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Abstract

We apply ideas from mesh generation to improve the time and space complexity of
computing the persistent homology of a point set in R

d. The traditional approach to
persistence starts with the α-complex of the point set and thus incurs the O(n⌊d/2⌋)
size of the Delaunay triangulation. The common alternative is to use a Rips complex
and then to truncate the filtration when the size of the complex becomes prohibitive,
possibly before discovering relevant topological features. Given a point set P of n

points in R
d, we construct a new filtration, the α-mesh, of size O(n) in time O(n2)

with persistent homology approximately the same as that of the α-shape filtration.
This makes it possible to compute the complete persistence barcode in O(n3) time,
where n is the number of points. Previously, this bound was only achievable (with
exponentially worse constants) for computing partial barcodes from uniform samples
from manifolds. The constants in this paper are all singly exponential in d, making
them suitable for medium dimensions.

1 Introduction

Persistent homology is a powerful tool for inferring the abstract shape underlying a set of
geometric points [17, 9]. Unfortunately, the persistence algorithm does not scale well, even
into medium (say 4-10) dimensions, because the size can blow up to nO(d). In this paper,
we show how Delaunay refinement meshing technology can dramatically improve the time
and space complexity of computing the persistent homology of a point sample in R

d.
The first step in computing persistent homology is to construct a nested sequence of sim-

plicial complexes called a filtration. Traditionally, the α-shape filtration is used, a sequence
of subcomplexes of the Delaunay triangulation of the input points. Then, the persistent
homology is computed in time O(m3) where m is the overall size of the complex. The
complexity of the Delaunay triangulation can be as bad as O(n⌊d/2⌋) in d dimensions.

To get around this problem, other complexes have been proposed, including the Rips
complex or the witness complex. Unfortunately, these complexes do not actually avoid the
complexity blowup of the Delaunay triangulation. In fact, the complexity of these alternative
complexes is greater than that of the Delaunay complex. They are computationally feasible
only because they can be constructed incrementally in the order of the filtration. Thus, it
is possible to truncate the filtration when some size limit has been reached, possibly before
the relevant topological structure has been discovered. This can happen even for quite
simple examples. Consider the simple example for which persistent homology is expected to
provide interesting information shown in Figure 1. Features at dramatically different scales
lead to an explosion in the size of the complex.

∗This work was partially supported by the National Science Foundation under grant number CCF-

0635257.
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Figure 1: When two persistent cycles appear at dramatically different scales, the Rips and
Cěch complex filtrations will reach O(nd) complexity before detecting the larger one.

Delaunay refinement meshes have many advantages over these complexes. In particular,
the number of simplices around any given vertex is bounded by a constant that is 2O(d),
which though large, is a significant improvement over nO(d). To achieve this, new points
called Steiner points are added to the input. The number of points added is 2O(d)n. We
provide the relevant meshing background in Section 2.4.

In order to realize the benefits of the refined mesh, we compute it without first con-
structing the Delaunay triangulation as is possible using the Sparse Voronoi Refinement
algorithm[14]. Second, we partition the input into well-paced sets which guarantees that the
complexity of the filtration stays linear and the runtime stays quadratic as the dimension
grows (see Section 4).

Our main contribution is a new filtration, the α-mesh filtration, of size 2O(d)n that can
be computed in 2O(d)n2 time. We first present a simplified version of the algorithm that
runs in 2O(d)n2 log(∆) time, where ∆ is the spread of the input (Section 3). We then show
how to eliminate the dependence on the spread by a recursive decomposition in Section 4.

The α-mesh filtration allows us to compute the full persistence diagram in 2O(d)n3 time.

2 Preliminaries

2.1 Simplicial Complexes and Nerves

Given an arbitrary set S, an abstract simplicial complex C on S is a hereditary family of
subsets σ ⊆ S. That is, if σ1 ⊂ σ2 ∈ C, then σ1 ∈ C as well. The subsets σ are called
simplices and the value |σ|−1 is called the dimension of σ. The simplicial complex is a link
from combinatorics to topology.

An embedded simplicial complex is an abstract simplicial complex C on S ⊂ R
d such

that each simplex σ is identified with it’s convex hull, convσ. Moreover, for every pair of
simplices, we have conv σ1 ∩ convσ2 = conv(σ1 ∩ σ2). This requirement can be understood
to mean that the simplices of an embedded simplicial complex glue together at faces and do
not intersect otherwise. The embedded simplicial complex is a link from topology to affine
geometry.

When we have an embedded simplicial complex, we sometimes care only about the space
that it covers. We denote the covered space as |C| =

⋃

σ∈C convσ ⊂ R
d.

A special class of simplicial complex arises from covering spaces with sets. Let S be a
topological subspace of R

d such that S =
⋃

U⊂U U , where U is a collection of closed sets.
We call U a closed cover of S. The nerve of U is the abstract simplicial complex NU on U
such that σ ⊂ U ∈ NU if and only if

⋂

U∈σ U is nonempty. A mapping U → R
d induces a

mapping from NU → R
d. If such a mapping yields NU as an embedded simplicial complex,
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then we have a geometric representation of NU . We will not distinguish between NU and
its geometric representation.

The Nerve Theorem is a classical result in combinatorial topology [13, Cor. 4G.3]. It
states that given a space S and a corresponding cover U , S is homotopy equivalent to NU
if every intersection of sets U,U ′ ∈ U is empty or contractible. If U satisfies the conditions
of the Nerve Theorem, we call it a good closed cover.

2.2 Persistent Homology

Given a simplicial complex, it is possible to compute the homology groups of the underlying
space. The homology groups over a field are vector spaces, so their computation reduces
to a sequence of simple operations in linear algebra [11]. This is one of the few topological
invariants on a space that can be computed. If the input is a point sample from a topological
space rather than a simplicial complex, the problem is less straightforward. Persistent
homology is an approach to this problem that has been the focus of much research in recent
years. The intuitive idea is to compute a growing sequence of simplicial complexes on the
input known as a filtration and observe which topological features “persist” during the
course of the filtration. Persistence has been used for reconstruction [1, 5, 12], analysis of
scalar fields [3], and nonlinear dimensionality reduction [8].

In building a filtration, the geometric properties of the point set are used to infer the
structure of the complexes. Several different complexes have been used for persistence
filtrations in the literature. The original work on persistence used the α-complex, which is
the nerve of Vor(P ) restricted to the α-balls centered at points of P [10, 18]. The α-complex
is a subset of the Delaunay triangulation, Del(P ). Later work used other filtrations in an
attempt to avoid the O(n⌊d/2⌋) worst-case behavior of Del(P ). These included the Cěch
complex, the Rips complex and the witness complex [5], all of which connect nearby points
together into simplices. These complexes can also exhibit nO(d) blowups in size, but can be
computed in practice if the filtration is truncated. For the witness complex, a subsample of
the input is used, making it possible to bound the size of the complex by 2O(d2)n (see [5]).
This method is suitable for inputs sampled from a manifold and achieves the best known
running time of 2O(d2)n4. In this paper, we will show that this bound can be improved to
2O(d)n3, even for non-manifold inputs.

Given a filtration on a simplicial complex with m simplices, the running time of the
persistence algorithm is O(m3)[18]. For this reason, bounding the size of the complex
represents a large win for computing persistent homology in medium dimensions.

Persistence Diagrams and Stability.

Def. persistence diagram

The widespread use of persistent homology is often justified by the so-called “stability
of persistence diagrams”. This means that similar inputs give rise to similar persistence
diagrams.

Much work has been done to bound the difference between two persistence diagrams in
terms of some distance measure on the inputs [6, 4, 2, 7]. The setting for such work must
necessarily give meaning to the relationship between the two distance measures. In the
current context, we want small distances between persistence diagrams to correspond to a
similar evolution of topological features in the filtration.

In particular, we want such a distance measure to be invariant under scaling of the
inputs. This is important if we are to study multi-scale phenomena. Thus, it makes sense
to consider persistence diagrams on a log-scale. There are two natural interpretations to
this. On the one hand, we can simply scale the x and y axes of the persistence diagram. On
the other hand, we can reparameterize the filtration used to compute the persistence on a
log scale. The only difference is in how we interpret the filtration parameter α and how we
interpret the axes of the persistence diagram.

3



The offset filtration is the sequence of sublevel sets of the distance function. Thus, the
filtration parameter α corresponds to a geometric distance in the original space. Recall that
both axes of the persistence diagram are based on α. We will now redraw the persistence
diagrams so that the axes correspond to logα.

The original work on stability considered the context of sublevel sets of well-behaved
functions[6]. They proved that for two functions f and g, if ||f − g||∞ ≤ ε then ||Df −
Dg||B ≤ ε. That is, if the two functions differed by at most ε at any point in space, then
there is a matching between persistent homological features such that representative points
on the diagram do not differ by more that ε.

In [2], Chazal et al give a general theory of proximity of persistence diagrams. They first
define what it means for two filtrations to be strongly ε-interleaved. This definition is more
general than we need. It will suffice for this work to observe that two filtrations FR and GR

such that Fα−ε ⊂ Gα ⊂ Fα+ε for all α are strongly ε-interleaved. We reproduce the main
theorem of [2] below.

Theorem 1. Let FR and GR be two tame persistence modules. If FR and GR are strongly

ε-interleaved, then d∞B (DFR, DGR) ≤ ε.

For the filtrations we will see in this paper, the above theorem implies that strongly
interleaved filtrations have similar persistence diagrams.

The log diagram distance between two filtrations {Aα} and {Bα} is defined as follows.

dlog
D (Aα, Bα) = d∞B (D{Alog α}α∈R≥0

, D{Blog α}α∈R≥0
) (1)

Using this definition, we get the following corollary to Theorem 1.

Corollary 2. If two filtrations {Aα}, {Bα} have the property that Aα/γ ⊆ Bα ⊆ Aαγ then

dlog
D ({Aα}, {Bα}) ≤ logγ.

Persistent Nerves. In the sequel we will make extensive use of the following variant of
the Nerve Theorem, introduced in [5]:

Lemma 3 (Persistent Nerve). Let X ⊂ X ′ be two paracompact spaces, and let U = {Uα}α∈A

and U ′ = {U ′
α}α∈A be good open covers of X and X ′ respectively, based on the same finite

parameter set A, such that Uα ⊆ U ′
α for all α ∈ A. Then, there exist homotopy equivalences

NU → X and NU ′ → X ′ that commute with the canonical inclusions X →֒ X ′ and NU →֒
NU ′ at homology and homotopy levels.

2.3 Distance Functions

Let dP (x) denote the distance from the point x ∈ R
d to the nearest vertex in the input set

P . That is, dP (x) = minp∈P |x − p|. The function dP is a distance function on the space,
mapping R

d → R with well defined sublevel sets

Pα = d−1
P [0, α].

Observe that the set Pα is simply the union of balls of radius α centered at vertices in P .
The family of such sublevel sets parameterized by α is the offset filtration. This filtration
has many nice properties and is used often in persistent homology.

We will also be considering an alternative distance function that is common to meshing,
the Ruppert local feature size. We define this function as fP (x) = minp1,p2∈P max{|x −
p1|, |x − p2|}. That is, fP (x) is the distance from x to the second nearest vertex in P . We
define the Ruppert filtration using the sublevel sets of fP . That is,

Rα = f−1
P [0, α].

The Ruppert local feature size has the advantage that it doesn’t go to 0 for finite point sets,
thus bounding from below the minimum scale. Also, it is slightly more robust to outliers,
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since it requires two points rather than one to drive the value down. For our purposes, it
is helpful to look at the Ruppert filtration because of its connection to standard meshing
algorithms.

2.4 Sparse Voronoi Refinement

Let P be a finite point sets in Euclidean space R
d. We denote by Vor(P ) the Voronoi

diagram of P , defined as a collection of closed cells {Vor(p) : p ∈ P}, where each cell Vor(p)
is the locus of the points of R

d that are at least as close to p as to any other point of P . Since
each cell is convex, the collection Vor(P ) forms a good closed cover of its underlying space
|Vor(P )| =

⋃

p∈P Vor(p) = R
d. Its nerve, the Delaunay triangulation Del(P ), is therefore

homotopy equivalent to R
d, by the Nerve Theorem. In fact, the canonical inclusion P →֒ R

d

yields Del(P ) as an embedded simplicial complex. The underlying space of Del(P ), |Del(P )|,
coincides with the convex hull of the point cloud P and is thus homeomorphic to R

d.
We assume that the input points are in general position so that at most d + 1 Voronoi

cells intersect at a point. We need this assumption only to guarantee that the dual Delaunay
complex is indeed a simplicial complex. This is equivalent to assuming that no d+ 2 points
lie on a common sphere.

For a Voronoi cell, Vor(v), let Rv denote the radius of the smallest ball centered at v
that contains all of Vor(v). Let rv denote the largest ball centered at v that is entirely
contained in Vor(v). We define the aspect ratio of the Voronoi cell to be Rv/rv. We assume
that the input points lie in a reasonably sized bounding box of side length O(diam(P )) and
clip Voronoi cells to lie in this box. Thus, we may assume that all (clipped) Voronoi cells
have finite aspect ratio.

For any finite set S ⊂ R
d let NNS(x) denote the distance from the point x ∈ R

d to its
nearest neighbor in S \ {x}. The aspect ratio of a Voronoi cell Vor(v) in a set P can also
be written as 2Rv/NNP (v). The quantity Rv/NNP (v) is known as the radius-edge ratio of
the Delaunay simplex dual to the furthest vertex of Vor(v) to v.

A common variant of the meshing problem takes the set P as input and returns a
superset M with the property that all of the Voronoi cells have aspect ratio bounded by
some constant ρ. The mesh vertices S = M \ P are known as Steiner points. In a slight
overload of notation, we refer to the point set M as the mesh, assuming the Delaunay
topology. The Sparse Voronoi Refinement algorithm (Svr) can produce M in near-optimal
O(|P | log(∆(P ) + |M |)) time, where ∆(P ) is the ratio of the largest to smallest interpoint
distances among the points of P , also known as “the spread of P” [14]. The algorithm we
present in this paper uses Svr as a black box but only on subsets of the input so as to avoid
the dependence on the spread. Also, it reduces the output sensitive term, |M | to O(n) using
a technique similar to the one in [16].

3 The α-mesh filtration

Give an overview here: the rationale is that we add Steiner points outside the

sampled object in order to reduce the complexity of the Delaunay; the conse-

quence is that the alpha-complex filtration no longer has the nice properties it

enjoys on sampled shapes. We therefore have to change the way the Delaunay

triangulation is filtered, and in fact our filter is very simple and naturally related

to the offsets of the input point cloud.

3.1 Construction

Let ball(p, α) denote the closed ball of radius α centered at p. Let Pα be the α-offset of the
input points P . Formally,

Pα =
⋃

p∈P

ball(p, α).
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The nested family of sets, Pα, parameterized by α is known as the offset filtration on P .
Given a mesh M , we want to construct a filtration on the mesh that approximates

the offset filtration. The filtration is defined by assigning a time t(σ) to each simplex
σ ∈ Del(M). The α-mesh filtration, Dα

M , is the set of all simplices σ ∈ Del(M) such that
t(σ) ≤ α. To define t we also consider the time s(v) when a vertex v may appear in larger
simplices in the filtration. This differs from previous methods in which all input points are
assumed to enter the filtration at time 0.

The Svr algorithm adds a bounding box around the input points. If diam(P ) is the
diameter of the input set P , then the bounding box used by Svr has side lengthO(diam(P )).
As shown in [15], the extra work needed to fill out the rest of the bounding box is negligible.

s(v) =

{

1
2NNP (v) if v ∈ P
NNP (v) if v ∈ S

(2)

t({v1, . . . , vk}) =

{

0 if k = 1 and v1 ∈ P
max

i
{s(vi)} otherwise (3)

The α-mesh filtration is defined as the closed sublevel sets of t−1. That is,

Dα
M = t−1[0, α].

If σ′ is a face of a simplex σ then t(σ′) ≤ t(σ), so the complexes in the filtration are all
proper simplicial complexes.

Persistent homology of the complement. Describe the reverse filter here: instead
of filtering Del(M) by the (closed) sublevel-sets of t, we filter the complex by the (open)
superlevel-sets of t.

3.2 Theoretical Guarantees

Our goal in this section is to show that the α-mesh filtration, Dα
M , has the similar persistent

homology to the offset filtration, Pα. We do the analysis in terms of a dual filtration, V α
M

based on the clipped Voronoi diagram. The set VorM (v) will always refer to the Voronoi
cell of v clipped to the bounding box.

VorM (v) = {x ∈ BB | |x− v| ≤ dP (x)}.

Associate a closed convex set Uα(v) to each vertex v in the mesh M as follows.

Uα(v) =







∅ if t({v}) > α
ball(v, α) if v ∈ P and s(v) > α
VorM (v) otherwise

(4)

The Voronoi filtration is defined as

V α
M =

⋃

v∈M

Uα(v) (5)

The collection of sets Uα = {Uα(v) | v ∈ M, t({v}) ≤ α} forms a closed cover of V α
M .

Let NUα denote the nerve of this cover. The following Lemma describes the relationship
between NUα and the α-mesh, Dα

M .

Lemma 4. For all α ≥ 0, the complex Dα
M is isomorphic to NUα.
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Proof. The desired isomorphism is φ : Dα
M → NUα defined by φ({v1, . . . , vk}) = {Uα(vi)}i=1...k.

To prove that this map is indeed an isomorphism, it suffices to show that a simplex σ ⊂M
is in Dα

M if and only if ∩v∈σUv 6= ∅.
First, consider the case where σ = {v} is a singleton. If v ∈ P , then Uα(v) is in the Uα

and {v} is in Dα
M for all α ≤ diam(P ). For v ∈ S, σ = {v} ∈ Dα

M if and only if NNP (v) ≤ α.
This is also the criteria for which Uα ∈ Uα.

For larger simplices σ, the sets Uα(v) corresponding to the vertices v ∈ σ are all Voronoi
cells of Vor(M). Thus, σ ∈ Dα

M if and only if φ(σ) = ∩v∈σUv 6= ∅.

Lemma 5. For all β ≥ α ≥ 0, the k-dimensional persistence diagram of the filtrations

{V α
M}α≥0 and {Dα

M}α≥0 are the same for all k = 0 . . . d. Equivalently, dlog
D (Dα

M , V α
M ) = 0.

Proof. The topological spaces defined by V α
M andDα

M are homotopy equivalent. This follows
directly from Lemma 4, the Nerve Theorem, and the observation that the cells in the cover
of V α

M are all convex.
In addition, the Persistent Nerve Lemma (Lemma 3) implies that the following diagram

induced at the kth homology level by canonical inclusions V α
M →֒ V β

M and Dα
M →֒ Dβ

M and
by homotopy equivalences commutes for all β ≥ α ≥ 0 and all k ∈ N:

Hk(V α
M ) → Hk(V β

M )
∼= ↓ ↓ ∼=

Hk(Dα
M ) → Hk(Dβ

M )

It follows that the ranks of the homomorphisms Hk(V α
M ) → Hk(V β

M ) and Hk(Dα
M ) →

Hk(Dβ
M ) are the same. Since this is true for all β ≥ α ≥ 0, the k-dimensional persistence

diagrams of the filtrations {V α
M}α≥0 and {Dα

M}α≥0 are the same as desired.

Let the clipped offsets be defined in analogy with the clipped Voronoi cells as follows.

Pα
�

= {x ∈ BB | dP (x) ≤ α}.

Lemma 6. For all α ≥ 0,

V
α/ρ
M ⊆ Pα

�
⊆ V 2α

M .

Proof. Let x be a point of V
α/ρ
M . Let v be the nearest mesh vertex to x. If v is an input

point with NNM (v) > 2α/ρ, then x ∈ ball(v, α/ρ) and thus x ∈ P
α/ρ
�

⊆ Pα
�

. If v is an input
point with NNM (p) ≤ 2α/ρ, then the quality of Vor(v) guarantees that |x−v| ≤ α and thus
x ∈ Pα

�
. If v is a Steiner point then there exists p ∈ P such that α/ρ ≥ |v − p| ≥ NNM (v).

Since the Voronoi aspect ratio of v, ρ(v), is bounded by ρ, it is true that for all y ∈ Vor(v),
|y−v| ≤ α/2. In particular, this holds for x and thus |x−p| ≤ |x−v|+|v−p| ≤ (1+ρ/2)α/ρ.

Since ρ > 2, |x− p| < α, and thus x ∈ Pα
�

. So, we have V
α/ρ
M ⊂ Pα

�
.

For the second inclusion, let x be a point of Pα
�

. We wish to show that x ∈ V 2α
M . Let

v ∈ M be the nearest mesh vertex to x. The three cases to consider are when (1) v ∈ P ,
(2) v ∈ S ∩ Pα

�
, and (3) v ∈ S \ Pα

�
, where S denotes the Steiner points as before.

If v ∈ P then x ∈ ball(v, α) ⊆ V α
M and thus x ∈ V 2α

M . If v ∈ S ∩ Pα
�

then Vor(v) ⊂ V α
M

and thus x ∈⊆ V 2α
M .

The interesting case is when v ∈ S \Pα
�

. Let p ∈ P be such that x ∈ ball(p, α). Observe
that |v − p| ≤ |v − x| + |x − p|, |x − v| ≤ |x − p|, and |x − p| ≤ α. Thus |v − p| ≤ 2α. It
follows that Vor(v) ⊂ V 2α

M and consequently, x ∈ V 2α
M .

Theorem 7. dlog
D (Dα

M , Pα) ≤ log ρ.
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Proof. Pα is a union of balls, all of which are centered inside BB. There is a natural defor-
mation retraction defined by the fibers of f : Pα → Pα

�
mapping points in Pα to the nearest

point in Pα
�

. Thus, Pα and Pα
�

have the same persistence diagrams and dlog
D (Pα, Pα

�
) = 0.

This fact, combined with Lemma 6 and Corollary 2, implies dlog
D (V α

M , Pα
�

) ≤ log ρ. Since

dlog
D (Dα

M , V α
M ) = 0 (Lemma 5), we conclude dlog

D (Dα
M , Pα) ≤ log ρ as desired.

4 Recursively Well-Paced Subsets

4.1 Well-Paced Points

Let B be the vertices of a bounding box around a set P . Recall that NNP ′(p) is the distance
to the nearest neighbor of p in the set P ′ ⊆ P . Similarly, let SNP ′ be the distance to the
second nearest neighbor of p in P ′. Given an ordering (p1, . . . , pn) of P , let Pi = {p1, . . . , pi}
and define P0 = ∅. We say that a set of points P is θ-well-paced with respect to B if there
is an ordering P such that

NNPi−1∪B(pi) ≥ θSNPi−1∪B(pi),

for all i = 1 . . . n. Note that 0 < θ < 1.
The well-paced criteria is a loose generalization of many sampling conditions on the spac-

ing of an input set used in the literature, and may be viewed as an unstructured analogue of
an unbalanced quadtree (see [15] for other examples and applications). When the bounding
box is clear, we simply say P is θ-well-paced. When the particular value of θ is understood
or unimportant, we just call P well-paced.

The output of a good aspect ratio meshing algorithm such as Svr has linear size when
the input is a well-paced set. This result, first proven in [16], is a generalization of the linear
cost of balancing a quadtree to the case of Delaunay refinement meshes, and captures the
usefulness of well-pacing. Below, we paraphrase Theorem 2 of [16] in the terminology of
this paper.

Theorem 8. If P is θ-well-paced for some constant θ and m is the size of the mesh generated

by the Svr algorithm, then m = O(n).

Observe that if P is well-paced then the minimum interpoint distance goes down at
most by a factor of (1 + 1

θ ) between Pi and Pi+1. Consequently, the spread, ∆(P ), is upper
bounded by (1 + 1

θ )n and therefore log(∆(P )) = O(n). This fact combined with Theorem 8
imply that the O(n log(∆(P )) +m) running time of Svr is O(n2) on well-paced inputs.

4.2 Recursive Construction

Many inputs will not be well-paced. In such cases it suffices to construct a tree of well-
paced subsets. Suppose P is our non-well-paced input that contains its own bounding box.
A näıve greedy algorithm constructs a maximal θ-well-paced subset Q ⊆ P of a point set in
O(n2) time. The subset Q has the property that for all p ∈ P \Q, NNQ(p) < θSNQ(p) for
otherwise Q would not be maximal. In other words, for every point p not selected by the
algorithm there is a point q in Q that is much closer to p than all of the other points in Q.
In fact, we can pick θ so that the points in P \Q are not even well paced with respect to
the vertices of a quality mesh on Q.

Let q be the nearest point in Q to some non-well-paced point in P \ Q. Let R be the
set of all p ∈ P whose nearest neighbor in Q is q. Note that R includes the point q. We
can add an appropriately size bounding box around R and again find a maximal well-paced
subset. This recursive procedure yields a family P1, . . . , Pk ⊆ P of well-paced subsets (each
with respect to its own bounding box). The recursion tree has the property that a set Pi

shares exactly one point with each of its children.
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For each set Pi, let pi denote the point inherited from its parent in the recursive con-
struction. For the root set P1, let p1 be the first point added by the greedy algorithm. Let
ri be the maximum distance of a point in Pi to pi. We call the point pi the center and ri
the radius of Pi.

We construct a series of meshes M1, . . . ,Mk on the sets Pi augmented with bounding
boxes. We modify the algorithm to include Steiner points s as long as |s − pi| ≤ 1

θ ri.
To compute the persistent homology of P , we will work on each mesh independently and
combine the answers. Algorithmically, this is straightforward. In the rest of this section, we
show how the union of the independent meshes can be modeled by a single filtration that
can be intertwined with Pα.

4.3 Topological Consistency

Let {Pi} be the tree of well-paced sets and let {M1, ldots,Mk} be the corresponding family
of quality meshes.

Dα
M∗

=

k
⋃

i=1

Dα
Mi

V α
M∗

=

k
⋃

i=1

V α
Mi

Unlike Dα
M , the complex Dα

Mi
is not an embedded simplicial complex. We rectify this

situation with the following lemma.

Lemma 9. For all α ≥ 0, there exists an embedded subcomplex Eα
M∗

⊆ Dα
M∗

that is a

deformation retraction of Dα
M∗

.

Proof. For a mesh Mi, let r(Mi) be the smallest radius such that ball(pi, r(Mi)) contains
the entire bounding box of Mi. Define Eα

M∗
as follows.

Eα
M∗

=
⋃

i|r(Mi)>α

Dα
Mi
.

Clearly, Eα
M∗

is a subset of Dα
M∗

.
The deformation retraction is defined by collapsing any mesh Mi in Dα

M∗
that is not

in Eα
M∗

to a single point. All omitted meshes have r(Mi) ≤ α and thus |Dα
Mi

| is just the
convex closure of the bounding box. Such a mesh is simply connected and we can therefore
retract it to pi = Dα

Mi
∩Dα

Mj
.

Lemma 10. dlog
D (Eα

M∗
, V α

M∗
) = 0.

Proof. The meshes omitted from Eα
M∗

are exactly those that are covered by a single ball of

radius alpha of one of their points. Thus, if we consider the cover U = {U
(i)
α | Dα

Mi
⊂ Eα

M∗
},

we find that Eα
M∗

is exactly the nerve of this cover. Moreover,
⋃

U∈U U = V α
M∗

, so the
Persistent Nerve Lemma implies the Lemma.

We can define the clipped offsets for the recursive meshes in the obvious way.

Pα
∗�

=

k
⋃

i=1

Pα
i�
,

where Pα
i�

is the clipped offset of mesh Mi as before.

Lemma 11. dlog
D (V α

M∗
, Pα

∗�
) ≤ log ρ.

9



Proof. This follows from Corollary 2 and Lemma 6 applied to the individual meshes Mi.

Lemma 12. dlog
D (Pα, Pα

∗�
) ≤ log(1 + θ).

Proof. It suffices to prove that dlog
D (Cα, Cα

�
) ≤ log(1+θ), where Cα

�
is the nerve of the cover of

Pα
∗�

induced by the clipped α-balls. Choose a basis B forHk(Cα). For any b ∈ B, there exists
a cycle z(b) ∈ Cα(1+θ) such that all vertices in b are contained in a single mesh Mi. Moreover
z(b) is homology equivalent to b in Cα(1+θ). This follows from the fact that if any simplex σ
in b uses vertices from more than one mesh, then α > 1

θ r(Mj) for all but one of the meshes,

call it Mi. Since all of the vertices of z(b) are contained in Mi, z(b) ∈ C
α(1+θ)
�

. Thus, z and

the canonical inclusions induce a family of homomorphisms {φα : Hk(Cα) → Hk(C
α(1+θ)
�

)}.
There is trivial family of homomorphisms {ψα : Hk(Cα

�
) → Hk(Cα(1+θ))} induced by the

canonical inclusions Cα
�

→֒ Cα and Cα →֒ Cα(1+θ). It is straightforward to show that φα

and ψα commute as required for strong interleaving, and thus dlog
D (Cα, Cα

�
) ≤ log(1 + θ) as

desired.

Theorem 13. dlog
D (Dα

M∗
, Pα) ≤ log((1 + θ)ρ).

Proof. The Theorem follows directly from the preceding Lemmas and the triangle inequality.

5 Tighter Intertwining via Overmeshing

Let f : R
d → R be a sizing function. As long as f < fP , Svr can return a mesh such that

the radii of all Voronoi cells Vor(v) are bounded to be within a constant factor of f(v). We

can define f(x) = fP (x)
k for any constant k. The standard mesh size analysis implies that

the output size m can be bounded as follows.

m = O

(
∫

B

1

f(z)d
dz

)

(6)

For our particular choice of f , we have that

m = O

(

kd

∫

B

1

fP (z)d
dz

)

. (7)

Thus, we can scale down the feature size everywhere by a factor of k at a cost of kd in our
overall mesh size.

Using this method of overmeshing, it is possible to prove a tighter intertwining of the
α-mesh filtration with the Ruppert filtration. We no longer leave the input points as a
special case. Instead, we simply compute f at each vertex in the mesh. A Voronoi cell
Vor(v) enters the filtration V ′α

M at time α = f(v). A simplex σ enters the filtration D′α
M at

time α = maxv∈σ f(v).

Lemma 14. For all α ∈ [0, diam(P )].

V
′kα/ρ
M ⊂ Rα ⊂ V

′2α/k
M .

Proof. We proceed in a manner similar to before.

The same idea can be applied to get a tighter intertwining with the offset filtration. In
such an approach, the birth times of Voronoi cells significantly nearer to one vertex than
any other, must be inserted only when that near vertex is within α/2 of its nearest neighbor.
We omit the exact construction and the proof of its intertwining.

10



6 Conclusion

In this work we bring together mesh generation and persistent homology. The result is
a new method for computing persistent homology. The points are preprocessed into a
linear size mesh in worst-case quadratic time. We have shown that the persistent homology
of a filtration on this mesh matches that of the offset filtration. Thus, we can run the
traditional persistence algorithm on this complex and achieve a dramatic improvement in
the asymptotic runtime.
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A Tighter Constants for Mesh Size Analysis

In [16], it is proven that mesh refinement algorithms such as Svr will produce meshes of size
O(n) for well-paced inputs. In the context of that result, the dimension was taken to be a
constant. The O(n) reported hides constants that are dO(d). In this section, we prove that
the constants are only 2O(d) by a more careful analysis. The proof will be almost identical
to that given in [16], with the exception that all constants in the proof will be independent
of d.

We start with the following basic fact about the output size, m, for optimal meshing
algorithms.

m ≤ 2c1d

∫

x∈Ω

1

lfs(n)(x)d
dΩ (8)

Let P be a set of well-paced points with respect to a bounding box B. The proof
will be by induction on n = |P |. Let lfsi be the local feature size function induced by
B ∪ {p1, . . . , pi}. Let Ψi = 2c1d

∫

x∈Ω
1

lfsi(x)d dΩ where c1 is the constant from the upper

bound in Equation 8. In general, c1 will depend on the particular meshing algorithm used.
We want to prove that Ψn ≤ 2c2dn for some constant c2 and n > 0.
The base of the induction is Ψ0 = 2c1(d+1) can be computed explicitly from the obser-

vation that lfs(0)(x) ≥ s
2 for any point x in a bounding box with side length s.

By induction, we assume Ψn−1 ≤ 2c2(n− 1) + Ψ0 for some constant c2. It will suffice to
show that Ψn − Ψn−1 < c2. We can split the Ruppert sizing integral as follows.

Ψn = 2c1d

∫

x∈Ω

1

lfsn(x)d
dΩ (9)

≤ Ψn−1 + 2c1d

∫

x∈U

1

lfsn(x)d
−

1

lfsn−1(x)d
dΩ (10)

where U ⊆ Ω is the set of all points for which the local feature size was changed by the
insertion of pn. Let R = rpn

. The following two inequalities hold for all x ∈ U , the first is
trivial and the second follows from the definition of well-paced points.

lfsn(x) ≥ |pn − x|, and (11)

lfsn−1(x) ≤ |pn − x| +
R

θ
. (12)

We use these inequalities to compute the integral above using spherical coordinates assuming
the new point pn is at the origin. Since the integrand is positive everywhere, we can upper
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bound the integral by integrating over all of R
d instead of just U :

Ψn − Ψn−1 ≤ 2c1d

∫

x∈U

1

|x|d
−

1

(|x| + R
θ )d

dV, (13)

≤ 2c1d

∫ ∞

0

∫

Sr

(

1

rd
−

1

(r + R
θ )d

)

dAdr, (14)

≤ 2c1dsd

∫ ∞

0

(

1

rd
−

1

(r + R
θ )d

)

rd−1dr, (15)

where Sr is the sphere of radius r and sd is the surface area of the unit d-sphere. Note the
rough bound, sd < πd/2 < 2d. In the ball of radius R

2 around pn the lfs is at least R
2 , so the

contribution of this region to Ψn is less than some constant c3.

Ψn − Ψn−1 ≤ 2c1d+1

(

c3 +

∫ ∞

R
2

(

1

rd
−

1

(r + R
θ )d

)

rd−1dr

)

(16)

By the change variable yR/θ = r and simplifying we get:

Ψn − Ψn−1 ≤ 2c1d+1

(

c3 +

∫ ∞

θ
2

(

(y + 1)d − yd

y(y + 1)d

)

dy

)

(17)

≤ 2c1d+1

(

c3 +

d−1
∑

i=0

(

d

i

)
∫ ∞

θ
2

yi

yd+1
dy

)

(18)

= 2c1d+1

(

c3 +

d−1
∑

i=0

(

d

d− i

)

1

d− i

(

2

θ

)d−i
)

(19)

≤ 2c1d+1
(

c3 + (2/θ + 1)d
)

(20)

Observing that the constant on the last inequality is 2O(d) completes the proof.
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