a source or sink as strictly changing if each edge out of the source(into
the sink) is adjacent to both a flow face and a saddle face. We denote types of saddle faces
by Ui, where the faces of type i are defined to be all faces f such that a(f)/2 — 1 = i. For
example, U; represents the set of smallest saddle faces.

Finally, the rules listed below represent an abstraction of the reduction procedure that

might be applied with slight variations to implement a number of different algorithms. The

variations would be algorithm-specific actions that would be performed for each rule; in
this paper, such actions will be specified with the algorithm description.

We are now ready to list the reduction rules:

[TB Rule] If an edge e is both T and B and it is not common to a saddle face then
remove e. If e is topological, any pointers through internal vertices of e must be
adjusted by setting any cross-pointer into a vertex internal to e to point to the vertex
pointed to by the cross-pointer out of e on its opposite side. The remaining pointers
are unchanged. Information on the structure of the face must be updated (e.g., the

ordering on the left and right paths of the face must be updated).

[sZ Rule and tg Rule] If an edge e is common to two saddle faces and out of(into)

a source(sink) then delete it.
[Degree 1 Rule] If a source or a sink is of degree 1 then remove it and its edge.

[sUs Rule and tUt Rule] If s and s’ are sources of degree at most 4 and distance
4 apart on a saddle face U then identify s and s’ and remove the multiple edge. A

similar rule is applied to sinks.

[s%t Rule] If a source s of degree at most 4 is on the boundary of a flow face and
two saddle faces that lie on either side of the flow face, and one of the edges out of s
on the flow face is incident to a sink ¢, then remove replace the two flow face edges

from s with a single edge as in figure 7??.

[sU,, tU;, sUzt Rule] Let s and ¢ be a strictly changing degree 2 source and sink,
respectively. If s is common to a U, saddle remove s and U, as in figure 77?. A
symmetric rule holds for ¢. If s and ¢ are common to antipodal points of a U, saddle
then remove s, ¢, and U, as in figure 7?72,

8

[True Red(Blue) Edge Contraction Rule] If e is a true red edge out of a source

then contract e. A similar rule holds for true blue edges into sinks.

In addition, the following rule can be applied to shift red edges that are not true red
edges away from a source to an adjacent vertex (a symmetric rule applies for non-true blue

edges at sinks):

[Red(Blue) Edge Flip Rule] If v is a source with a pointer red edge e out, then
remove e and replace the highest (with respect ot the vertex ordering along the flow
face) pointer related to e with an edge (if there is more than one such edge, only
one need be replaced). If the edge is topological, the rule is a bit more complicated.
Consider the case for a red topological edge. Then the flip is performed by deleting
the path up to the first internal vertex with a pointer into it. That pointer is replaced
by an edge. Symmetric rules hold for pointer blue edges into sinks and for such

edges that are topological.

Note that this rule does not make progress in the sense that the number of edges in the
graph is not reduced when it is applied. However, it does allow us to “clean up” sources
and sinks so that other rules may apply. In the algorithm presented below, the number of
pointer red(pointer blue) edges out of(into) any vertex is bounded by a constant (the conflict
resolution rules are designed such that only external edges at flow vertices will become
pointer red or pointer blue edges [For a flow vertex, we define the four edges at the two
alternations to be outer edges; there will be two outer in-edges and two outer out-edges.
The other edges incident to a flow vertex are referred to as inner edges]; the reduction
rules and the bounded degree of the reduction graph insure that at most a constant number
of these red and blue edges will be introduced at sources and sinks). This means we can
do the “clean up” of any source(sink) in constant time. We will refer to a source(sink) that

9

has no pointer red(pointer blue) edges as a clean source(sink).

Definition 3.1 An arc is operable if one of the rules would remove it.

Lemma 3.2 [Flow Face Operability] An edge between two flow faces is operable if it is
neither unique-in nor unique-out (i.e., it is marked neither red nor blue).

Proof: Because the edge is not unique-out, and because there are no saddle vertices in
our graphs, there must be an out edge adjacent in the cyclic ordering at its tail vertex. By
the definition of a flow face, the vertex at the tail must be the top vertex of one of the flow
faces. Therefore the edge is a T edge. A symmetrical argument shows that the edge is also
a B edge. Thus, the edge is operable by the TB rule. O

Lemma 3.3 [Red and Blue Edge Count] In an embedded planar DAG the number of red
and blue edges excluding those incident to a degree-1 vertex is less than or equal to 2/3
the number of edges in the graph.

Proof: As noted above, the red edges (respectively blue edges) form a forest. For the
purposes of this proof, we use the term “trimmed red(blue) tree” to refer to a red(blue) tree
minus any degree-1 vertices and the edges incident to them. We will start by proving that
each trimmed red tree is incident to a number of edges that are either 1) neither red nor
blue or 2) are edges into degree-1 vertices that is greater than or equal to the number of
edges in the tree (the proof for blue trees is symmetric).

We start by claiming that every leaf of a trimmed red tree must have two edges out;
these edges must either be red edges to degree-1 vertices or non-red, non-blue edges. It
can’t be of degree two, in which case the second edge would have to be an edge out; in
that case the vertex would become an internal vertex in a topological edge, contradicting
its being a leaf. If the leaf were of degree 1, that would contradict the tree’s being trimmed.
Thus, each leaf in a trimmed red tree must be of degree 3 or greater. Since the red edge is

10

the unique edge in, there must be two edges out. These edges can’t be blue (unique-out);
if they are red they must be to degree-1 vertices or we contradict the assumption that this
is a leaf of a trimmed red tree. Otherwise, they must be non-red and no-blue. Therefore
the claim must hold.

Next we will pair each edge in the tree with an edge out of the tree that is either a
non-red, non-blue edge or a red edge incident to a vertex of degree 1. Each edge in the
tree must be into either an internal node or a leaf node. We pair each edge into a leaf with
one of the edges out of the leaf; this leaves us with one additional edge per leaf. To handle
internal nodes, we introduce the following terminology: if an internal node has exactly one
tree edge out, we call it a path node; otherwise it is a branch node. Each path node in a
red tree must have an edge out that is either non-red and non-blue or incident to a degree-1
vertex; we pair this edge with the (unique) edge into the path node. The only edges we
still have to pair up are those into branch nodes. However, the number of leaves in a tree
is easily shown to be greater than the number of branch nodes. Therefore, since we have
exactly one red edge into any branch node, we have fewer edges into branch nodes than
we have edges left at the leaves. The edges we’ve associated with each trimmed red tree
edge are clearly distinct, and since we have only counted edges out of trimmed red trees,
no edge we’ve counted could be counted for more than one tree. Therefore there is at least
one distinct edge of one of our two types for every red edge in the graph that is not incident
to a vertex of degree 1.

Bya Symmc(ric argument, there is either a distinct non-red, non-blue edge or a distinct
blue edge out of a node of degree 1 for every blue edge in the graph that is not incident to
a vertex of degree 1. To finish the proof, we observe that each non-red, non-blue edge out

of a red tree could also be an edge into a blue tree; thus, in the worst case we might count

11

each of the edges we’re interested in twice. In that case the number of edges we’ve found

is at least 1/3 the number of edges in the graph, from which the lemma follows. O

4 Proof of Main Lemma

Lemma 4.1 [Main Lemma] /n any embedded planar DAG a constant proportion of the
edges are operable.

Proof: See Appendix.

S Using randomization to Remove Conflict

Definition 5.1 Two operable edges conflict if:
o They are consecutive edges on the boundary of a face.
o If the are both marked for deletion and they share a face.

Observe that each operable edge conflicts with at most 8 other operable edges???

6 A Reachability Algorithm Using Abstract Reduction

In this section we present an algorithm that computes reachability for a special class of
embedded planar DAGs using O(n + m) processors in O(log n) time in the CRCW PRAM
model of computation. Specifically, we will work with DAGs that have no saddle vertices;
this will allow us to give a simpler presentation. Given an embedded DAG of this type and
a set of specified vertices, we want to mark the vertices in the graph that can be reached by
a directed path from one of the specified vertices.

We start by assigning one processor to each edge and each vertex in the DAG. We

preprocess the DAG as noted in section 3. We note that the preprocessing may add edges,

12

but the number of new edges (which insure that saddle faces are strictly alternating) is at
most proportional to the number of edges already in the graph. Note that because we don’t
have any saddle vertices, we won’t add any vertices during the preprocessing.

The algorithm is based on the idea of markers that are propagated through the graph,
marking vertices and edges as they move. Each vertex has two flags, one indicating
whether a marker has passed through the vertex (referred to as the “marked” flag), the
other indicating if the vertex can currently propagate markers to other nodes (referred to as
the “propagate” flag). An edge will only have propagate flag and if a progate flag gets set
it always sets the marked flag. Initially the set of nodes for which we want to determine
reachability have both flags set; no flags are set at any other node or edge.

The algorithm consists of a contraction phase followed by an expansion phase. In the
contraction phase we reduce the graph, propagating markers as necessary, until the graph
is small enough to deal with in constant time. In the expansion phase we go in reverse
order through the series of reductions made during the contraction phase, again propagating
markers as necessary. For each vertex and edge we keep sufficient information to support
the expansion phase. In particular, we will need an extra pointer at each vertex laying on
a flow face. The pointer at a vertex v gives the lowest vertex on the opposite side which
can reach v using cross pointers and left and right edges, called the in-cross pointer. We

modify the reduction rules in the following ways to support these phases:

(TB Rule] In the Contraction Phase, when a topological edge e is removed, we
simply pass propagate marks from each vertex v being removed to any vertex that is
pointed to by v. We assume that we have passed marks down the vertices of e as the
topological path was created. In the Expansion Phase, when we restore a topological

edge that was removed by this rule, each vertex v gets a propagate mark from is

13

in-cross pointer.

[s§ Rule and t§ Rule] During the contraction phase, when applying the s¥ rule, if
the source has the marker propagation flag set, then set both flags at the vertex at the
head of the edge being removed. During the expansion phase, if the vertex at the tail
of the edge being restored has the marker propagation flag set, set the “marked” flag
at the sink.

[Degree 1 Rule] During the contraction phase, when applying this rule, if the source
has the marker propagation flag set, then set both flags at the vertex at the head of
the edge being removed. During the expansion phase, if the vertex at the tail of the
edge being restored has the marker propagation flag set, set the “marked” flag at the

sink.

[sUs Rule and tUt Rule] When applying the sUs rule during the contraction phase,
do the following at each source: if the source has the marker propagation flag set,
pass the propagation mark to the edges out of this source, then unset the marker
propagation flag in the source. Then apply the rule. When applying the tUt rule
we must be careful when a sink is the identification of more than one sink. For this
reason we only mark the edges into such a sink. We propagate the mark to sink in

the expansion phase then the sink consists of single orignal sink.

[s;.-’t Rule) During the contraction phase, when applying the s?—, rule, if the source
has the marker propagation flag set, then set both flags at the vertex at the head of
the edge being removed. During the expansion phase, if the vertex at the tail of the
edge being restored has the marker propagation flag set, set the “marked” flag at the

sink.

14

[sU,, tUy, sU,t Rule] During the contraction phase, when applying the s% rule, if
the source has the marker propagation flag set, then set both flags at the vertex at the
head of the edge being removed. During the expansion phase, if the vertex at the tail
of the edge being restored has the marker propagation flag set, set the “marked” flag
at the sink.

[True Red(Blue) Edge Contraction Rule] During the contraction phase, when
applying the s% rule, if the source has the marker propagation flag set, then set both
flags at the vertex at the head of the edge being removed. During the expansion
phase, if the vertex at the tail of the edge being restored has the marker propagation

flag set, set the “marked” flag at the sink.

Theorem 6.1 The DAG reachability algorithm will, given a DAG and a specified set of
vertices, terminate with each vertex in the graph marked iff it is reachable from at least
one of the specified vertices.

Proof: O

Theorem 6.2 The DAG reachability algorithm will terminate in O(logn) time using n
processors.

Proof: The processor count follows immediately from the processor assignment of the
algorithm. The proof of the time bound follows by noting that the preprocessing and
topological edge cleanup phases take at most time O(logn), and that the Main Lemma
(Lemma 4.1) implies the contraction phase of the algorithm can be completed in O(log n)
time. Since the expansion phase takes the same number of steps as the contraction phase,

the theorem follows. O

15

A Proof of Main Lemma

Lemma A.1 [Main Lemma) /n any embedded planar DAG a constant proportion of the
edges are operable.

Proof: The lemma follows immediately from Lemmas A.2 and A.6 below, which prove
the result for two cases that depend on the ratio of sources and sinks to the number of
vertices in the graph. O

Lemma A.2 In any embedded planar DAG where the number of sources and sinks is less
than n/14, 1/16 of the edges are operable.

Proof: Assume that the graph has n vertices, of which k are sinks or sources. We first
use Lemma 3.3 and the fact that the number of red and blue edges incident to a vertex of
degree 1 is bounded by the number of sinks and sources to show that, given the condition
in the statement of the lemma, at least 1/4 of the non-red, non-blue edges in the graph are
operable. We then apply the lemma again to show that the number of non-red, non-blue
edges is at least 1/4 the number of edges in the graph.

(]

The proof in the case where the number of sources and sinks is large depends on the
rules that operate on sources, sinks, and flow faces. We will show that if we can operate
on a number of edges proportional to the number of sources and sinks, we can operate on a
constant proportion of all edges. To facilitate our counting, we introduce the concept of a
source’s or sink’s kingdom. Letting s-t-count(f) represent the number of distinct sources
and sinks that lie on saddle face f, we can make the following calculation: The size of
the kingdom of a source or a sink v is computed in the following way: If v is not on the
boundary of any saddle face, its kingdom has size 0. If v lies on one or more saddle faces,

its kingdom size is the sum of the contributions to v of each such saddle face.

16

The way to calculate the contribution of a saddle face f is as follows: There will
be some number of edges with v as one of their end points that lie on the boundary of
f. For each such edge in turn, we make an undirected traversal of f ’s boundary. The
traversal proceeds until another source or sink is reached, in which case we add half the
path length to that source or sink to f ’s contribution to v, or until we return to v via an
edge different from the one we left on, in which case we add in the full path length to the
contribution and delete the return edge from the list of edges yet to be processed. Note that
some vertices may appear on the face more than once; in that case, when traversing such a
vertex we choose the next edge in our traversal consistent with the choice we’ve made at
previous vertices (clockwise or counterclockwise with respect to the embedding). Once all
traversals have been made, we subtract 2/s-t-count(f) from the total amount contributed
by the traversals.

As a technicality in the counting above, we consider any degree-1 vertex lying on a
saddle face to have degree 2, where the single edge into or out of the vertex is actually two
parallel edges.

Note that kingdom is defined in such a way that any saddle face f that contributes to
one or more kingdoms contributes a total amount equal to a(f) — 2.

We call a source or sink with a kingdom of size 2 1/3 or greater uncommon; a
source(sink) that is not uncommon is common.

Lemma A.3 In an embedded planar DAG with a total of k sources and sinks, more than
k/7 of the sources and sinks are common.

Proof: Let V,, be the set of vertices that are either sinks and sources. Let K(v) be the
size of the kingdom of v where v € V,,. Consider the sum of K(v) taken overallv € V,,.

As noted above, each saddle face that has at least one source or sink in its boundary will

17

contribute a(f) — 2 to the sum. Each saddle face has alternation number greater than 4, so
this quantity is always nonnegative. Thus we have
> KO < Y (alf) - 2),
vev,, feu
where U represents the set of all saddle faces in the graph. We note that for DAGs meeting
our invariants (i.e., no saddle vertices),
2 (eM/2-1D= 3 (aW)/2-1) = ~1.|V,,| = -k
vev veV,,
and

S (@(f)/2= D=3 T (alf) - 2).

f€F reu
Combining these with the Poincar€ index formula and the inequality above gives us

KM (ef)-2)= 2([Ves| =2) =2k - 4.

vev,, feu
Clearly this inequality is violated if 6 /7 of the sources and sinks have kingdoms of size
2 1/3 or more, even if the remaining sources and sinks have kingdoms of size 0. O Note
that although this proof is for DAGs, the result holds for planar digraphs in general. Also
note that the proof of the lemma implies that any set of sources or sinks with average
kingdom size greater than or equal to 2 1 /3 must include fewer than 6/7 of the sources
and sinks.
Lemma A.4 Any clean common source or sink can either be associated with at least one
operable edge or with a set of sources and sinks with average kingdom size greater than
orequalto?21/3.
Proof: We prove this by enumerating the types of clean sources and sinks, and showing

that each type either has an operable edge or is uncommon.

18

e If a source has a true red edge out, we can apply the True Red(Blue) Edge Contraction
Rule and contract it. The same holds for sinks with true blue edges. Therefore we
only need to worry about cases in which the sources and sinks are not endpoints of

red or blue edges.

o If the source or sink is an endpoint of an edge that lies between two flow faces,
Lemma 3.2 and the fact that we’re only considering sources and sinks with no red

or blue edges give us that edge is operable.

e If the source or sink is an endpoint of an edge that lies between two saddle faces, the

edge is operable by the s§ Rule or the t5 Rule.

In the remaining cases, we can assume that the faces around sources and sinks are

strictly changing.

o First consider the case where the source or sink has degree 2. We consider cases
based on the distance to the nearest source or sink on the (single) adjacent saddle

face:

- There is no other source or sink on the saddle face. There are two subcases to
consider: first, the saddle face has alternation number 4 (i.e., the face has four
edges), in which case we can apply the sU; or tU, Rule, giving us the operable
edge(s) we want. Second, the alternation number is higher than 4, in which
case the source or sink we are considering has a kingdom of size 4 or greater,

and is thus not common.

- There is a source or sink at distance 1. Consider the case where the vertex we
are concerned with is a source (the case for a sink is symmetric). Then the
vertex at distance 1 will be a sink. In that case, the s¥t rule will apply, giving

19

us the desired operable edge. Note that sU,; or sU;t rules might also apply,
depending on the alternation number of the saddle face and the placement of
other sinks on the saddle face.

There is a source or sink at distance 2. Again, we’ll look at the case where the
vertex we are concerned with is a source (the case for a sink is symmetric). In
this case, there will be a source at distance 2, so we can apply the sUs rule.

This gives us the desired operable edge.

The nearest source or sink is at distance 3. There are two possible cases: First,
there are two distinct sources or sinks at the end of the undirected paths out of
the vertex in question. In that case, the vertex in question has a kingdom size
of at least 2 1/3 and is thus uncommon. Second, there is a single vertex at
distance 3 along each path. In that case, the vertex in question has a kingdom
of size 2, and is thus common. We must deal with the following cases (for

simplicity, we’ll assume that the vertex we’re looking at is a source):

* The sink at distance 3 is not strictly changing. Then

* The sink at distance 3 is strictly changing and has degree 2. In this case

we can apply the sU,t rule to get an operable edge.

* The sink at distance 3 is strictly changing and has degree 4 or greater. In
this case, the sink will be uncommon, but it will either be operable or it
will have a large kingdom size. In either case we can include both the
source and sink in the set having average kingdom size greater than2 1/3,
effectively transfering some of the kingdom of the sink to the source we
are considering and making the source uncommon. To show this, we note

that the sink and source each get a contribution of 2 from the saddle face

20

they share. Since the sink has degree 4 or greater, it must have a second
saddle face from which it receives a contribution to its kingdom. It is easy
to see that the minimum for this additional contribution is 1/3, in which
case the sink is adjacent to two sources. There are two cases to consider:
if the sink has degree 4, it is operable and uncommon both, so we can
transfer the extra kingdom contribution to the source under consideration.
If the sink has degree 6 or greater, then it has a kingdom of size 2 2/3,
so we again have sufficient value to transfer 1/3 to the source. In the
case that the contribution from one of the sink’s additional saddle faces
is greater than 1/3, we note that it is then greater than 2/3, so we have
a sufficiently large kingdom to support the transfer. Note that we only
transfer a kingdom contribution across a face that contributes 2 to each
of the kingdoms that lie on it, so there is no problem if we must make

multiple contributions.

e Next, consider the case where the source or sink has degree greater than 2 (note
that for the source or sink to be strictly changing, the degree must be even, so the
condition here is effectively that the degree of the source or sink is four or more).
Again, we will assume we are looking at a source and note that the case for a sink
is symmetrical. If our source has degree 6 or greater, then it must be uncommon.
Therefore we only need to consider the case where the degree of our source is 4. To
prove the result for such a source, we consider cases based on the distance to the

nearest source or sink on one of the adjacent saddle faces:

- There are no sources or sinks on ecither saddle face. Then the kingdom size of

the vertex in question is at least 4, and it is uncommon.

21

~ There is a sink at distance 1 on one of the faces. Then we can apply the st

Rule.

— There is a source at distance 2. Then we can apply the sUs Rule to get our

operable edge.

- The nearest source or sink is at a distance greater than 2. In this case our source
will receive a contribution of at least 2 from each of the saddle faces, so it is

clearly uncommon.

a

Lemma A.S Each edge associated with a clean common source or sink in the previous
lemma is associated with at most a constant number of sources or sinks.

Proof: This follows from the reduction rules. O

Lemma A.6 In any embedded planar DAG where the number of sources and sinks is
greater than n/14, a constant proportion of the edges are operable.

Proof: The reduction algorithm will keep the number of pointer red edges out of any
flow vertex to a constant. We can apply flip rule to clean up any pointer red or blue
edges at sources or sinks in constant time. If the graph has no parallel edges, Euler’s
formula gives us average degree of three times the number of vertices for the rest of the
graph. Since at least 1/98 of vertices are common sources or sinks, and since we have a
proportional number of operable edges, it’s clear that constant proportion of non-parallel
edges is operable. If the graph does have parallel edges, then we note that they must form
flow faces. In particular, we can add at most one parallel edge that might be inoperable;
the additional edges are all operable. Thus, parallel edges can at most halve the fraction of
operable edges. O

22

References

[Gaz91] H. Gazit. Optimal EREW parallel algorithms for connectivity, ear decomposition

[KK90]

[KS89]

[MR8S5]

[MR89]

(Phi89)

and st-numbering of planar graphs. In Fifth International Parallel Processing
Symposium, May 1991. To appear.

Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure
bottleneck: Efficient parallel algorithms for planar digraphs. In Proceedings of
the 22th Annual ACM Symposium on Theory of Computing, Baltimore, May 1990.
ACM.

Ming-Yang Kao and Gregory E. Shannon. Local reorientation, global order, and
planar topology. In Proceedings of the 21th Annual ACM Symposium on Theory
of Computing, pages 286-296. ACM, May 1989.

Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In
26th Symposium on Foundations of Computer Science, pages 478—489, Portland,
Oregon, October 1985. IEEE.

Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals.
In Silvio Micali, editor, Randomness and Computation, pages 47-72. JAI Press,
1989. Vol. §.

Cynthia Phillips. Parallel graph contraction. In Proceedings of the 1989 ACM
Symposium on Parallel Algorithms and Architectures, pages 148-157, Santa Fe,
June 1989. ACM.

23

[RR89] Vijaya Ramachandran and John Reif. An optimal parallel algorithm for graph
planarity. In 30th Annual Symposium on Foundations of Computer Science, pages
282-287, NC, Oct-Nov 1989. [EEE.

(UY90] Jeffery Ullman and Mihalis Yannakakas. High-probability parallel transitive
closure algorithms. In Proceedings of the 1990 ACM Symposium on Parallel
Algorithms and Architectures, pages 200-209, Crete, July 1990. ACM.

24

