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1. Introduction

The shuffle-exchange graph is one of
the best structures known for parallel com-
putation. Among other things, it can be
used to compute discrete fourier trans-
forms, multiply matrices, evaluate poly-
nomials, perform permutations and sort
lists [2,4,5,7].
for these operations are extremely simple

The algorithms needed

and, for the most part, regquire no more
than logarithmic time and constant space.
The only exceptions are sorting lists (for
which the best algorithm known requires
O{logzn} time) and performing permutations
(which requires 0(logn) space per proces-

sor) .

With the development of integrated
circuit technology, it has become possible
to place large numbers of very simple pro-
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cessors on a single chip. Thus the gues-
tion of how best to lay out the shuffle-
exchange graph on a grid has gained prac-
tical as well as theoretical importance.
Thompson was the first to address the is-
sue. In his thesis [8], he showed that
any layout of the shuffle-exchange graph
In ad-
dition, he described a layout requiring

2
requires at least O(n“/lcgzn) area.
only O(nz/ffagﬁ) area. Recently, Hoey and
Leiserson improved the upper bound by fin-
ding an 0(n2/109n)—area layout.

In this extended abstract, we present
several new layouts for the shuffle-ex-
change graph, including one which requires
only O(nz/logzn) area. The optimal layout
is described and analyzed in section 3.
The analysis is heavily dependent on seve-
ral combinatorial results which we state
in section 2 and prove in the appendix.
The other layouts are described in section
4. Although these layouts are not asymp-
totically optimal (most require
O(n2/10g3/2

their development is interesting and may

n) area), the theory behind

eventually lead to good practical layouts
as well as other asymptotically optimal

layouts. (Rodeh and Steinkerg have inde-
pendently discovered one of these layouts

[6].)



The methods developed in this abstract 2. Preliminaries
appear to be quite useful in laying out
more complicated networks. For example, The shuffle-exchange graph con=-
in section 5, we show how they can be used sists of n=2k nodes and 3n/2 edges.
to find an optimal D(nz/logzn)—area layout Each node is associated with a unique
for the shuffle-shift-reverse graph (the k-bit binary string ay_1-++3pe If
supergraph of the shuffle-exchange graph ao=0, the node is said to be even.
which also has shift and reverse edges). Otherwise a0=l and the node is said to
The methods are also guite suitakle for be odd. The value of a node is the
practical applicaticns. Although we do numerical value of the associated k-bit J
not discuss such considerations in detail binary string. Two nodes w and w' are ?
in this abstract, we have found several linked via a shuffle edge if w' is a i
heuristics which, when combined with the left or right cyclic shift of w (i.e.,
optimal layout, yield excellent practical 1€ w=ay _q1...8 and w'=ak_2...a0ak_l or

layouts for the shuffle-exchange graph. w’=aoak_1"'a1' respectively). ‘TWO

As it previously was not known whether nodes w and w' are linked via an ex-
or not the shuffle-exchange graph could change edge if w and w' differ only in
be laid out in O(n2f10g2n) area, several the last bit (i.e., if w=a, _;...2,0
researchers have tried to develop alter- and w'=ak_l._.all or wvice versa). tn
nate networks which can efficiently com- For example, we have drawn the shuffle- g
pute discrete fourier transforms and which exchange graph for k=3 in Figure 1.
can be easily laid out in 0(n?/log’n) area. Solid lines denote shuffle edges while “

The cube-connected-cycles graph of Prepa- dashed lines denote exchange edges.

rata and Vuillemin [5], is one such net-

work. In fact, the cube-connected-cycles

graph is the only network which is known 100 L 101

to compute discrete fourier transforms in

0(logn) time and to require only (:?" - ' s ol )

0(n2/10g2n) area. Unfortunately, each 000 001 110 111

3 3 T 1 a B
processor in this network must be capable 010 011

of storing its own address (an 0(logn)-bit

T vire |
number) and thus requires at least 0(logn) Pigure 1

space. In addition, the programming re-

uired for each processor of the cube-
- 1 proc - AR In this extended abstract, we will
connected-cycles network 1is relative

Y ] 2 describe layouts for the shuffle ex-
complex and would require a great deal of . .

. . change graph in terms of the grid model

area to hardwire on a chip. Neither of .
developed by Thompson [8]., In this

model, processors are assumed to occupy

these drawbacks arises with the chuffle-

exchange network. Thus, now that a prac- .
. 2 2 unit area and are located only at the
tical 0(n“/log”n)—-area layout for the : . . ; .
. intersection of grid lines. Wires con-
shuffle-exchange graph has been found, it .
nect pairs of processors and are as-
seems reasonable to use the shuffle-ex- . .
- . sumed to have unit width. They must
change netwcrk as the basis for designing . .
. . follow along grid lines and are not al-
chips to compute fast fourier transforms, .
; ; lowed to overlap processcrs. Two wires
evaluate polynomials and the like.
can cross each other but only at the

intersection of grid lines (i.e., two

wires cannot overlap for any distance).
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The area of the layout is defined to be

the area of the smallest rectangle which

contains all the wires and processors.
It is not difficult to show that

m wires can be inserted into any layout

with the addition of at most 2m vertical

All of the

layouts we consider in this abstract

and 2m horizontal tracks.
will require at least 0(n/logn) Verti-
cal and 0(n/logn)
Thus any set of 0(n/logn) nodes and

horizontal tracks.

edges can be inserted into a layout for
the shuffle-exchange graph without in-
creasing the total area by more than a
this fact

constant factor. We will use

repeatedly in what follows to simplify
the analysis of the layout by ignoring
0(n/logn)~-sized sets of ncdes and edges
that have undesirable properties.

The collection of all cyclic
shifts of a node w is called a necklace
and is denoted by <w>. For example,
the necklace generated by 001 is
<001> = {001, 010, 100}. Note that
each necklace corresponds to a cycle
in the shuffle-exchange graph (see
Figure 1) and that shuffle edges always
link nodes which are in the same neck-
lace. If a necklace contains precisely
k nodes, it is said to be full. Other-
wise, the necklace contains less than
k nodes and is said to be degenerate.
It is a simple exercise to show that at
most 0(v¥nlogn) nodes are contained in
Thus,.by the re-

marks of the preceding paragraph, we

degenerate necklaces.

do not need to consider such nodes
when describing a layout for the shuf-
fle-exchange graph. Accordingly, we
henceforth consider only those nodes
which are contained in full necklaces.
Note that there are 0(n/logn) full

necklaces.

In what follows, we will be par-
ticularly interested in the size and
location of the longest block of con-

secutive 0-bits in the k-bit binary
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string associated with each node. 1In
this block be

the same for each node within a neck-

order that the size of

lace, we allow blocks to begin at the
end and end at the beginning of a
string. For example, the longest
block of zeros in the string 01010
starts at the fifth bit and has length
2. Let Yk(t) denote the number of k-
bit strings for which the longest

block of consecutive zeros has length

The fol-

lowing combinatorial lemma provides an

t. For example, Y3(2)=3-

asymptotic bound on the growth of Y (E) .
The proof of this lemma as well as those
of lemmas 2-4 are combinatorial in na-
ture and can be found in the appendix.

Lemma l: For -;—Ing+loglnk <t <<k,

T
v (e) v 28 (e7*? <

.

_k2-(t+l)
e

) as k-,

In order to illustrate the impor-
tant features of the function in Lemma
1, we have sketched a graph of 2_kyk(t)
versus t in Figure 2.

-k

The maximum of

2 yk{t) occurs at ‘t=logk-1 whence

K “5;1 = 5346E,

Ty (B) = For t>logk-1,

-k i
2 Yk(t) decreases exponentially as t
increases. For t<logk-1, Z-kYk(t}

decreases doubly exponentially as t de-

creases.

.23 +

27Ky (1)




The following lemma bounds the size
of the largest block of zeros for all
but 0(n/logn) nodes. Acccrdingly, we
henceforth consider only those nodes
for which the longest block of zeros
has length between logk-loglnk-1 and
2logk.

Lemma 2: The number of k-bit strings
for which the largest block of zeros has
length less than logk-loglnk-1 or length

greater than 2logk is at most 0(n/logn).

We will also be interested in the
size of the second longest block of con-
secutive zeros. Usually, the size of
the second longest block of zeros will
be very close to the size of the longest
block of zeros. We state this observa-
tion more precisely in the following
lemma.

Lemma 3: The sum over all neck-
laces of the difference between the size
of the longest and the size of the sec-
ond longest block of consecutive zeros
is at most 0(n/logn).

Using information about the size
and location of blocks of zeros within
the nodes of a necklace, it is possible
to distinguish one particular node of
the necklace. More precisely, we define

the distinguished node of a necklace to

be the node containing the longest
leading block of zeros. For example,
00101 is the distinguished node of

<01010>.

necklace begin with equal and maximal

Should two or more nodes of a

length blocks of zeros, then each node
in the necklace contains at least two
blocks of zeros with maximal length.

In such cases, we distinguish that node
for which the leading block of zeros is
maximal and for which the second occur-
rence of a maximal length block of zeros
is as near as possible to the beginning
01011 (not

is the distinguished node of

of the string. For example,
01101)
<10101>.

ox <1010101>,

For some necklaces, such as

)™ there is no uriquely
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distinguished node. As we show in the

following lemma, such necklaces are
sufficiently rare that we need not
consider them further.

At most 0(n/logn)

are contained in necklaces which fail to

Lemma 4: nodes

have a uniquely distinguished node.

We refer to the leading block of
zeros of a distinguished node as the
primary block of

zeros. If a distin-

guished node has
length blocks of
mal length block

block is referred to as the secondary

two or more maximal
zeros, then the maxi-
following the primary

block of zeros. These definitions can

be easily extended to any node con-

tained in a necklace which has a uni-
guely distinguished node.
the primary block of zeros of 01010

For example,

starts in the fifth bit and has length
two. Note that this string does not
have a secondary block of zeros. As -
another example, we note that the
secondary block of zeros of the string
11010 consists solely of the fifth bit.
Note that the secondary block of zeros,
if it exists, always has the same
length as the primary block of zeros.
If the last bit of a node occurs
in the primary block of zeros, we call
that node a primary node.
if the last bit of a node occurs in the

Similarly,

secondary block of zeros, we call that
Note that all
primary and secondary nodes are neces-

node a secondary node.

sarily even. For examﬁle, 10110 is a

primary node, 11010 is a secondary node,
and 10010 is neither primary nor
secondary. Note also that, by Lemma 2,
we need only consider necklaces which
contain between logk-loglnk-1 and 2logk
primary nodes. Such necklaces will also
have at most 2logk secondary nodes.

In what follows we will represent
each node in terms of the corresponding
distinguished node. To do this, we use

the notation ak—l"' to

T e TR
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denote the node a, For

j-1°--2

03k-1 24>
example, 00101 denotes the node 10010.
Using this notation, a primary node has
the form 0...0...0w while a secondary
node has the form 0...0w'0,..0...0w"
where 0...0w and 0...0w'0...0w" are

distinguished nodes.

3 The Optimal Layout

We will present the optimal lay-
out for the shuffle-exchange graph in
two phases. First, we will describe a

very simple layout which will be shown

; 2 2 il
to require only 0(n” (loglogn)“/logn)
area. We will then modify this near-

optimal layout in order to produce an

optimal 0(n2/log2n)—area layout , thus
achieving Thompson's lower bound.

The near-optimal layout is con-
structed from a logn x 0(n/logn) grid
of nodes. Each column of the grid cor-
responds to a necklace of the shuffle-
exchange graph. The nodes of each
necklace are ordered from top to bot-
tom so that the ith node is a left
cyclic shift of the (i-1l)st node and so
that the distinguished node is placed
in the bottom row. The necklaces are
ordered from left to right so that the
values of the associated distinguished
nodes form an increasing sequence. For
example, we have constructed such a
In the

figure, we have represented each node

grid for k=5 in Figure 3.

in terms of the associated distin-
guished node. This representation
readily illustrates the fact that the
last bit of any node in the ith row
corresponds to the ith bit of the as-
sociated distinguished node. Note that
the necklaces <00000> and <11111> have
not been included since they are de-

generate.
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Figure 3

It is easily observed that the
shuffle edges can be inserted in the
grid with the addition of 0(n/logn)
vertical and 2 horizontal tracks. In
the following, we will show that the

exchange edges can be inserted with the

addition of 0(nloglogn/logn) vertical and
horizontal edges. In particular, we will
first show that only 0(nloglogn/logn)
exchange edges link nodes which are

in different rows of the grid.

Such edges can be trivially inserted
using only 0(nloglogn/logn) vertical
and horizontal tracks. Then we will
show that the edges which link nodes in
the same row can be inserted with the
addition of only 0(n/logn) horizeontal
tracks. Thus the completed layout will
regquire only 0(n2(lcglogn)2/1092n) area.
Consider an exchange edge linking
two nodes which are in different rows
of the grid. 1In particular, assume the
edge is incident to an even node in the
ith row for some i. By definition, the
even node can be represented as wow"
where |w| = i-1 and wOw' is the dis-
tinguished node of <wlOw'>. The ex-
change edge is also incident to the odd
node wiw'. By assumption, wlw' is not
located in the ith row and thus wlw' is
not a distinguished node. Since wOw' is
a distinguished node, we know that the
ith bit of wOw' (the bit that was
changed in order to produce wlw') must

be in the primary or secondary block of



zeros of wOw'. Otherwise, the primary
and (if it exists) secondary blocks of
zeros of wlw' would be identical in
location and size to the primary and
This would
is also distinguished,
Thus wlw'

primary or secondary node.

secondary blocks of wOw'.
imply that wlw'
a contradiction. must be a
As was pre-
viously mentioned, we can assume that
each necklace has at most 2logk = 2logloan
primary and 2loglogn secondary nodes.

Thus at most 4loglogn nodes in any neck-
lace are both even and incident to an
exchange edge linking nodes in dif-
ferent rows. Since every exchange

edge is incident to an even node and since

there are 0(n/logn) necklaces, we can con-

clude that there are at most 0(nloglogn/logn)

exchange edges which link nodes in differ-

ent rows.

It remains to show that those ex-
change edges which do link two nodes in
the same row can be inserted with the add-
ition of at most 0(n/logn) horizontal
tracks. The analysis is divided into two
parts. In the first part, we show that
at most 0(n/logn) exchange edges are con-
tained in the first logk rows. Such edges
can be easily inserted with the addition
of 0(n/logn) horizontal tracks. In the
second part, we show that only 2k-1 hori-
zontal tracks are needed to insert the

exchange edges contained in row i for
i>logk

Since b3 2k"i

i>log k. < 2%/k = n/1ogn,

this will be sufficient to show that at
most 0(n/logn) additional horizontal
tracks are necessary to insert the re-

maining exchange edges.

Consider a necklace which has t pri-
mary nodes for some t < logk. By defini-
tion, the nodes in the first t rows of
such a necklace are all even. Thus, such
a necklace can have at most r=logk -t odd
nodes in the first logk rows. By Lemma 1,

we know that there are
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such necklaces for %logk+loglnk:_t<< k.

By Lemma 2, we can assume that t z logk -
loglnk-l and thus the total number of odd

nodes occurring in the first logk rows is

at most
logk k -£-2 -t-1
= ! (logi~- t}%zwe'k‘ g2 )
t=logk - log ln k-1
- ok loglnk+l _, ,r-2-logk _kpf-1-logk
= g ) x(e -e )
r=0
k loglnk+l _,r-2 _,r-1
= 2_]‘;.. jz r(e -e 2 )
: r=0
k loglnk+2 ,r-2 k _m¥md
r=0 r=0

= 0(n/logn) .
is incident to an odd node,

Since every exchange edge
the above
bound implies that at most 0(n/logmn)
exchange edges are contained in the first
logk rows.

We next consider the number of hori-
zontal tracks necessary to insert the ex-
in the ith

This number is identi-

change edges contained
row for 1 > logk.
cal to the maximum number of exchange

edges that can overlap each other at a
single point. In Figure 4, we illustrate
the conditicns necessary for two exchange
edges to overlap. All representations

are in terms of distinguished nodes.

{ . i

wOw" wlw"
level i - -
whw' wlw'
wOw "™ wiw™
lw| = i-1 wh<w' < w"
Figure 4

Note that the even end of an exchange edge
is always to the left of the odd end.

Also note that any node which occurs be-

tween wOw'and wlw' must be represented

"

as wiw" where w" >w' or as wilw where

w'" < w'. In either case, the exchange

edge incident to the overlapped node ex-
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tends beyond the exchange edge linking

wiw' to wiw'. Since there are at most
k_

2°"1 .1 nodes between wlw' and wiw', these

facts imply that at most Zk_l exchange
edges can overlap at any point. This ok-
servation completes the argument that the
near-optimal lavout requires only
ﬁdnz(loglogn)2/10g2n) area.

In order to produce an optimal
O(nz/logzn)-area layout of the shuffle-
exchange graph, we must relocate the pri-
mary and secondary nodes of each necklace.
In particular, it is important that these
nodes be positioned closer to and in the
same row as the nodes to which they are
linked via an exchange edge. In order to
do this, we must break up each necklace
into two or, possibly, three pieces. The
basic piece of the necklace will consist

of all those nodes which are neither pri-
mary nor secondary. The primary piece of
the necklace will consist of the primary

nodes while the secondary piece will con-

sist of the secondary nodes, if Ehere are
any. For example, the basic piece of
<01011> is {01011, o010l1, 01011}, the pri-
mary piece is {01011}, and the secondary
piece is {01011}.

It is also necessary to extend the
notion of a distinguished node to include
pieces of necklaces. The distinguished
node of a basic piece will be the same as

the disﬁinguished node for the associated

necklace. The distinguished node of the

primary piece of a necklace is that node
in the necklace which is distinguished

when we ignore the primary block of zeros

(i.e., when we temporarily replace the pri-

mary block of zeros in each node of the

necklace with an equal-sized block of ones).

Similarly, the distinguished node of the

secondary piece of a necklace is that node

which is distinguished when we ignore the
secondary block of zeros. For example,
010110111 is the distinguished node of
the basic piece of <010110111>, 011011101

is the distinguished node of the primary

piece and 011101011 is the distinguished
node of the secondary piece. Note that the
distinguished nodes of the primary and
secondary pieces of any necklace are odd
nodes and thus are not contained in those

pieces.

It is possible that some necklaces
will have a distinguished node but will
not have a distinguished node for the pri-
mary or secondary piece of the necklace.
Fortunately, arguments such as those used

to prove Lemmas 3 and 4 can be used to

show that at most 0(nh/logn) nodes are
contained in such necklaces. Thus, we
can assume henceforth that every piece
of every necklace has an associated dis-

tinguished node.

As befcre, the layout is constructed
from a log: x 0(n/logn) grid. Each
column of the grid corresponds to a piece
of a necklace. The nodes of each piece

are arranged within a column so that

a node of the form 8y _qrecdpogee

.ao

(where ap_1-+-3g is the distinguished
node of the associated piece) is placed
in the ith row of the grid. Note that
nodes in the basic piece of any neck-
lace (these include all odd nodes) are
in the same row as they were in the
near-optimal layout., The columns are
ordered from left to right so that the

values of the distinguished nodes of the

01p11
e il e
00701 01901 01p11
00001 01901  01pT1 01101
00101 0101T

hasic primaryv basic second. primary
<00101> <N0101l> <01l01ll> <01011> <01011>

Figure 5
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associated pieces will form a nondecreas-
ing sequence. For example, we have con-
structed such a grid for k = 5 in Figure
5. DNote that the necklaces <00001>,
<00011>, <00111> and <01111> have not
been included since their associated
primary pieces do not have distinguished

nodes.

We now prove our main result.
Theorem 1: The shuffle-exchange
graph‘can be laid out in G(nz/logzn)
area. In particular,; the layout just

described requires only 0(n2/log2n) area.

Proof: As each necklace has been
broken up into at most four contiguous
pieces (the basic piece may have been

broken up into two continguous pieces),

the shuffle edges can be inserted
with the addition of just 0(n/logn)
vertical and horizontal tracks.

As before, we divide the analysis of the
exchange edges into two cases. We first
show that at most 0(n/logn) exchange

edges link nodes which are in different
rows. Thus, these edges can be inserted
with the addition of at most 0(n/logn)

We then

show that those exchange edges which

horizontal and vertical tracks.

link two nodes in the same row can be in=-
serted with the addition of just 0(n/logn)
horizontal tracks. The arguments will
be nearly identical to those used in the
analysis of the near<-optimal layout.
Consider an exchange edge linking
two nodes which are in different rows of
the grid. From before, we know that the
even node incident to the edge is either
a primary or secondary node. Assume for
the purposes of contradiction that the
Then this

node can be represented as wlw' where

even node is a secondary node.

wOw' is the distinguished node of the
secondary piece of <wOw'> and |w| = i-1
for some i. By definition, wow' is
located in the ith row and is linked to
wiw' via the exchange edge. Since wiw'

is odd, it is contained in the basic
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piece of <wlw'>, By assumption, wlw' is
not also in the ith row and thus wlw'
cannot be the distinguished node of
<wlw'>, Since the lengths of the two
blocks of zeros in wlw' created by
switching the ith bit from 0 to 1 are
less than the length of the primary
block of zeros (in fact, the sum of their
lengths is precisely one less than the
length of the primary block), wlw' will
be the distinguished node of <wlw'> pre-
cisely when wOw' is the node distin-
guished in <w0w'> when the secondary
block of zeros is ignored. By definition,
this is the case precisely when wOw' is
the distinguished node of the secondary
piece of <wOw'>. By assumption, wOw' is
the distinguished node of the secondary
piece of <wlOw'> and thus we can conclude
that wlw' is the distinguished node of

<wlw'>, a contradiction.

Consider a primary node which is in-
cident to an exchange edge linking two
nodes in different rows. By the preced-
ing arguments, this node must be of the

o .
form w10v77000... 01w’ where wl0...0lw'
is the distinguished node of the primary

piece of <wl0..01lw'> and either t1 or t2

is larger than or equal to the length of
the longest block of zeros in wllw'.
t t

1 2
. IR T N
Otherwise, wl0..010..0lw' will be the
tl t2
distinguished node of <wl(..010..01lwS
t t
1 2
and thus wl0...010...01lw' will be on the
3 o :
1 2
same row as wlﬁ???ﬁﬁd??falw'. Thus,

each necklace contains at most 2r such
primary nodes where r is the difference
between the longest and second longest
block

necklace.

of zeros in any string of the

By Lemma 3, we know that
there are at most 0(n/logn) such primary
nodes in the entire shuffle-exchange

graph. Thus, at most 0(n/logn) exchange
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edges link nodes which are in different

TOws .

It remains to consider those exchange
edges linking nodes which are in the same
row of the grid. The analysis of these
edges is nearly identical to that for the
near-optimal layout. In particular,
there are still only 0(n/logn) odd nodes
in the first logk rows and thus the
0(n/logn) exchange edgss contained in
the first logk rows can be inserted with
the addition of only 0(n/logn) horizon-
tal tracks. As before, two exchange edges
can overlap on the ith row only if the
first i bits of the associated odd nodes
are identical. Thus at most 2k_i tracks
are needed to insert all cof the exchange
edges contained in the ith row for

k-1
) I 2% 2k/k, we can
i>logk

conclude that at most 0(n/logn) addi-

i>logk . Since

tional horizontal tracks are needed to
insert all such exchange =dges. This
concludes the proof that the layout re-
guires only 0(n/logn) wvertical and ho-
rizontal tracks and thus only 0(n2/loq2n)

area. D

The methods developed in this sec-
tion can be used to find several other
optimal laycuts for the shuffle-exchange
graph. The key variant is the method
used to distinguish a node. The method
must be, for the most part, impervious
to small alterations in the necklace.

The method used in this abstract satis-
fies this constraint. Only by changing

a bit in the primary or secondary block
of zeros can we globally change the dis-
tinguished node. Another possible method
is to distinguish that node of a necklace
which has the minimal wvalue. Although
the proof is substantially more compli-
cated, such a method of distinguishing
nodes also leads tc an optimal layout

for the shuffle-exchange graph.
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4. Other Layouts

The layouts for the shuffle-exchange
graph considered in this section are based
on Hoey and Leiserson's complex plane dia-
gram [1]. These layouts are not asympto-
tically optimal. 1In fact, the best area
bound known for such a layout is
O(nz/log3/2n). On the other hand, some
of these layouts comparc quite favorably
to the known optimal layouts for small
values of k, say k=7. It is important
to pocint out that the size of the shuffle-
exchange networks must grow exponentially
with k and thus, at least for VLSI appli-
cations, very few values of k will ever
be achievable networks.

Hoey and Leiserson's diagram is the
embedding of the shuffle-exchange graph
in the complex plane produced by mapping
each node a,_,...a, to the point

k-1 0 :
a wk-l+. +a,w+a ezwi/k
k-1 nan vy 0 :
the kth primitive root of unity. For

where w =

example, the diagram for k = 5 is shown
in Figure 6. For convenience, the nodes

are referenced by their wvalue.

Figure 6

(taken from [1])



It is not difficult to show that the
nodes of each necklace are mapped onto a
circle centered at the origin. Further,
the nodes are spaced around the circle so
that the traversal of a shuffle edge cor-
responds to a rotation of 2n/k radians in
the complex plane. In what follows, we
will only consider nodes which are not
mapped to the origin. Since less than
0(n/logn) nodes are mapped to the origin
[2], these nodes and the edges incident
to them can be inserted later without in-
crcasing the total area by more than a
constant factor.

It is also easv to show that exchange
edges are horizontal and have length one
in the complex plane diagram. In some
cases, two or more exchange edges are
contained in a single herizontal line.
Such lines are called levels. More pre-
cisely, a level is a horizontal line in
the complex plane containing one or more
nodes of the embedded graph. For example,
there are 9 levels in the complex plane

diagram shown in Figure 6. In general,

there are at most 3l(k_l}/2! levels [2].

In order to lay out the shuffle-
exchange graph, we first form a grid com-
posed of levels and necklaces. Each row
of the grid corresponds to a level of the
complex plane diagram. The columns are
divided into consecutive column pairs,
each pair corresponding to a necklace.

In particular, the leftmost column of a
column pair corresponds to that part of
the necklace contained in the left half
of the complex plane while the rightmost
column corresponds to that part of the
ngcklace contained in the right half of
the complex plane. We assume that the
rows are ordered top-to-bottom to be con-
sistent with the natural ordering of le-
vels in the complex plane but (for the
time being) place no restriction on the
left-to-right ordering of the necklaces.
Each node is then placed at the intersec-

tion of the level and part of the neck-
lace (left half or right half) in which

it occurs.

It ie now a simple matter to insert
the edges. All of the shuffle edyes can
be inserted with the addition of 0(n/logn)
vertical tracks and 2 horizontal tracks.
Since each exchange edge links two nodes
which are in the same row, at most 0(n)
horizontal edges are needed to insert the
exchange edges. For example, we have

drawn such a layout for k=5 in Figure 7.
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Figure 7

By rearranging the necklaces in the
grid, we can increase the average number
of exchange edges inserted in each track
and thus decrease the number of horizon-
tal tracks necessary to insert all of the
exchange edges. For example, the arrange-
ment of the necklaces shown in Figure 7
is optimal in this respect. Only the
level corresponding to the real line re-
quires more than one track to insert the

associated exchange edges.

The necklaces in this example are or=-
dered according to the number of 1l-bits
contained in any string of the necklace.
In general, such an ordering is substan-
tially better than a random one. In fact,
when the necklaces are ordered in this
fashion, only 0(n/vlogn) horizontal tracks



are needed to insert all of the exchange
edges [2]. As Rodeh and Steinberg have
independently observed in [6], such a

layout requires only 0(n2/10g3/2n) area.

There are other orderings which
produce layouts with similar area bounds.
For example, if the necklaces are ordered
by their radii in the complex plane dia-
gram, the induced layout requires just
0(n2/10g3/2n} area [2].

these results in the following theorem.

We summarize

The proof may be found in [2].

Theorem 2: If the necklaces are
ordered by the number of l-bits contained
in any string of the necklace or are or-
dered by the radius of the necklace in the
complex plane diagram, then the induced
layout for the shuffle-exchange graph

will require only 0(n2/1093/2n) area.

The bisection width of a graph is

the cardinality of the smallest set of

edges whose removal discennects the graph

into two equal-sized subgraphs. Thompson
showed that the shuffle-exchange graph has
has an 0(n/logn) bisection width [8].

If we restrict our attenticn to layouts
where the necklaces are placed as verti-
cal loops (as in the complex plane dia-
gram) , then we will be interested in bi-
sections whiéh dnly contain exchange ed-
ges. Such bisections are simply bisec-
tions of what we call the necklace graph.

The necklacc graph is constructed from

the shuffle-exchange graph by identifying
vertices in the same necklace. Since any
bisection of the necklace graph is also

a bisection of the shuffle-exchange graph,
we know that the bisection width of the

necklace graph has size at least 0(n/logrn).
The near optimal layout for the shuffle-
exchange graph described in section 3 pro-
vides an ®(nloglogn/logn) bisection width

for the necklace graph, the best known.
For comparison, we note that the order-
ings of the necklaces described in

Theorem ? lead to @(n/vTogn) bisections.
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In order to find an optimal layout
for the shuffle-exchange graph which pre-
serves the necklace structure (e.g., a
layout based on the complex plane diagram),
it is necessary to find an 0(n/logn) bi-
section of the necklace graph. The con-
verse is not true (i.c., finding an
0(n/logn) bisection of the necklace graph
does not necessarily lead to an optimal
layout). In particular, we do not know
whether or not the ordering of the neck-
laces defined in section 3 (which has an
0 (nloglcgn/logn) bisegtion width) leads
to an 0(n“loglogn/log n) complex plane

layout.

An affirmative solution to this
preblem might have important practical
applications. For example, when the
necklaces are ordered as in section 3
and the levels are modified slightly,
only 29 horizontal tracks are needed to
insert all of exchange edges for k=7
r2].

5. More Complex Networks

For some applications, it is useful
to consider a network which has more than
just shuffle and exchange edges. In par-
ticular, we will want to consider networks
which also have shift edges and reverse
edges.
the (i+l)st node for all cdd i.

bined with the exchange edges, the result-

Shift edges link the ith node to

When com-

ing network will have links between the ith
and (i+l)st nodes for all i. The inclusion
of such edges facilitates the computation
of discrete fourier transforms at segquen-
tial intervals of a continuous signal. In
such applications, the data point of each
processor is shifted to an adjacent pro-
cessor (and a new data point is entered
into the network) after each computation
of a discrete fourier transform. The
graph consisting of shuffle, =xchange and

shift edges is known as the shuffle-shift

graph.



Reverse edges link pairs of nodes
that are associated with binary strings
which are reverses of each other. For
example, a,_;...3, is linked to agee-dy g
via a reverse edge. Since the algorithm
which computes discrete fourier transforms
on the shuffle-exchange network leaves
the solution for each node 3, _,..-.3, in
node aj...a, ;. reverse edges provide a
fast and convenient way of straightening
We define the shuffle-

shift-reverse graph to be the graph con-

out the solution.

sisting of all shuffle, exchange, shift

and reverse edges.

Using the methods developed in sec-
tion 3, it is not difficult to show that
the shuffle-shift graph can be laid out
using only O{nZ/logzn] area. As before,
the necklaces are broken into two or three
pieces and placed in a grid according to
the value of the associated distinguished
node. At most 0(n/logn) shift edges link
nodes which are in different rows of the
grid. Of those edges which link nodes in
the same row, at most 0(n/logn) are con-
tained in the first logk rows. For

k-1

i> logk, at most 2 shift edges overlap

at any point of the ith row. To insure
that both the exchange and shift edges con-
tained in the ith row can be inserted si-
multaneously using only 025 %) horizontal
tracks, it is necessary to consider them
as maximal length chains of alternating
shift and exchange edges. Since each node
is incident to precisely one cxchange edge
and one shift edge, these chains are Vell
defined. Further, no more than 2-2k-l
chains can overlap at any ppint of the ith
row. Otherwise, either 25 * exchange ed-
ges or 2k_i shift edges would overlap at
Thus both

the exchange and shift edges contained

some point, a contradiction.

in the ith row can be inserted simultane-
cusly using only O(Zk_l) horizontal tracks.
By the arcuments of section 3, this means
that the shufflc-shift graph can be laid
out in O(nz/logzn} area, the least pos-

289

sible.

It is also possible te lay out the
shuffle-shift-reverse graph in O(ng/lcqzn)
area, although we do not include the de-
tails here. We do mention the two key
ideas involved in the layout, however.
The first is to place together necklaces
This
serves to shorten the horizontal distance

which are reverses of each other.
of reverse edges. The second idea is to
fold each part of the basic piece of each
necklace in half (roughly speaking) so
that all but 0(n/logn) reverse edges link
nodes which are in the same row. Using
methods similar tc those developed in sec—
tion 3, it is then possible to show that
the shuffle, exchange and shift edges can
be inserted using only 0(n/logn) additio-
nal horizontal and vertical tracks.

Since any permutation can be performed
on the shuffle-exchange network in 0 (logn)
time and 0(logn) space per processor, the
inclusion of other kinds of edges into the
shuffle-exchange graph can save at most a
multiplicative factor of logn time and
space. For some applications, the savings

in time and space may well justify the

It is likely
that many different kinds of edges can be

cost of inserting the edges.

added to the shuffle-exchange network
without increasing the area of the layout
by more than a constant factor. We have
already mentioned that shift edges and re-
verse edges can be so added. In addition,

it appears that transpose edges (those lin-

king node i to node n-1-i) and cube-connec-
ted-cycles edges (those linking nodes

‘'which are adjacent in the cube-connected-

cycles graph), can be inserted into the
shuffle-shift-reverse graph without in-
creasing the area by more than a constant
factor. We are currently working toward
a characterization of those edges which
can be inserted without increasing the

area by more than a constant factor.
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Appendix

Let ?k(t) denote the number of k-bit
strings which do not contain t-1 consecu-
tive zeros. Except for the string of all
zeros (which we ignore), these are precise-
ly the strings which do not contain the

—E

substring Ve = 10...0.
Lemmas 1 - 4 depend on the following com-

The proofs of

binatorial result.

Thecrem A: For large t and k,

t ~-2E

—kz'teo (€2"%, xe272%)

- k

Yk(t) = 2e
Proof: We first count the numbher
?&(t) of k-bit strings which do not con-

tain an occurrence of v, between the be-

t

ginning and end of the string (i.e., for
the time being, we ignore occurrences of
Ve which begin at the end and end at the

beginning of a string).

Fix t and let fi denote the number

£ but which

do not contain any other occurrences of Ve

of i-bhit strings ending with v

oo -
Set F(x) = E fixl. Note

i=0
that ?]'((t) is the (k+ t)th coefficient of
F(x). Let féj) denote the number of i-bit
strings ending in Ve which contain pre-

in the string.

cisely j occurrences of v_ and set

F(j)(x) = E fij)xl. Since occurrences
i=0

of Vi cannot overlap, it is not difficult
to show that F(]](x) is F(x)j for all

o -
Let g, be the number of i-bit strings

which end in Ut and set G(x) =

=) i

) gixl. It is easily seen that G(x) =
i=0

t o (3)
= Also notz that G(x) = I pYd (x) =
1-2x =1

o ; =

P orex)d = =L~ -1. Thus
j=1 1-F(x)

G(x) _  x°

F(x) = W = l'zx::-f = Thus "I"}'{(t)‘ is



