COORDINATING PEBBLE MOTION ON GRAPHS,
THE DIAMETER OF PERMUTATION GROUPS, AND APPLICATIONS

Daniel Kornhauser
Computer Science
MIT
Cambridge, MA 02139

Abstract. We consider the following generalization of
the lfamiliar ‘15-puzzle’ which arises from issues in memory
management, in distributed systems: Let G be a graph
with n vertices with k& << n pebbles mumbered [,...,k
on distinet vertices. A move consisia of transferring
a pebble to an adjacent unoccupied vertex. Is
one arrangement of the pebbles reachable from
another?. We present o P-time deeision algorithm, and
prove inatching O{nﬂ} upper and lower bounds on the
number of moves required. These results extend those of
Wilson {1974), who considered G biconnected and k=n-1,
with no analysis of number of moves.

We also consider the question of permutation group
diameter. Driscoll and Furst (1983) obtained a polyno-
mial upper bound on the diameter of groups generabed
by bounded length cycles. We have the following subex-
ponential bound for certain unbounded cycles: I G
(on n letters) is generated by cycles, one of which
has prime length p -2 80/3, and G is primitive, then
& =: A, or 5, and has diameter < Qa8

1. Introduction

The management of memory in totally distributed
computing systems is an important issue in hardware
and software design. On an existing hardware network
of devices, there is the problem of how to cocrdinate
the transfer of one or more indivisible packets of data
from device to device without ever excceding the memory
capacity of a device. Depending on the severity of the
memory capacity, a considerable number of intermediate
transfers may be necessary to clear a “path” for the
movement of 2 data packet along a network. A combination
of almost filled devices and a network configuration with
few paths can, in fact, make impossible the transfer of
the data packets intact.

Suppose we consider a simplified version of the above
problem, where cach device has unit capacity and each
packet occupies one unit of memory. Then at any moment
in time, any given device is either emply or is totally filled.
Suppose also that at any time cach data packet resides in
some device. [t is also assumed that only one packet may
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be moved at a time, from ils current devive to any empty
inunediately adjacent device. Under these assumptions,
it is interesting to know whether il is possible to start
from one given distribution of the packets in the network,
and end with another given rearrangement, and to know
how many moves are required when the rearrangement is
possible.

This version of the network problem immediately
translates inte the following movers’ problem on graphs:

Let G bhe a graph with n vertices with k£ <
n pebbles numbered 1,...,k on distinet vertices.
A move consists ol Lransferring a pebble to an
adjacent unoceupied vertex. The problem is to
decide whether one arrangement of ihe pebbles is
reschable from another, and to [ind the shortest
sequence of moves Lo find the rearrangement when
it. 18 possible.

[t is seen that this latter problen is o generalization
of Sam Loyd’s famous “15-puzzle”. In ilis puzzle, 15
aumbered unit squares are free to movz in a dx4 aren with
one unit square blank, The problem is to move from one
arrangement of the squares to anotlier. One can easiiy
show that this puzzle is equivalent vo the graph puzzle on
the square grid in Figure 1, with 15 numbered pebbles on
the vertices and one blank vertex.

B

|

Figure 1. 15-Puzzle Graph

In the case that G is biconnected and k = n —
1, Wilson (1974) gave an eflicient decision procedure.
However, he did not consider the number of mioves required
[or solution; a naive implemenation of his proof yiclds
solutions requiring exponentially many nioves. We provide
a sitaplified proof of the decision procedure, and in this
way, an O(n®) upper bound is obtained for the number of
moves required in the Wilson case.

Then we gencralize the decision procedure to ail
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graphs and any number of pebbles, and we show that again
at most O(n”) moves are needed and can be cfliciently
planned. Finally, we find an infinite family of graph
puzzles for which it is proved that O(n®) moves are
necded for solutions. Thus the upper and lower bounds
match to within a constant factor.

A topic of related interest is the subject of permutation
groups aand their diameter with respect to a set of
generators. Briefly, the diameter ol a permutation group
G with respect to a set S of generators for G is defined to
be the sinallest positive integer k such that all clements of
G arc cxpressible as products of the generators of length
at most k.

Consideration of the pebble coordination problem
lends naturally Lo questions about permutation groups.
Consider the graph in Figure 2, with vertex = blank and
pebbles @i, ..., @i, €1,y Cry b1, o0y by, and y on the other
vertices. I is seen that any sequence of moves from this
position will, upon the first return of the blank to =z,
nei one of the following permutations on the pebbles:
A = (ciep...cryap...anm) or B = (yer...cacibiba...by) or
C = (biba...byyas...ana) or AL B¢~ or the identity
permutation. Hence the set of rearrangements of the
pebbles (with z blank) is the group of permutations
generated by S = {A,B,C,A7',B7',C7'}. Deciding
whether a rearrangement is solvable amounts to testing
membership of the corresponding permutation in the group
generated by S; minimum number of moves is clearly
related to the shortest product of generators yielding the

permutation. Q.‘_ y ‘35

[ ®
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Figure 2.

We view the introduction of algebraic methods as
useful for the solution of movers’ problems. Whereas
general geometric movers’ problems are PSPACE-hard
(Reif (1979); Hopcroft et. al. (1984)), it is hoped that
the techniques introduced for the solution of the pebble
coordination problem may be applicable to special cases
of the general geometric problem.

We now briefly discuss some results in permuta-
tion group membership and diamecter questions. [Murst,
Hoperoft and Luks [FHL] give a O(n®) analysis of Sims’
[S] algorithm for deciding whether a given permutation g
is in G(S), the group generated by S. Later Knuth [K] and
Jerrum [J2] gave algorithms with successively better upper
bounds O(nlogn) and O(n"). Thus the analogue of the
graph decision problem is in P. One also imrmediately has
a P-time criterion for deciding solvability of the Rubik’s
Cube and the Hungarian Rings puzzles. The situation
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is not as fortunate when one tries to find the length
of the shortest generator scquence for a given permuta-
tion: Jerrum [J1] has recently shown this to be PSPACL-
complete! The difficulty may be related to the fact that
some groups may have superpolynomial dizameter. For ex-
ample, the group G generated by the single permutation
(12)(315)(6789 10)...(...s) where s is the sum of the first n
prime numbers, can be shown to have diameter roughly
on the order of 220v#), This conirasts with the analogous
question for the pebble coordination problem, where no
solution can ever require more than O(n?) moves. Thus
finding the length of shortest move sequences is in NP (on
the other hand, Goldreich [G] has recently shown that it is
NP-complete!). Therefore the group diameter question is
in some sense more gencral, and probably more difficult,
than the corresponding question for pecbble motion.

There are nonetheless some interesting recent results
concerning upper bounds on group diameter, for special
generating sets. Driscoll and Furst [DF] have shown that
if all the generators are cycles of bounded length, then
the group has O(n?) diameter where n is the number of
letters that the group acts on. More recently, McKenzie
[M] obtained the upper bound O(n*) on diameter for
groups, each of whose generators moves at most k letters.
This is polynomial if k is bounded.

The foregoing results leave open the question of a
group’s diameter when the generators are arbitrary (not
of bounded length) cycles. In chapter 3 we informally
discuss certain generalizations of the Hungarian Rings
puzzle, and find sufficient conditions for the required
number of moves to be polynomial. [ixamples which do
not meet these sufficient conditions are offered as possible
candidates for groups with superpolynomial diameter.
The rest of chapter 3 consists of a number of new results
in permutation groups, which extend classical theorems
by providing upper bounds on diameter. We obtain the
following theorem as a corollary:

If G (on n letters) is generated by cycles, one
of which has prime length p < 2n/3, and G is
primitive, then G = A, or S, and hay diameter less
than 26VPHin8,

This is a moderately exponential upper bound, but
is nonetheless superpolynomial. It remains of interest to
know whether the bound can be significantly improved,
or whether the diameter really can be this large.

At the end of the paper we present conjectures, open
problems, and suggestions for further research in movers’
problems and permutation group diameter.

2. Coordinating Pebble Motion on Graphs

In this chapter we will solve the pebble coordination
problem given in the introduction:

Let G be a graph with n vertices with & < n pebbies
numbered 1,...,k on distinct vertices. A move consists of



transferring a pebble to an adjacent unoccupied vertex.
The problem is to decide whether one arrangement of the
pebbles is reachable from another, and to find the shortest
sequence of moves to find the rcarrangement when it is
possible.

2.1. General remarks

We make the assumption that the set of occupied
vertices of G is the same in both the initial and final
positions. Then two positions define a permutation on
the pebbles in a natural way, and so we can readily
introduce the méthods of group theory, There is no loss
of generality, as we can show how to efficiently convert a
puzzle into this form.

We also assume that all graphs are simple, that is,
no two vertices are directly joined by more than one edge,
and no vertex is joined to itsell by an edge. It is clear that
if a graph G is nonsimple, we can remove the “extraneous”
edges to get a simple graph G’, and the graph puzzle on
G' is exactly equivalent to that on G, both with respect
to solvability and the number of moves needed to solve
it. Hence there is no loss of generality in making this
assumption.

Since the set R(P) of permutations induced on the
pebbles by going from some fixed initial position P to
reachable positions forms a group under composition, our
task is to analyze the structure of the group R(P).

It turns out to be natural to divide the analysis of
R(P) into two cases:

1. R(P) is a transitive permutation group, i.e. any pebble
can move to where any other pebble is located,
without changing the set of occupied vertices.

2. R(P) is an intransitive permutation group.

Case 2 occurs, intuitively, when the graph G contains
an isthuius which is too long, compared to the number of
blanks, to be “crossed” by a pebble. The graph of Figure
3 comsists of a simple nonclosed path of edge length m
which connects subgraphs A and B. Suppose we wish
to move pebble T from v to w. Since A has no blank
vertices, it is clear that T can reach w if and only if B has
m + 2 or more blank vertices. Thercfore, the number of
blanks has a direct eflect on the ability of pebbles to cross
isthmuscs. Conversely, the lengths of the isthmuses will
determine whether or not certain pebbles can cross from
one component into another. And the more uncrossable
isthmuses there are, the greater the number of transitive
constituents (“orbits”) the pebbles get divided into.

T w

Figure 3. The Isthmus
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It turns out that R(P) is the direct product of
its actions on the orbits. Thus in a sense the puzzle
decomposes into independent transitive “subpuzzles” on
pebbles in an orbit situated on an appropriate subgraph
of G (the proof will be in the final version). The intuition
is that we can “move blanks” temporarily to a subpuzzle
site, solve the subpuszle, and return the blanks without
disturbing disturbing the pebbles in the other subpuzzles.

The solvability of a puuzle therefore reduces to the
analysis of solvability of its transitive subpuzzles, i.e.
transitive R(P) (case 1).

We now indicate how to define the subpuzzles. (An
efficient algorithm for actually determining them will be
given in the final version.) Let R(P) have orbits Oy, ..., O,

such that 371 |O;| = k = number of pebbles. Let G; =

the graph consisting of the vertices of G reachable from
the initial position by pebbles in O; (here it isn’t required
that the occupied vertices be an invariant set), together
with the edges of G both of whose endpoints are in this
set of vertices.

Then we define the ¢-th subpuzzle to have starting
position consisting of G; with pebbles on it as induced
by the initial position of the cntire puzzle. Similarly we
define the ending position of the 4-th subpuszle. Note that
an obvious necessary condition for solution of a subpuzzle
is that the set of pebbles in its initial and final positions
be identical (up to a reordering).

Example

The initial position in Figure 4 induces the three
subpuzzle initial positions in Figure 5.

Puzzle starting position 9

Fi 4,
igure .

@)Eé b b b b b b
l 3 4 E 2
2

[[+]

Figure 5. The subpuzzle starting positions

2.2. Criterion for transitive puzzles

Having reduced the general problem to the case where
the pebbles move transitively, we now describe the solution
for the transitive case,

First we need a few definitions. Define a polygon to

be a graph consisting of a simple closed path containing
at least two vertices (where a simple closed path is a path



from a vertex to itsell which visits no intermediate vertex
more than once). A polygon looks like a “loop” containing
two or more vertices (see Figure 6). Let 7y be the other
graph shown in Figure 6.

Figure 6. A Polygon; graph Tp

Theorem 1

The following is a eriterion for solvability for transitive
puzzles.

la. If G is biconnected, with k = n — 1 pebbles, then use
Wilson’s eriterion [W]: Let G be a biconnected graph
on n vertices, other than a polygon or Ty, with one
blank vertex. If G is not biparlite, then the puzzle is
solvable. If G is bipartite, then the puzzle is solvable
ilf the permutation induced by the initial and final
positions is even.

1b. If G is biconnected, not a polygon, and k < n — 1,
then the puzzle is solvable,

2. If G is separable (i.e. only I-connected), the puzzle is
solvable.

Remarks

Since bipartitism can be tested in polynomial time,
Wilson's criterion is polynomial time.

For @0 a polygon, only cyclical rearrangements of the
pebbles are possible, so il is casy to check reachability
in this case. For the special graph T, we can simply
precalculate (by exhaustive search) a table of all pairs of
positions, indicating which pairs are mutually reachable.
Table lockup is constant time, hence we have a P-lime
decision algorithm for all biconnected graphs with one
blank.

1b. and 2. are new results.

Theorem 2 (stated and proved later) gives an O(n?)
upper bound on the number of moves required for solutions
of puzzles, based on an analysis of the proof below of
Theorem 1.

2.3. Proof of Theorem 1

2.3.1. Case 2: Separable graphs

We start by proving the result for separable graphs,
since this is a new result.

A separable graph has one or more cutpoints, and so
is either a tree, or a tree-like structure containing one or
more biconnected components (see Figure 7).
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Figure 7. A Tree; a tree-like structure

2.3.1.1. Trees

We first consider the case that (7 is a tree. We will
show that the group 2(F) is the symmetric group on the
k pebbles by showing that it is k-transitive, ie. the k
pebbles in any order, py, ..., pg, can be moved to any other
order, q1, ..., k-

The high-level plan is to move the pebbles from
their initial vertices to k intermediate wvertices, giving
a position P’ (which is not required to have the same
vertices occupied as in the starting position P). Then we
reverse a sequence of moves which takes the pebbles in
their final position to the same intermediate position. The
net result is the desired reordering of the k pebbles, which
established k-transitivity.

The strategy is to move one pebble at a time to
intermediate vertices, which are chosen to be “out-of-the-
way” so that once a pebble reaches its target, it will
not need to be moved again while the other pebbles are
being moved. So, once a pcbble reaches its target, we
can “prune” the puzzle by removing the vertex from the
graph, along with the pebble, and proceed to move the
remaining pebbles on the smaller graph.

Keys to the success of the above strategy are that

1. The puzzle was originally transitive (by hypothesis), so
that the first

pebble can be moved to its intermediate vertex.

2. Intermediate vertices are chosen so that when they are
pruned, the resulting puzzle is still transitive.

In this way, we can guarantee that all pebbles can be
moved to these intermediale vertices.

Detailed plan

We first show how cach pebble is moved into place,
then how the places are chosen.

Showing l-transitivity

The decomposition of the puzzle into its transitive
subpuzzles (given in final version) shows that if a subpuszle
is a tree, then no isthmus has edge length > m — 2
(m = number of unoccupicd vertices). Furthermore, no
“hranch”, i.e. a path with one end of valence > 2, internal
vertices all of valence 2, and the other end of valence 1
(the “leaf”), has edge length > m — 1. These facts can
be sesn intuitively by considering how many blanks are



weeded to cross isthmuses and to reach leaves of branches;
the proof is simply a formalization of this intuition.

It is not hiard to see that these conditions are sullicient
o ensure that a pebble can reach any vertex in the tree,
i.c. that the subpuzzle is transitive. We proceed as follows.
Suppose we wish to move a pebble p from vertex vy to

vertex ve. Consider the path through the tree, from v; to
vy; for each of its internal vertices of valence > 2, leave
attached a single edge and its end vertex (which we call a
“leaf”). This subgraph of G will be called G'. (Sce Tigure

Graph G and subgraph G’

Figure 8.

We claim that p can be moved from v} to vy, remaining
entirely within G'. The proof is informally as follows. We
move spaces next to v so that p can be moved to the
Jeaf closest to vy. Then relocate the spaces so that p
can now move to the next leal in the dircction of wa.
Continue in this way, “hopping” p from leaf to leaf, until
p finally reaches vg. All these steps are possible, because
the isthmuses were assumed to have length < number of
spaces - 2.

This completes the demonstration of transitivity.
Selection of Intermediate Vertices

We wish to select vertices which, when pruncd, leave
the remaining puzzle transitive.

Now, it is not hard Lo see that if we prune a leaf from
a branch with edge length > 1, and decreasc the number
of pebbles by 1, then the above transitivity conditions
on the puzzle are preserved, and so the reduced puzzle is
still transitive (if the branch had length 1, then pruning
would remove the whole branch, thus potentially creating
a long isthmus or a long branch). Hence, choose as an
intermediate vertex the leal of any branch of lenglh > 1.
After filling it with a pebble and pruning, we repeat the
choice on the pruned graph. In the case that all branches
are of length 1, then locate a verlex which is adjacent
to two or more leaves (this is always possible, in this
case). Then it is not hard to see that onc of these leaves
can he used as the next target vertex, and still preserve
transitivity when pruncd. We call these “multiple leaves”
(see Figure 9).

a b

Figure 9. a: Biconnected leaf; b: “Multiple leaves”
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2.3.1.2. Tree-like structures

We now indicate how to prove case 2 for separable
graphs which are not trees, but rather are tree-like struc-
tures containing one or more biconnected components.

This is similar to the tree case, with a few changes.
We establish k- transitivity by moving pebbles successively
to intermediate vertices. The existence of a biconnected
component along the way does not hinder a pebble’s
movement to a target vertex, since by case 1 (proved
below) biconnected puzzles are clearly transitive.

We choose the intermediate vertices, as before, to be
leaves of branches having length > 1, or else “multiple
leaves”. Ilowever, it may happen now, that there is no
branch of length > 1, and no multiple leaves. In this
case, it can be shown that there must be a biconnected
component H which is attached to the rest of the graph
by only one vertex (see Figure 9). If we imagine shrinking
H down to a point, we can think of H as a leaf of the
branch to which it is attached. What we will do is to load
up the vertices of H, one by one, with pebbles, leaving
only the junction blank. Then we will put the pebbles in
H into the desired order. I'inally we “prune” H, with its
pebbles, from the graph.

H is flled with the desired pebbles as follows. If
the pebble to load into II is already in H, then there is
nothing to do. Otherwise, move the pebble to a vertex
next to the junction to H, and move a pebble alrcady
in [ which doesn’t belong there, to a vertex in I next
to the junction (this can be done, since II is transitive).
Then swap the two pebbles. In this way, we can [ll H
with any desired set of pebbles.

Then we can put the pebbles in I into the desired
order, as follows. We can obtain a swap of two pebbles
next to the junction of I/, as in Figure 10. If H is not a
polygon, then by the proof of 1a (to be proved below) we
can move the pebbles of [T 2-transitively. 2-transitivity
and a swap generates, by conjugation, all swaps, and so
we can gencrale any rearrangement of the pebbles in f1. If
i is a polygon, then by moving the pebbles around I, we
get a cyelie permutation which, when conjugated with the
swap, gives us cnough swaps to generate all reorderings
of the pebbles in H.

b b
Pl.
Figure 10. Swapping two pebbles

Having loaded H, and the pebbles in H put into the
intended order, we do the following incomplete pruning of
H: remove H and its pebbles, except for the junction and
one incident edge. (We leave the cedge hanging, to avoid
the possibility of the remaining graph being a polygon.)



It is not hard to see that the remaining graph is still
transitive.

Since there is always a branch of length > 1, or a
multiple leafl, or a “biconnected leaf” (as above), eventually
all pebbles can be moved into place.

This completes the proof of case 2.
2.3.2. Case la: Biconnected, 1 blank

It is a well-known fact in graph theory that a
biconnected graph, other than a single edge, can be
viewed as being “grown”, by starting with a polygon
graph and successively adding zero or more “handles” (a
handle is a simnple path with 0 or more internal vertices).
A biconnected graph which can be grown by adding 2
handles to a polygon, appears pictorially to consist of 141
simple loops joined together in some way. This number
of loops is called the Betti number of the graph. We will
often denote a biconnected graph with Betti number ¢ by
the term “T;-graph”. Wilson’s theorem will be proved by
induction on the Betti number of the graph. We skip the
T\-graphs (the polygons) and begin the induction with
the Th-graphs (except Tp).

The main step is to show that the group of possible
tnduced permutations always contains the alternating
group A,_; on the n — 1 pebbles. The final step is to
determine whether the group is A,—y or S,—. The group
will be S, -1 iff it contains an odd permutation, and it is
casy to see that there is an odd permutation iff the graph
has a closed path of odd length. As a graph has a closed
path of odd length iff it is not bipartite, we see thatl the
group is A, 1 if the graph is bipartite, and S, if the
graph is not, bipartite. Therefore, to check solvabilily on
a bipartite graph, it is necessary and sullicient that the
induced permutation be even; on a nounbipartite graph,
the puzzle is always solvable.

To show that the group of induced permutations
contains the alternating group, we show how to obtain a
3-cycle and how to oblain 2-transitivity.

From this, the alternating group is efliciently generated
as follows: since A,, is cfficiently generated by the set of
all 3-cycles, it sulfices to show how to efficiently generate,
given a 3-cycle (123) and 2-transitivity, any 3-cycle (abc).
Using a permutation T taking 1,2 to a, b respectively, the
conjugate T~1(123)T is of the form (abd). If d = ¢, we're
done. Otherwise, obtain by a similar conjugation a 3-cycle
of the form (bce). If d = e, then using A = (abd) and
B = (bed) we can cancel out d by A2B? = (dba)(bdc) =
(acd). Squaring the result, we get (abc). If d £ e, then
conjugate (abd) by (bce) to get (acd). Then using (abd)
and (acd), and cancelling d as before, we get (abc).

The reason for using 2-transitivity instead of 3-
transitivity is that proof of 2-transivity for graphs is easier
and involves fewer exceptional cases than for 3-transitivity.
The price we pay is transferred to the algebraic domain,
in the form of some extra conjugations.

A 3-cycle is obtained roughly as follows. A Ty-graph
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looks like that pictured in Figure 11. Assume first that
0, i.e. the center arc has no internal vertices. A =
(ya¢...a1) and B = (by...b,y) are permutations induced
by moving pebbles around, respectively, the left or right
loops. Then ABA™'B™! = (yb,a)), a 3-cycle. If r > 0,
then ABA™!B~! is a product of two swaps; we can obtain
a 3-cycle from this, if the graph induces 4-transitivity.
In this connection, we use the following lemnma (use k=3
below).

o

Lemma 1

Let H be a nonseparable graph, and G be the result
of adding a handle to II. If the handle has k internal
nodes, then G is k + 1-transitive.

The proof will be given in the final version. (Intuitively,
we move one pebble after another onto the handle, using
1-transitivity of H to reach the handle. Moving a pebble
to the handle does not disturb pebbles already there. To
prove l-transitivily uses induction on the Betti number.)

We take this opportunity to mention the following
quantitative version, which will be used later. Its proof
involves showing that I-transitivity is ()(712), by induction
on the Betti number (the basis is the polygon, which is
easily seen to be ((n?)); then k-transitivity, for bounded
k, is also O(n®). (Proof in final version.)

Lemma 2

For any bounded k, the k 4+ 1-transitivity guaranteed
by Lemma 1 can be done in O(n?) moves.

Now, using Lemma 1 it is easy to enumecrate those T5-
graphs, where r > 0, which are not 4-transitive, ITowever,
of these graphs, inspection shows (details in final version)
that all but T produce a 3-cycle. Hence T is the only
Ty-graph which does not induce a 3-cycle. We then show
that all T;-graphs, © > 2 give a 3-cycle, because they are
formed by adding handles to a 7%-graph which can induce
the 3-cycle. The hole in the induction due to Ty will be

taken care of with no difficulty.
)4

Q‘. 1C

DC‘ g k?.

@, b3
Figure 11.

by
A Ty-graph

2-transitivity will also be shown by induction. It can
be shown that all Th-graphs are 2-transitive, by Lemma 1
above. Then we show how adding a handle to a 2-transitive
graph yields a 2-transitive graph.

Putting 3-cvcle and 2-transitivity together, we will
conclude that all T;-graphs, 1 >= 2, gencrate at least the
alternating group, except Tp.

2.3.3. Case 1b: Biconneccted, > 1 blank

If a biconnected graph is not a polygon, then there is



2 vertex v of valence > 2. By hypothesis we have at least
2 blanks. Ilence by moving one blank to v, and another
blank to a vertex adjacent to v, we can swap two pebbles
which are adjacent to v, as in Figure 10. 2-transitivity
follows as in the proof of 1a. Putting the swap and
2-transitivity together, the whole group of permutations
is generated.

2.4. O(n®) Upper Bound

Thecorem 2

Let G be a graph. Let n = |V(G)]. If labeling g can
be reached from labeling f at all, then this can be done
within O(n®) moves, and such a sequence of moves can be
efliciently generated.

Sketch of proof (details in final version)
a. G biconnected

We can show that a 3-cycle can always be obtained in
O(n?) moves (either ABA~1B~! gives a 3-cycle in O(n);
or we get a product of two swaps, in which case we
can do 4-transitivity in O(n®) moves to get a 3-cycle),
and that 2-transitivity requires at most O(n?) moves (sce
Lemma 2 above). Then by the algebra given in the proof
of Theorem 1 (case 1a) for obtaining (abc) from (123) and
2-transitivity, we obtain any 3-cycle within O(n?) moves.
Since any element of A, is a product of O(n) 3-cycles,
the total for A, is O(n®). If the group is Sp, then any
permutation is a product of an odd permutation and an
element of A,. An odd permutation is generated by a
closed path of odd length in O(n) moves. Hence S, also
requires at most O(n®) moves.

b. G Secparable and transitive

If G is a tree, then the proof of transitivily implies
that at most O(n) moves are needed to move a pebble
anywhere; so the proof of Theorem 1, case 2, implies an
upper bound of O(n?) to move all the k < n pebbles. The
existence of biconnected subgraphs, however, can force
us to an upper bound of O(n?) (see Figure 12, which is
essentially the same as the graph used in the lower bound
proof below).

Figure 12.

¢. G intransitive

The puzzle can be solved by solving the transitive
subpuzzles on subgraphs G1, ..., Gr. It is not hard to show
that the O(n}) upper bounds on each subpuzzle combine
to give a O(n®) upper bound for the whole puzzle.
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2.5. O(n®) lower bound

We now complement the above result with a lower
bound which matches, to within a constant factor.

Theorem

There exists a constant ¢ > 0 and an infinite sequence
of graph puzzles Puz; on increasingly large graphs G; with
n; vertices, such that for each i, Puz; requires at least

cn"'-‘ moves for solution.

Proof
12 3% |2 2
] \ L)
ad 2 blunk 2l Jank

Figure 13. Lower bound graph

Let Puz; consist of graph G, shown in Figure 13, with
92; + 1 vertices and 27 pebbles, and starting and ending
positions as shown. We will show that Puz; requires 0(3)
moves, as follows. A move sequence that does not waste
moves (by retracing move sequences just made) is seen to
consist of cycles A, B and their inverses, interspersed in
some order (e.g. ABAAAABA™'B). It would be wasteful
to do B twice in succession, since this would cancel
itself. Hence a move sequence can be represented by the
form A'1BARDB.. A% BA%+! where i; is a nonzero integer
(positive or negative), except ¢ and x4 may be 0.

Now consider the “entropy function” of position

E= Ef;-:g (shortest circular distance from pebbles
jtoj+i)

where circular distance is either clockwise or coun-
terclockwise. Initially, E = ¢%; at the end, E = 1. Change
in E is 12 — 1.

It is seen that A does not change F, and B changes
E by 0 or by 2. Hence to effect the change in E requires
O(:*) occurrences of B in the move sequence. But because
occurrences of A% and D alternate, this implies that A
occurs at least O(i?) times. Since the number of moves to
perform the cycle A is O(1), we need at least O(4?) moves
for solution.

This completes the proof of the lower bound.



3. The Diameter of Permutation Groups

As mentioned in the introduction, this chapter is con-
cerned with the diameter of permutation groups generated
by sets of cyclic periutations. We begin with some ex-
amples of generator sets which yield groups of polyno-
mial diameter, then speculate on some conditions on the
generator set which might give groups of superpolynomial
diameter. The main part of the chapter consists of
theorems which give information about the diameter of
a group under various conditions. They imply the result
given in the introduction, which is a moderately exponen-
tial upper bound on the diameter of groups generated by
cycles which satisfy a few conditions.

3.1. What is not of expunential diamneter, and what
might be

The Hungarian Rings puzzle consists of two inter-
secting circular rings in which distinguished marbles cir-
culate. The problem is to obtain a desired rearrangement
of the marbles by a sequence of operations, where an
operation consists of circulating the marbles in one of
the rings. This problem immediately translates into the
permutation problem of determining membership in the
group generated by two intersecting cyclic permutations.
By [HFL], we can decide meinbership in polynomial time;
however, it is of interest to know how many “moves” are
required, i.e. the length of the shortest word which gives
the desired permutation.

In Figure 14 is shown schematicaily two cyclic per-
mutations which intersect at two points. This corresponds
to the commercial version of the Hungarian Rings. Note
that this is not like a pebble puzzle on a Ty-graph, because
only A and I are possible, and not the third loop; the
Hungarian rings is a physical movers’ problem which
imposes this restriction mechanically. This gives reason
to expeet that the number of moves may need to be larger
in some permutation puzzles than in the pebble puzales.

LY \him

Figure 14. The Hungarian Rings
What is the diameter of the group generated by these
two cycles? It is first useful to observe that, if some arc
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C contains at least » internal nodes, and an arc D on
the other cycle contains at least one internal node, then
we can get r + 1-transitivity in O(rn)-long moves. This
is done, roughly speaking, by moving one desired marble
after another to a, then rotating it onto arc C. The cycle
not containing arc C is rotated to bring the next desired
marble to aj, leaving the contents of C undisturbed.
Arc D serves as temporary “storage” of a marble which,
already on arc C, needs to be removed from C and then
placed onto C at the right place.

Suppose that in the fgure, [ >= 6 and m >= 1.
Then we have efficient 6-transitivity. Now ADA™!B~! =
P =(a10k+14m+q0k+1)(CkCk+1Ck+11m). Using 6-transitivity,
we can find a permutation Py which sends ay, @y 14myq Qktt
t0 a1, Gktl, Gkt l+m+q TeSPectively and fixes ag, pi1, Gk t4m-
Then conjugating P by P gives Ps = (@10k 110k +14mtq)
(ax@rs18k+14m)- P2 is a product of two 3-cycles, one
the inverse of the one in P, the other the same as the
other in P. So PP, (akititmaky1)s a 3-cycle. Then,
using 3-transitivity, we get the alternating group. Hence
| >=6 and m >= 1 implies a polynomial diameter for
the Hungarian Rings puzzle with the rings intersecting at
two places.

What happens if the number of intersection of the
two cyeles is some number k greater than 27 By similar
reasoning to the above, we get ABA™! B~ to be a product
of k 3-cycles. Then a conjugation argument similar to the
above yiclds that, if we have 3k-transitivity, then we can
get a single 3-cycle. [low do we get ellicient 3k-transitivity?
Well, an arc of 3k -- 1 nodes and another arc with one
node would suffice. Or, in the case that &k is bounded,
then it is known |[DI] that the existence of k-lransitivity
is enough to ensure k-transitivity in O(:rr.k]—loug words,
which is polynomial for fixed k. However if k is large,
then this bound is exponential. If no arc has enough nodes
in it, there might be no efficient way to get the desired
degree of transitivity.

The foregoing considerations suggest that a good can-
didate for a Hungarian Rings puszzle with superpolynomizl
diameter is one with lots of crossings and no long arcs
(see Figure 15). To be more quantitative, suppose that
there are k equally spaced crossings. Then the arcs have
length on the order of n/k. We want this to be less than
3k. So: nfk < 3k, ie k > m. This suggests that we
should use at least on the order of \/n crossings to create
a likely exponential puzzle. It would be of great interest to
establish an exponential or moderately exponential lower
bound for some of these “candidate” puzzles.

Figure 15. ITungarian Rings with multiple crossings



We now leave these examples and speculations, and
state some results about the diameter of permutation
groups (proofs in final version):

3.2. Some results about the diameter of permuta-
tion groups

The following are classical theorems in the theory of
permutation groups.

Theorem A

If the group G on n letters is k-transitive and k >
n/3+ 1, then G = A, or S,.
Theorem B

If G is primitive on n letters, and a subgroup I
moves only m < n letters and is primitive on them, then
G is n — m + l-transitive.

We prove the following versions of these theorcms,
which give inflormation about the diameter:

Theorem 1

If group (' on n letters is k-transitive in words of
length <= L, the generator set S is closed under inverses,
and k > n/3+ 1, then G = A, or S, and Diam(G(S))
< An®L.
Theorem 2

If G is primitive on n letters, and I is the primitive
subgroup generated by a cyelie permutation of prime
length p < m, and the generator set S is closed under
inverses, then G is n —p + l-transitive using words of
length < 26vPt1n3(n? + diam(H(S))).
Theorem 3

If G is primitive on n letters, and H is a 2-transitive
subgroup which moves only 2 <= m < n letters, and the
generating set S is closed under inverses, then G is n —
m + I-transitive using words of length < 29v2Hni(n? +
diam(H(5))).

We were not able to prove an effective version of
theorem B for arbitrary primitive H, but did obtain the
special cases contained in theorems 2 and 3.

The following is an easy corollary.
Theorem 4

If a primitive group ¢ on n letters is generated by
a set S of cyclic permutaticns, one of prime length p <
2n/3, then G is A, or Sy, and Diam(G(S)) < 28v/PHip8,

3.3. Prools of the 'T"heorems

In this scction, we motivate the proofs of Theorems
2 and 3, and prove Theorem 4 as a corollary of Theorems
1 and 2. Complete proofs of all the theorems will appear
in the final version.

First we will necd the following preliminary Lemmas.
Lemma 2a

If G is primitive on n letters, and H is the primitive
subgroup generated by a cyclic permutation of prime
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length p < m, and the generator set S is closed under
inverses, then there exists a ¢ € G which takes D
= Domain(ff) to D', such that D and D' overlap on
exactly mn — | letters, and g has wordlength < 2“\-"(":(?32 +

diam(H(S))).
Lemma 3a

Il G is primitive on 7 letters, and H is a 2-transitive
subgroup which moves only 2 < m <7 n letters, and the
generating set S is closed under inverses, then there exists
a g € G which takes D = Dmrlail'.(ffl) to D', such that
D and D' overlap on exactly m — L letters, and g has
wordlength < 29\’6“[?’;2 + diam(11(S))).

The purpose of the Lemmas is roughly as lollows. By
making a set of letters overlap itseil by all but one letter,
and repeating this process, it is possible to build a tower
of conjugates of H whose domains look like the diagraim
in Figure 16. It is then possible to achieve n —m + 1
transitivity by using the lact that the domains intersect,
to move any letter to the right end of the bottom row (as
pictured in the figure), then move any letter to the right
end of the next-to-bottom row without disturbing the
previous element, and so on to get n —m + 1 transitivity.
The details will be given in the final version, as well as an
analysis of the wordlength needed to do these operations.
This, combined with Lemma 2a, gives Theorem 2, and
with Lemma 3a it gives Theorem 3.

D —
D, ——— ——
Dlh- =y =]

° Ll
" »
e - TS T vl

O

Figure 16. A tower of conjugates

R=m

Proofs of the Lemmas

We will motivate the proofs of the Lemmas. Roughly
speaking, we first find a permutation which maps D
to a D, which overlaps D partially but not totally.
Then a conjugating device is repeated, which increases
the overlap with each iteration, but never reaches total
overlap. Naturally, we must reach a D' where overlap is
all but one letter. Counting arguments (quite different for
the two Lemmas) show that the overlap increases can be
chosen large enough so that at most O('\/D_) iterations are
needed to reach overlap of all but L. Since each iteration,
which invelves conjugaling the permutation by a new
permutation of short wordlength, at most doubles the
wordlength of the permutation, the total wordlength ean

be calculated to be 0(2‘/5].

The details and explicit constants will be provided in
the final version of the paper.

Proof of Theorem 4

The generator h of the cyclic subgroup I = fly of
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order p is (by hypothesis) in the generator set of G. Zo
Diam(ITy) < p. We are not assaming that the generators
are closed under inverses, but because they are eyclic
of order < m, the inverse of a generator is at most the
n-th power of that generator. Hence the wordlength is at
most a factor of n longer than obtained previously, where
we assumed closure under inverses. Therefore, n — m + 1-
transitivity requires wordlength

< 26\/§+1ﬂ4(n2 +p}
< 26VFH28,

Then, as m < 2n/3, we have n —m + 1 > n/3 + 1,
so using Theorem 1, we get an additional factor of dn?,
giving Diam(G) < 28VP*n®, which proves the corollary.

This last theorem provides a partial extension of
[DF]'s upper bound for bounded cycles to unbounded
cycles. It would be desirable to generalize the result to
apply to all cycles, and to find a matching lower bound
on diameter.

4. Conclusion and Open Problems

We have obtained some results in pebble coordina-
tion problems and the diameter of permutation groups.
Specifically, we derived:

1. An efficient decision algorithm for the general
pebble coordination problem on graphs.

2. O(n*) matching upper and lower bounds on the
number of moves to solve pebble coordination problems.

3. 26vP+358 ypper bound on diameter of A, or S,
when generated by cycles, one of which has prime length
p < 2n/3.

We sec 1. as being a complete and satisfactory result
as it stands. It would be of interest to apply the algebraic
methods used in the pebble movers’ problem to special
cases of the general geometric movers’ problem which may
admit an algebraic approach.

2. could stand a number of refinements.
a. Find exact constants in the O-terms.

b. It would be useful to at least have an efficient
algorithm which approximates the number of moves
required. Por it seems that only a small fraction of
the graph puzsles actually require O(n?) moves. As an
example, it is not hard to show that the “15-puzzle”
gencralized to square grids of arbitrary size (with one
blank) requires only O(n%?) moves (where n is the number
of vertices).

3. is only a first step towards understanding the diameter
of groups generated by arbitrary cycles. A number of
related questions are open:

a. Is the upper bound in 3. tight? Is there a
corresponding lower bound of O(29V?) for some instances
of 3. ? This would settle the following well-known open
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problem:

b. Can a transitive group have larger than polynomial
diameter for some generator set? Can this be the case for
A or Sp?

c. Can the upper bound in 3. be generalized to less
restrictive conditions on the generating cycles? Is it even
true that the following conjecture holds?:

d. Is the diameter of a group, relative to any
generating set, always bounded above by O(nV™)? E.g.
the group generated by § ={(12)(345)...(...[sum of first
n primes|)} has diameter O(2ﬁ}, which satisfies the
conjecture.
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