On deleting vertices to make a graph of positive gemus planar
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Abstzact, This paper contains a proof that an n-vertex graph of
genus g > 0 contains a set of D(J;n) vertices whose removal leaves

8 planar graph.

1, In on

Many results for graphs of known or bounded genus g > 0 have
been derived from related results for planmar graphs. Sometimes
planar results have pointed the way for graphs embedded om other
surfaces; examples include embedding and isomorphism testing
[7.8,12], and Kuratowski's theorem and the recent finiteness
result of a forbidden subgraph characterization for every surface
[14]. Sometimes planar results are actually central to the
extended result; for example the separator theorem for graphs of

bounded gemus [9] relies on the planmar separator theorem [11].
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Thus one approach to problems on graphs of positive genus is to
reduce the graphs to planar omes, to use planar results and
technigues, and to extend these results to the original graphs.
In this paper we comsider the problem of finding a small set
of vertices whose removal from an n-vertex graph of gemus §
leaves a planar graph. The results of [1] show that gvinm -0(|J;}
vertices can always be removed from s graph on a surface of genus
g to leave a planar graph. In [9] this resnlt was improved to
0(JSgn log g), and it was conjectured that D(J;;W vertices are
sufficient. Im this paper we prove the latter conjecture., Similar
results have been anmounced by H. N. Djidjev [3,6]; our work
extends some ideas of [3] where a partial proof for fimding a

0(Jgn) "plamarizing” set is given.

Theorem 1, If G is an n-vertex graph embedded on @ surface of
genus g > 0, then there is a set of at most
26 Jgn - 13 J/o/g = o(J/fgn) )

yertices whose removal leaves a planar graph.

Most of the steps of this proof are constructive, and in =
subsequent paper we will show how to implement these ideas as an
algorithm that finds this set of vertices im am embedded graph.
The algorithm runs in time iipear in the number of edges of the
graph.

The result of Theorem 1 is best possible up to constants
since it is known that embedded grephs satisfy the followinmg
separator theorems and that up to constants these results are

best possible.
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Theorem 2, (Lipton and Tarjan [11]; Djidjev [4]) If G is a planar
graph with n vertices, them there is a set of O(J/a) vertices

whose removal leaves no componment with more thanm 2n/3 vertices.

Theorem 3. (Djidjev [5]; Gilbert, Hutchinson and Tarjen [9]) If G
is s graph of genus g > 0 with n vertices, then there is a set of
O0(/gn) vertices whose removal leaves no compoment with more than

2n/3 vertices.

If there were a set of vertices in a graph of positive genus
whose removal left a plamar graph and whose order was smaller
tham O(JEEW, then by removing these vertices and using the planar
separator theorem one would have a smaller order separator for
graphs of positive genus, This argument also shows that Theorems
1 and 2 imply Theorem 3; the algorithmic implementations are
similarly related. However the proof of Theorem 1 and related
algorithm are more intricate and involve constants larger than
those in [9].

In section 2 we present background for this work, the graph
theory lemmas and order arithmetic needed for the proof of

Theorem 1, which is presented inm section 3,

2. Background in topological graph theory and order arithmetjc

We use the terminology of [2] and [15]. The main definitions
follow. A graph is said to embed on a surface of genus g > 0 if it
can be drawn on the sphere with g handles, denoted S(g), so that
no two edges cross., The genus of a graph G is the least integer g
for which G embeds on S(g). A face of an embedding of G on S(g)

is & connected compoment of S(g)\G and is called a 2-¢ell if it

is contractible., An embedding is called a 2-gell embedding if
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every face is s 2-cell and a trisngulation if every fase is
bounded by three edges. Am example of a triangulation of the
torus (g =1) is shown in Figure la. These embedding terme can
also be defined in a strictly combinatorial way. Iadesd, they
must be so defined for the algorithmic implememtatiem.

A set of vertices whose removal from a graph O leaves a
planar graph is called a planarizipg set for G. An impesxtent
planarizing set is s set of vertices whoss induced seubgraph
leaves all other vertices im regions that are 2-gelle.

Embedded graphs on nonplamar surfaces cam coatein theee
fundamental types of simple cycles. A cycle is called
contractible if it can be continvonsly deformed om the surfece
into a point; otherwise it is called poncontractible. A simple
noncontractible cycle may be either a2 sepaxatinmg eyecle or o
nonsepagating cycle according as it does or does not divide the
surface into two disjoint pieces. Figure 2 shows all three types
of cycles in a graph on the double torus. The Euler-Poimsard
Formule will be used to distinmguish asmonmg, these type of sycles; it

is aleo crucial for other parts of the proof.

Emler-Poincaré Formula, If G has & 2-cell embeddinmg om S(g),

g 20, then n—e+ £=2~-2g wheze n, ¢ and f sre, respestively, the

pumber of vertices, edges snd faces of the embedded graph.

The number, 2 - 2§, is known as the Buler charscteristis of S(g).
The proof of Theorem 1 will be by imductiom om g. First we
look for a short, O(J;T;-. poncontractible eycle in the embedded
greph, and if such a cycle is present we can remove it and
proceed by inductionm om graphs of smaller genus. If the graph

containms mo short nomcontractible cycle, then we find = spanning
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(a)
A triangulation of the torus with a

spanning forest of radius 2 with 4
components
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{b) (c)
fter deleting nonforest A planarizing subgraph
dges until one 2-cell

emains Figure 1.
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Cy: Nomcontractible and nonseparating
Cz: Nomcontractible and separating
Cy: Contractible

Figure 2.
"

forest of small radius and with few compoments. By a forest of
radins r we mean that every vertex is joimed to s root by & path
with at most r edges. The next lemma is a generalization of a

tesult in (9] on spanning trees of embedded graphs.

Lemma 4, Suppose the n-vertex graph G has a 2-cell embedding on
s(g), g > 0, and suppose G has s spanning forest F of radius ¢
with d } 1 components. Then G contains a plamarizing set of at

most 4gr + (d-1)(2r+1) +1 vertices.

Proof: We call the edges of F and G\F forest and nonforest
edges, respectively. We begin by deleting nonforest sdges from G
one by ome until the remaining graph is embedded with exactly one
face; as shown in [9] this can be sccomplished so that the final
face is a 2-cell. (Anm example is shown in Figure 1 with d=4,
r=2 and g=1.) Next we successively delete (nonzroot) vertices of
degree ome and their incident edge (necessarily a forest edge).
If G had originally e edges and f faces, we are left with a

subgraph G' of G with n' vertices, e’ edges and f' faces where
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n'{n, e'fe, f'=21, and n'-e'+1=2-2g.
Let F' = REMG' be the remaianing spanning forest of radius ' { £
with d’ { d components. Thus
o' = n'-1+2g = (n'-d’) +(2g +d'-1),
and the o' edges of G' comsist of (n'-d') forest edges and
(2g +4'-1) nonforest edges.
Now the spanning forest F' has d' roots, and each nonforest
edge of G' joins two vertices of F' at distance at most r' from a
root. Furthermore, by construction every vertex of G' lies on some
path from a nonforest edge to a root of F'. We estimate the number
of vertices of G'. First :hora are d4' roots of F'. Then to every
monforest edge w = {“1' uzl we associate the at most 2r' (nonroot)
vorti;u that lie on the path from u,; to & root, i=1, 2. Thus
n' { d4'+ (2g +d'-1)(2z")
¢ d+ (2g+d-1)(21)
= 4gr +(d-1)(2r+1) +1.
If these m' vertices of G' are removed, the remaining graph l;u

im the ome 2-cell face of G' and so is planar. [ |

VWhen the graph contains no 0(Jn/g) noncontractible cycle, we
proceed by finding a breadth first spanning tree of presumably
too large a radius and then break it into a spanning forest of

small radius, r = 0(Jo/fg), with few components, d = 0(g).

Lemma 5., If G is & connected graph with n vertices, then G has =

spanning forest of radins r with at most rna’{rﬂ.)-l components.

Proof: Let T be s spanning tree of G of radius s with root t; we
are done if s {r. Pick a leaf z of T at distance s from ¢, and
let x be the vertex at distance r from 2 along the path from z to

t. Bemove from G the vertex X and all its ancestors; this
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discarded part of G cam be covered by ome tree of radiues r. The

remaining graph is comnected with at most m—- ¢~ 1 vertices and by
induction its vertices can be covered by at most MMa-r-1)/(z+1) ]
= [n/(z+1)] =1 trees of radius at most r. Thus @ can be covered

by at most [n/(r+1) ] trees of radius r. [ ]

Corollary 6, [3] A graph G with a vertices and each connected
component having at least m vertices has a spanning forest of

radius r with at most Lan/(g+l) +n/m] components.

Proof: Suppose G has k connected components with nj.0,,...,0)
vertices each. Then ny +..0%my =1 and n )} km. By Lemma 5 each
component can be covered by at most rnia’(:ﬂ)-] trees and so O
can be covered by at most

k k

glrnif(rd'l)-' < 1[1 (n;/(2+1)) +1)

= B
r+1.+k -

—a_.B
$ :+1+-'.

The next two lemmas give detailed information on the growth

rate of the function f(g,mn) =2Jgn - J/o/g. This will be necessary

for our inductiom steps.

Lemma 7. For all g>1 and n>0

2 /(g Do -Val(g - 1) +Jalg <2Jgn - Joig.

Proof: Since

1s -1/ (2= <1/ (2dp) < U (g + Vg - 1) = Js-Je-1.

it follows that

2vn/g - Jaflg -1) « 2Jgn - 2J(g - 1)n,

and the lemma follows. |




On Deleting Vertices to Make a Graph of Positive Genus Planar 89

Lemma B, Let g, 8, X, ¥ and d be positive imtegers satisfying
0Cg{n, 0<d$Jn?l. 0¢(zx<g, and 0{ y<(an~-d. Then

2fzy - Jy/z +2J/(g-3) (a-y-d) -JSla—y-a)/(g-z) +4d£2/sa -Jals.

Proof: Multiplying the inequality by Jz, J; and J;T. we must
show that
a1V + (2s-22-DVaydals + aals- s
¢ (2g-1)Jadz s -x. (1)

First we find the maximum value of the left haad side of (1)
as o fumectiom of d: let £(4) -lll—Zn-I)Jn—-—f—TJx_ﬁ+dﬁﬁT;f.
Then the maximem ":fnlu of £(4) occurs when
d=(a-y) - (g-x) +1-—n—'_Lx)-. At this value of d,
a-y-4d = (g-z) -1 +4—(-"1'__—xT< (g-z) simce (g—x) is an integer. Thus

ghe left hand side of (1) 1is bouaded by
(2x-1)J7/5 - {8 + (2g-2z-1)Ja-y-d x5 + afzds-= Vs

¢ f5== [(2x-1) 35 + (25-22-1) fz Vg + a/x ) (2)
¢Je=3 L22-1) /3 /g + (25-22-1) /& (s s
+ ((a-y) - (g-x) +1-1/(4(g-x))Jx V3] (3)

Next we find the maximum Value of (3) as s fumotiom of y:
let £(y) = (22-1)JyJ§ + (a-y) Vx/g. Thea the maximua value of f(y)
ooonrs at y=xz-1 +11;<x sinee z is an integer. Thus (2) is
bounded by

Jo-r 1(22-1) J3 /5 + (28-22-1)Jx g + aVx Vi)

¢Jg-x [(25-2) =g + VnJx] (since d <Jalg)

¢ Ja2va-x [(2g-1)/a]l (simce g C(n).

This last lime is the desired right hand side of 1ime (1). M
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3, The main sesult

Wo begin by lookimg for a 0(Jn/g) noncontractible eyecle.
Given any simple cycle C we perform the following operatiom and
analysis to determine whether C is contzractible or not,
ieplrntin; or mnot. We can imagine woutting” the surface along [+
then "sewing” im two discs, keeping a copy of C o= the boundary
of each diso., Call the resulting graph G(C); it may no longer be a
triangulation.

Suppose one compomnent GI(C) of G(C) has n’' veztices, o' edges
and f' faces. Set g' = ¥(2- a® +e' - f'), the genus of the surface
on which 61(8) is embedded. If g' = 0 or g, the cyocle C was
contractible. If g’ =g -1 and G(C) is comnected, them C was
poncontractible and nonseparating. G(C) is embedded om a surface
of genus g-—-1, and a planarizing set for G(C) together with the
vertices of C forms a planarizimg set for O. Finally if 0<g'< g
and G(C) is not connmected, them C was nomcontractible and
separating. The componment GI(C) i{s embedded on a surface of genus

g’ and G(C)\G,(C) is embedded on a surface of genus g~ 8. A

planarizing set for @ will comsist of a planarizing set for each

component of G(C) together with the vertices of C; see Figure 2.

Theorem 1, If G is an n-vertex graph embedded on a surface of

genus g > 0, then G has a planarizing set of size at most

26gn - 13vn/g .

Proof: We may sssume that G is a triangulation since adding
edges to triangulate each face canm only increase the size of the
planarizing set. The proof is by induction om g. In [9] it was

shown that a graph has a planarizing set of at most
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Gﬁrlog 8 +6Js—n.vatticaa. Thus we may sssume that 822, for g2
implies 6V/gn log g +6/gn < 13 J/gn < 26 Jga - 13Va/g for a1l
positive g and n.

We may also assume that J;7i_>(26-gfd =21.667, for
otherwise n ¢ (26*%3-)9’;_11'_( 26 fﬁn_- 13Jn_fg_for g£23, and all n
vertices would form a planarizing set. Thus for future reference
we assume

1 ¢ .046/n/g (4)

- .0451—5';'5 .015 /gn for g 3. ()

We begin by fihding a breadth first spanning tree T with
levels Ly Ll“"'[‘r where L, consists of all vertices at distance
i from the root t and where r is the radius of T, Let "“i' denote
the number of vertices im Li' and set FlC_ Li equal to those
vertices of L, sdjacent to a vertex of Lisps we call F, the
fzontier of L;. We also define the level of an edge {n.v.} (or of

@ trisngle {a.b,c)) to be the maximum level of a vertex in the

edge (or triamgle).

Lomma 9, For 0¢i<r, F1 induces a subgraph that conmsists of

edge-disjoint cycles.

Sketch of proof: If F, induces a subgraph of edge-disjoint
cycles, then the modulo two sum of all edges of triangles at
level i+ 1 with the edges of the cycles of Fi is clearly an
edge-disjoint union of cycles and can be shown to equal Fi+1'
(A similar result can be found in [(131.) A

¥e note however that this decomposition into cycles may not be

Baique.
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Suppose the graph @ contains @ noncontractible eyole C of
length at most 13 J'J;_; because this parameter arises so oftem we
define E=13 J—W. We perform the surface cutting construction
deoscribed at the beginning of this sectiom, but i=m addition we
delete the two coples of C and all incident edges and we
trisngulate the resulting, nontriangular faces. Suppose C is
nonseparating and noncontractible. By industion the remaining
graph has a planarizing gset P of size at most
26 J(g-1)m - 13J/n/(g-1) . Then P \JC forms a planarizing set for G
and by Lemma 7 has gize at most 26 m—— 13J'n_f?-. Suppose C is
separating and nomcontractible. Then the remaining graph consists
of two graphs, say GI(C) and Gz(C) with y sand n— ¥~ Icl vertioces,
respectively and of genus X and g - X, respectively where 0 < x € §-
By induction GltC) has a planarizing set P, of size at most
26 J3y - 13 Jy/x , snd G,(C) has a planarizing set P, of size at
most ZGW— Iim—m. Then P; U PzU ¢ forms
a planarizing set for G and by Lemma 8 (with |cl =d) is of size
at most 26./;_;—13.!;'.;_. :

Otherwise every noncontractible cycle in G is larger than K.
For 1 = 1,2,...,1 let S‘1 be the region of the surface formed from
a1l trismgles and their boundaries with labels at most 1; cycles
of Fy form the boundary between 8, and S(g)\8;. We set
8 = Fg = {t}. Suppose we cut the surface S(g) along the cycles
of Fi.’ leaving a graph embedded on si with vy vertices, o, edges
and f, faces. Then the Euler characteristic of Si is given by

E; = "1_°i+£1‘

8; is » subset of the sphere if and only if E; = 2. See Figure 3.
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Figure 3.

Let q bd the least integer such that either Fq+l contains a
noncontractible oycle or Eq+1 {2. Figure 3 contains am example in
which Fq+1 contains noncomtractible cycles. Let p { q be the
largest integer such that |Lp| $K; thus F, contains oanly

contractible cycles. Note that one cycle of Fp. call it L

separates the surface into a contractible region containing the
root t and the moncomtractible region. Finally let s be the

greatest integer such that E;—l < g, but E. =g. Thus the regiomn

8(;)\8' is a subset of the sphere and contaims all vertices onm
levels s+1 and higher.
If & > p+l, then |L1| K for p<i (s by the definition of p

and since Lq+1""'Ls—1 all contain nomcontractible cycles of

length greater than K. Let Gp'. be the graph obtained from @ by

contracting all vertices on levels Lo. Ll"“'L to a new root

p-1

t® and by deleting all vertices on levels L'+1. «es L_. If G

r pP. 8

has radius at most 5./n/g, then by Lemma 4 and line (5), @ has

P:8

a planarizing set P of size at most
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4-5gJn/g +1 {21.667Jgn <26 g - 13Jnlg
for g > 2. Note that since LOL) ULy is embedded in a
contractible region as is L‘H'U ..U L, thean P forms s
planarizing set for G as well as for Gp...

If the radiuvs 1s larger than 5\’73—: we divide Gp’. up imto b
"bands"” of radius r;- FVafg | where b= lts-p)/z' 1. For
i=1,...,b-1 we lot

B, = l‘p+(1—1)r‘+1u ceeJ Lpyyger ond

B, = Lps(p-nrraa UL
Let IB,| = n; and for g=1,...,b let L;® be the smallest level

in B;. Then IL1‘| ¢n,/r'. For future reference we set

t=1[2/als 71 and note that

ny > Kr’ since all levels have size 2 K
} 6tz’ since 6t { 124/a/g +6 (K by (4). (6)

Comsider s fromtier F,*° QLi"; by Lemma 9 it comsists of
edge-disjoint cycles. Esch compoment of Fl. that contains fewer
then E vertices comtains only contractible cycles; for each such
contractible eycle Cl we delete all vertices im its
(contractible) iamterior. We redefime F;® to be Fo\ €y (In other
words the vertices of C, aze mo longer comnsidered to be in the
frontier.) We have throwsm away only a part of the graph that lies
in 8 contractible region. Every compoment of (the remainimg) F,°
hes at least K vertices, and by Corollary 6 these components can
each be covered by at most Lnif(t‘*l) *niflj trees of rading at

most t. For 1i=2,...,b-1, let these components be covered by

trees 'l'j, rz.....'ru.
Instead of using Fl" we use Fp c Lp and treat it inm a

slightly different way. Recall that Irpi < |LP| <K, snd that Fg
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contains & distinguished contractible cycle, Cp We delete all

other cycles of Fp and thelr contractible interiors. We cover o
with at most rcpl(2t+1}1 {T13/alg/(4Jnjg) ] =4 trees of radius
t (1.e., by paths of 2t edges). Call these trees Py, ..., P_.

From these pleces we construct the desired spanming forest F

of (the remainder of) G . First we cover o

D, P’ Fz‘,l?a‘..... and

pb—l' with the trees Pl,...,P'.Tl.....Tn. Then we use the portionm

of the original tree T that extends from ¢ up to and including

P
vertices in Lz‘\Fz‘ (but not including FZ"' for i = 2 to b-2
from F;* up tc: and including l‘i+1' \Fi.+1.' and from Fy_;* up
through L. F is » spanning forest of the remaining graph simoce a
vertex in the level above Lp or L;* is either contained in a
short contractible cycle and so is deleted or is adjacent omly to
vertices in % or in (the remaining) Fl.' Each portion from the
original tree T involves at most 2r’' levels and so_ the resulting
trees in F have radius at most t + 2z’ 54-{;&—-{3 < 4.138/n/3 by
(4). .

Next we count the number of components of F. On levels Lz'

and up we have at most

b-1 b-1
):2 (Lel/e+lL,ol/m ¢ )'_‘2 (n,/tr’ +0,/2'K)
i= i=

¢ a/tr'+n/r'E-n /tr'~n /r'K
{ nfte' +n/r’'E-7 from (6).

The cycle ¢_ is covered by at most 4 trees of radiuns t and so in

P

total F contains at most d =n/tr'+ n/r'KE -3 components and

(d-1) { n/tr'+ o/r'E. By Lemma 4, Gp g has a planarizing set of
.

size at most
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dgr + (d-1)(2r+1) +1 ¢ 4g(t+2z’) + (n/tc® + nfc'E)(2¢ + §g'el) ¢ 1

£ 4;(4.133Jnl;) +(a/(2(n/g)) * n.-“(13(nls}))(8dnls +7) el

¢ 16.55gn + ((1/2)g + (1:"13)3)(8.32\,‘11!;) +1 by (4)
¢ 16.55 ;n+4.8Jgn+.015J;n by (5)

= 21.365Jgn < 21.667 Jgn
< 26 Jgo - 13 JYn/g for g23.

Thes F forms the desired planarizing set for Gp" and for G. | |

4, Conclmsion,

io [1] a stromger rosalt was obtained, namely that in every
triangulation of & surface of genus § with n vertices there is a
ponseparating noncontractible cycle of length at most JZn. Ve
cclj.oo-tun that if g {n there is always a o(Jnig) noncontractible
cyele. This would imply Theorem 1: removing such a cyocle and
applying the conjecture repeatedly to graphs of smaller genus
would prodace @ 0(Jgn) plaparizing set, In [10] the following is

established. ‘.

Theorem. If G is & trisngulation of a surface of genus § with n
vertices, then
a) if g {n, there is a o(Jau/g log &) noncontractible cycle, and

b) if g>=n, there is & 0(log g) = 0O(los a) nomcontractible eyecle.

In a sabseguent paper we shall provide O(e)-time algorithms
to find the planarizing set of Theorem 1 and the nomcontractible

cycle of the latter theorem.
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