
Solving SDD linear systems in time Õ(m log n log(1/�)) ∗

Ioannis Koutis
CSD-UPRRP

ioannis.koutis@upr.edu

Gary L. Miller
CSD-CMU

glmiller@cs.cmu.edu

Richard Peng
CSD-CMU

yangp@cs.cmu.edu

April 7, 2011

Abstract

We present an algorithm that on input of an n×n symmetric diagonally dominant matrix A with m
non-zero entries constructs in time Õ(m log n) a solver which on input of a vector b computes a vector
x satisfying ||x−A+b||A < �||A+b||A in time Õ(m log n log(1/�)) 1.

The new algorithm exploits previously unknown structural properties of the output of the incremental
sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010]. We also accelerate the construction of
low-stretch spanning trees by rounding the edge weights to ensure that each iteration of the hierarchical
star decomposition encounters a small number of distinct edge lengths.

1 Introduction

Solvers for symmetric diagonally dominant (SDD)2 are a central component of the fastest known algo-
rithms for a multitude of problems that include (i) Computing the first non-trivial (Fiedler) eigenvector
of the graph, or more generally the first few eigenvectors, with well known applications to the sparsest-cut
problem [Fie73, ST96, Chu97]; (ii) Generating spectral sparsifiers that also act as cut-preserving sparsi-
fiers [SS08]; (iii) Solving linear systems derived from elliptic finite elements discretizations of a significant
class of partial differential equations [BHV04]; (iv) Generalized lossy flow problems [SD08]; (v) Gener-
ating random spanning trees [KM09], (vi) Faster maximum flow algorithm [CKM+10]; and (vii) Several
optimization problems in computer vision [KMT09, KMST09] and graphics [MP08, JMD+07]. A more
thorough discussion of applications of the solver can be found in [Spi10, Ten10].

Most of these algorithms were motivated by the seminal work of Spielman and Teng who gave the
first nearly-linear time solver (ST solver) for SDD systems [ST04, EEST05, ST06]. The ST solver is not
practical because of its complicated nature and the several logarithmic factors separating its running time
from the obvious O(m) lower bound, where m is the number of non-zero entries in the matrix. In a recent
paper we presented a simpler and faster SDD solver with an expected run time of Õ(m log2 n log(1/�))
where m is the number of nonzero entries, n is the number of variables, and � is a standard measure of the
approximation error [KMP10]. In this paper we give a new algorithm that is a factor of log n faster.

The solver follows the framework of recursive preconditioned Chebyshev iterations [ST06, KMP10].
The iterations are driven by a so-called preconditioning chain of graphs {H1, . . . , Hk}. The total work of
the solver includes the time for constructing the chain, and the work spent on actual iterations which in
turn is a function on the preconditioning quality of the chain.

∗Partially supported by the National Science Foundation under grant number CCF-1018463.
1The Õ notation hides a (log log n)2 factor
2A system Ax = b is SDD when A is symmetric and Aii ≥

�
j �=i

|Aij |.

1

The incremental sparsification algorithm in [KMP10] constructs each Hi+1 by first computing a low-
stretch tree of Hi and then appropriately sampling the off-tree edges of Hi. In this paper we develop a
sharper understanding of the incremental sparsification algorithm based on the following two observations:

1. The algorithm scales up the weights of the low-stretch tree of Hi, making it likely to be a good
low-stretch tree of Hi+1 as well.

2. The way the number of edges in the output of the sparsification algorithm is bounded in [KMP10] is
by the number of samples. These are rather pessimistic when an edge gets sampled multiple times,
and we do not loose anything if we treat the samples as multi-edges. This splitting of edges on the
other hand decreases the edge weights and therefore sampling probabilities, leading to tighter bounds
for the next round of sparsification.

These observations allow us to improve the quality of the chain and reduce the total work done in the
iterations by a factor of log n.

The final bottleneck to getting an O(m log n) algorithm for very sparse systems is the Õ(m log n +
n log2 n) running time of the algorithm for constructing a low stretch spanning tree [ABN08, EEST05].
We address the problem by noting that it suffices to find a low stretch spanning tree on a graph with
edge weights that are roughly powers of 2. In this special setting, the shortest path like ball/cone growing
routines in [ABN08, EEST05] can be sped up in a way similar to the technique used in [OMSW10]. We
also slightly improve the result given in [OMSW10], which may be of independent interest.

2 Background and notation

A matrix A is symmetric diagonally dominant if it is symmetric and Aii ≥
�

j �=i
|Aij |. It is well understood

that any linear system whose matrix is SDD is easily reducible to a system whose matrix is the Laplacian
of a weighted graph with positive weights [Gre96]. The Laplacian matrix of a graph G = (V,E,w) is the
matrix defined as

LG(i, j) = −wi,j and LG(i, i) =
�

j �=i

wi,j .

There is a one-to-one correspondence between graphs and Laplacians which allows us to extend some
algebraic operations to graphs. Concretely, if G and H are graphs, we will denote by G + H the graph
whose Laplacian is LG + LH , and by cG the graph whose Laplacian is cLG.

Definition 2.1 [Spectral ordering of graphs] We define a partial ordering � of graphs by letting

G � H if and only if xTLGx ≤ xTLHx for all real vectors x.

If there is a constant c such that G � cH � κH, we say that the condition of the pair (G,H) is κ. In
our proofs we will find useful to view a graph G = (V,E,w) as a graph with multiple edges.

Definition 2.2 [Graph of samples] A graph G = (V,E,w) is called a graph of samples, when each edge

e of weight we is considered as a sum of a set Le of parallel edges, each of weight wl = we/|Le|. When

needed we will emphasize the fact that a graph is viewed as having parallel edges, by using the notation

G = (V,L, w).

Definition 2.3 [Stretch of edge by tree] Let T = (V,ET , w) be a tree. For e ∈ ET let w�
e = 1/we. Let

e be an edge not necessarily in ET , of weight we. If the unique path connecting the endpoints of e in T
consists of edges e1 . . . ek, the stretch of e by T is defined to be

stretchT (e) =

�
k

i=1w
�
ei

w�
e

.

2

A key to our results is viewing graphs as resistive electrical networks [DS00]. More concretely, if
G = (V,L, w) each l ∈ L corresponds to a resistor of capacity 1/wl connecting the two endpoints of L. We
denote by RG(e) the effective resistance between the endpoints of e in G. The effective resistance on
trees is easy to calculate; we have RT (e) =

�
k

i=1 1/w(ei). Thus

stretchT (e) = weRT (e).

We extend the definition to l ∈ Le in the natural way

stretchT (l) = wlRT (e),

and note that stretchT (e) =
�

l∈Le
stretchT (l).

This definition can also be extended to set of edges and therefore the entire graph.

Definition 2.4 [Total Off-Tree Stretch] Let G = (V,E,w) be a graph, T = (V,ET , w) be a spanning

tree of G and S be a subset of edges . We define

stretchT (G) =
�

e∈E−ET

stretchT (e).

3 Incremental Sparsifier

In their remarkable work [SS08], Spielman and Srivastava analyzed a spectral sparsification algorithm
based on a simple sampling procedure. The sampling probabilities were proportional to the effective
resistances RG(e) of the edges on the input graph G. Our solver in [KMP10] was based on an incremental

sparsification algorithm which used upper bounds on the effective resistances, that are cheaper to calculate.
In this section we give a more careful analysis of the incremental sparsifier algorithm given in [KMP10].
We start by reviewing the basic sampling procedure.

Sample

Input: Graph G = (V,E,w), p� : E → R+, real ξ.
Output: Graph G� = (V,L, w�).

1: t :=
�

e
p�e

2: q := Cst log t log(1/ξ) (* CS is an explicitly known constant *)

3: pe := p�e/t
4: G� := (V,L, w�) with L = ∅
5: for q times do
6: Sample one e ∈ E with probability of picking e being pe
7: Add sample of e, l to Le with weight w�

l = we/pe (* Recall that L =
�

e∈E
Le *)

8: end for

9: For all l ∈ L, let w�
l
:= w�

l
/q

10: return G�

The following Theorem characterizes the quality of G� as a spectral sparsifier for G and it was proved
in [KMP10].

Theorem 3.1 (Oversampling) Let G = (V,E,w) be a graph. Assuming that p�e ≥ weRG(e) for each

edge e ∈ E, and ξ ∈ Ω(1/n), when Sample succeeds, the graph G� = Sample(G, ∅, p�, ξ) satisfies

G � 2G� � 3G

3

with probability at least 1− ξ.

Suppose we are given a spanning tree T of G = (V,E,w). The incremental sparsification algorithm
of [KMP10] was based on two key observations: (a) By Rayleigh’s monotonicity law [DS00] we have
RG(e) ≥ RT (e) because T is a subgraph of G. Hence the numbers stretchT (e) satisfy the condition of
Theorem 3.1 and they can be used in Sample. (b) Scaling up the edges of T in G by a factor of κ gives a
new graph G� where the stretches of the off-tree are smaller by a factor of κ relative to those in G. This
forces Sample (when applied on G�) to sample more often edges from T , and return a graph with a smaller
number of off-tree edges. In other words, the scale-up factor κ allows us to control the number of off-tree
edges. Of course this comes at a cost of the condition κ between G and G�.

In this paper we follow the same approach, but also modify IncrementalSparsify so that the output
graph is a union of a copy of T and the off-tree samples picked by Sample. To emphasize this, we will
denote the edge set of the output graph by ET ∪ L. The details are given in the following algorithm.

IncrementalSparsify

Input: Graph G = (V,E,w), edge-set ET of spanning tree T , reals κ, 0 < ξ < 1
Output: Graph H = (V,ET ∪ L) or FAIL

1: Let T � be T scaled up by a factor of κ
2: Let G� be the graph obtained from G by replacing T by T �

3: for e ∈ E do

4: Calculate stretchT �(e)
5: end for

6: if stretchT (G) ≤ 1 then

7: return 2T
8: end if

9: t̂ = stretchT �(G�) = stretchT (G)/κ (* total stretch of off-tree edges *)

10: t = t̂+ n− 1 (* total stretch including tree edges *)

11: H̃ = (V, L̃) := Sample(G�, stretchT � , ξ)
12: if (

�
e �∈ET

|L̃e|) ≥ 2(t̂/t)Cs log t log(1/ξ) (* Cs is the constant in Sample *)

13: return FAIL

14: end

15: L := L̃ −
�

e∈ET
L̃e.

16: H := L+ 3T �

17: return 4H

Theorem 3.2 Let G be a graph with n vertices and m edges and T be a spanning tree of G. Then

for ξ ∈ Ω(1/n), IncrementalSparsify(G,ET , κ, ξ) computes with probability at least 1 − 2ξ a graph

H = (V,ET ∪ L) such that

• G � H � 54κG

• |L| ≤ 2t̂CS log t log(1/ξ)

where t̂ = ST (G)/κ, t = t̂+ n− 1, and CS is the constant in Sample. The algorithm can be implemented

to run in Õ((n log n+ t̂ log2 n) log(1/ξ)).

Proof The condition κt̂ ≤ 1 implies that G/2 � T � G, by well known facts. Hence returning H = 2T
satisfies the claims. Now assume that the condition is not true. Since in Step 1 the weight of each edge is

4

increased by at most a factor of κ, we have G � G� � κG. IncrementalSparsify sets p�e = 1 if e ∈ ET

and stretchT (e)/κ otherwise, and invokes Sample to compute a graph H̃ such that with probability at
least 1− ξ, we get

G � G� � 2H̃ � 3G� � 3κG. (3.1)

We now bound the number |L| of off-tree samples drawn by Sample. For the number t used in Sample

we have t = t̂ + n − 1 and q = Cst log t log(1/ξ) is the number samples drawn by Sample. Let Xi be a
random variable which is 1 if the ith sample picked by Sample is a non-tree edge and 0 otherwise. The
total number of non-tree samples is the random variable X =

�
q

i=1Xi, and its expected value can be
calculated using the fact Pr(Xi = 1) = t̂/t:

E[X] = q
t̂

t
= t̂

Cst log t log(1/ξ)

t
= CS t̂ log t log(1/ξ).

Step 12 assures that H does not contain more than 2E[X] edges so the claim about the number of off-tree
samples is automatically satisfied. A standard form of Chernoff’s inequality is:

Pr[X > (1 + δ)E[X]] < exp(−δ2E[X])

Pr[X < (1− δ)E[X]] < exp(−δ2E[X]).

Letting δ = 1, and since t̂ > 1, CS > 2 we get Pr[X > 2E[X]] < (exp(−2E[X]) < 1/n2. So, the probability
that the algorithm returns a FAIL is at most 1/n2. It follows that the probability that an output of Sample
satisfies inequality 3.1 and doesn’t get rejected by IncrementalSparsify is at least 1− ξ − 1/n2.

We now concentrate on the edges of T . Any fixed edge e ∈ ET is sampled with probability 1/t in
Sample. Let Xe denote the random variable equal to number of times e is sampled. Since there are
q = Cst log t log(1/ξ) iterations of sampling, we have E[Xe] = q/t ≥ Cs log n. By the Chernoff inequalities
above, setting δ = 1/2 we get that

Pr[Xe > (3/2)E[Xe]] ≤ exp(−(Cs/4) log n)

and
Pr[Xe < (1/2)E[Xe]] ≤ exp(−(Cs/4) log n)

By setting Cs to be large enough we get exp(−(Cs/4) log n) < n−4. So with probability at least 1− 1/n2

there is no edge e ∈ ET such that Xe > (3/2)E[Xe] or Xe < (1/2)E[Xe]. Therefore we get that with
probability at least 1− 1/n2 all the edges e ∈ ET in H̃ have weights at most three times larger than their
weights in (H/2), and

G � H̃ � H � 18H̃ � 54κG.

Overall, the probability that the output H of IncrementalSparsify satisfies the claim about the condi-
tion number is at least 1− ξ − 2/n2 ≥ 1− 2/ξ.

We now consider the time complexity. We first compute the effective resistance of each non-tree edge by
the tree. This can be done using Tarjan’s off-line LCA algorithm [Tar79], which takes O(m) time [GT83].
We next call Sample, which draws a number of samples. Since the samples from ET don’t affect the
output of IncrementalSparsify we can implement Sample to exploit this; we split the interval [0, 1]
to two non-overlapping intervals with length corresponding to the probability of picking an edge from ET

and E − ET . We further split the second interval by assigning each edge in E − ET with a sub-interval
of length corresponding to its probability, so that no two intervals overlap. At each sampling iteration
we pick a random value in [0, 1] and in O(1) time we decide if the value falls in the interval associated
with E − ET . If no, we do nothing. If yes, we do a binary search taking O(log n) time in order to find

5

the sub-interval that contains the value. With the given input Sample draws at most Õ(t̂ log n log(1/ξ))
samples from E−ET and for each such sample it does O(log n) work. It also does O(n log n log(1/ξ)) work
rejecting the samples from ET . Thus the cost of the call to Sample is Õ((n log n+ t̂ log2 n) log(1/ξ)). �

Since the weights of the tree-edges ET in H are different than those in G, we will use TH to denote the
spanning tree of H whose edge-set is ET . We now show a key property of IncrementalSparsify.

Lemma 3.3 (Uniform Sample Stretch) Let H = (V,ET∪L, w) := IncrementalSparsify(G,ET , κ, ξ),
and CS , t as defined in Theorem 3.2. We have

stretchTH
(l) =

1

3CS log t log(1/ξ)

Proof Let T � = κT . Consider an arbitrary non-tree edge e of G� defined in Step 2 of IncrementalSpar-
sify. The probability of it being sampled is:

p�e =
1

t
· we ·RT �(e)

where RT �(e) is the effective resistance of e in T � and t = n − 1 + sT �(G�) = n − 1 + sT (G)/κ is the total
stretch of all G� edges by T �. If e is picked, the corresponding sample l has weight we scaled up by a factor
of 1/p�e, but then divided by q at the end. This gives

wl =
we

p�e
· 1
q
=

we

(weRT �(e))/t
· 1

CSt log t log(1/ξ)
=

1

CSRT �(e) log t log(1/ξ)
.

So the stretch of l with respect to T � is independent from we and equal to

stretchT �(e) = wlRT �(e) =
1

CS log t log(1/ξ)
.

Finally note that TH = 3T �. This proves the claim. �
4 Solving using Incremental Sparsifiers

We follow the framework of the solvers in [ST06] and [KMP10] which consist of two phases. The precon-

ditioning phase builds a chain of graphs C = {G1, H1, G2, . . . , Hd} starting with G1 = G, along with a
corresponding list of positive numbers K = {κ1, . . . , κd−1} where κi is an upper bound on the condition
number of the pair (Gi, Hi). The process for building C alternates between calls to a sparsification routine
(in our case IncrementalSparsify) which constructs Hi from Gi and a routine GreedyElimination

which constructs Gi+1 from Bi. The preconditioning phase is independent from the b-side of the system
LAx = b. The solve phase passes C, b and a number of iterations t (depending on a desired error �) to
the recursive preconditioning algorithm R-P-Chebyshev, described in [ST06] or in the appendix of our
previous paper [KMP10].

We first give pseudocode for GreedyElimination, which deviates slightly from the standard presen-
tation where the input and output are the two graphs G and Ĝ, to include a spanning tree of the graphs.

Of course we still need to prove that the output T̂ is indeed a spanning tree. We prove the claim in the
following Lemma that also examines the effect of GreedyElimination to the total stretch of the off-tree
edges.

Lemma 4.1 Let (Ĝ, T̂) := GreedyElimination(G, T). The output T̂ is a spanning tree of Ĝ, and

stretch
T̂
(Ĝ) ≤ stretchT (G).

6

GreedyElimination

Input: Weighted graph G = (V,E,w), Spanning tree T of G

Output: Weighted graph Ĝ = (V̂ , Ê, ŵ), Spanning tree T̂ of Ĝ

1: Ĝ := G
2: E

T̂
:= ET

3: repeat

4: greedily remove all degree-1 nodes from Ĝ
5: if deg

Ĝ
(v) = 2 and (v, u1), (v, u2) ∈ E

Ĝ
then

6: w� := (1/w(u1, v) + 1/w(u2, v))
−1

7: w�� := w(u1, u2) (* it may be the case that w�� = 0 *)

8: replace the path (u1, v, u2) by an edge e of weight w� in Ĝ
9: if (u1, v) or (v, u2) are not in T̂ then

10: Let T̂ = {T̂} − {(u1, v), (v, u2), (u1, u2)}
11: else

12: Let T̂ = {T̂ ∪ e} − {(u1, v), (v, u2), (u1, u2)}
13: end if

14: end if

15: until there are no nodes of degree 1 or 2 in Ĝ
16: return Ĝ

Proof We prove the claim inductively by showing that it holds for all the pairs (Ĝi, T̂i) throughout the
loop, where (Ĝi, T̂i) denotes the pair (Ĝ, T̂) after the ith elimination during the course of the algorithm.
The base of the induction is the input pair (G, T) and so the claim holds for it.

When a degree-1 node gets eliminated the corresponding edge is necessarily in E
T̂

by the inductive

hypothesis. Its elimination doesn’t affect the stretch of any off-tree edge. So, it is clear that if (Ĝi, T̂i)
satisfy the claim then after the elimination of a degree-1 node (Ĝi+1, T̂i+1) will also satisfy the claim.

By the inductive hypothesis about T̂i if (v, u1), (v, u2) are eliminated then at least one of the two edges
must be in T̂i. We first consider the case where one of the two (say (v, u2)) is not in T̂i. Both u1 and u2
must be connected to the rest of Ĝi through edges of T̂i different than (u1, v) and (v, u2). Hence T̂i+1 is a
spanning tree of Ĝi+1. Observe that we eliminate at most two non-tree edges from Ĝi: (v, u2) and (u1, u2)
with corresponding weights w(v, u2) and w�� respectively. Let T̂ [e] denote the unique tree-path between
the endpoints of e in T̂ . The contribution of the two eliminated edges to the total stretch is equal to

s1 = w(v, u2)RT̂i
((v, u2)) + w��R

T̂i
((u1, u2)).

The two eliminated edges get replaced by the edge (u1, u2) with weight w� + w��. The contribution of the
new edge to the total stretch in Ĝi+1 is equal to

s2 = w�R
T̂i+1

((u1, u2)) + w��R
T̂i+1

((u1, u2)).

We have R
T̂i+1

((u1, u2)) = R
T̂i
((u1, u2)) < R

T̂i
((v, u2)) since all the edges in the tree-path of (u1, u2) are

not affected by the elimination. We also have w(v, u2) > w�, hence s1 > s2. The claim follows from the
fact that no other edges are affected by the elimination, so

stretch
T̂i
(Ĝi)− stretch

T̂i+1
(Ĝi+1) =

�

e∈E(Ĝi)−T̂i

stretch
T̂i
(e)−

�

e∈E(Ĝi+1)−T̂i+1

stretch
T̂i+1

(e) = s1 − s2 > 0.

7

We now consider the case where both edges eliminated in Steps 5-13 are in T̂i. It is clear that T̂i+1 is a
spanning tree of Ĝi+1. Consider any off-tree edge e not in T̂i+1. One of its two endpoints must be different
than either u1 or u2, so its endpoints and weight we are the same in T̂i. However the elimination of v may
affect the stretch of e if T̂i[e] goes through v. Let

τ = (
�

e�∈T̂i[e]

1/we�)− (1/w(u1, v) + 1/w(u2, v))

= (
�

e�∈T̂i+1[e]

1/we�)−
�
(1/w(u1, v) + 1/w(u2, v))

−1 + we

�−1
.

We have

stretch
T̂i
(e)

stretch
T̂i+1

(e)
=

we

�
e�∈T̂i[e]

1/we�

we

�
e�∈T̂i+1[e]

1/we�
=

(1/w(u1, v) + 1/w(u2, v)) + τ
�
(1/w(u1, v) + 1/w(u2, v))

−1 + we

�−1
+ τ

≥ 1

Since individual edge stretches only decrease, the total stretch also decreases and the claim follows. �
A preconditioning chain of graphs must certain properties in order to be useful with R-P-Chebyshev.

For a graph Gi let ni denote the number of its nodes and µi denote an upper bound on the number of
edges in Gi.

Definition 4.2 (Good Preconditioning Chain) Let C = {G = G1, H1, G2, . . . , Gd} be a chain of

graphs and K = {κ0, κ1, . . . , κd−1} a list of positive numbers. We say that {C,K} is a good precondi-

tioning chain for G, if:

1. Gi � Hi � κiGi.

2. Gi+1 = GreedyElimination(Hi).

3. µi/µi+1 ≥ �cr
√
κi� for all i > 1 where cr is an explicitly known constant.

4. κi ≥ κi+1.

5. nd is a smaller than a fixed constant.

Spielman and Teng [ST06] analyzed the recursive preconditioned Chebyshev iteration R-P-Chebyshev

that can be found in the appendix of [KMP10] and showed that the solution of an arbitrary SDD system
can be reduced to the computation of a good preconditioning chain. This is captured more concretely by
the following Lemma which is adapted from Theorem 5.5 in [ST06].

Lemma 4.3 Let A be an SDD matrix with A = LG +D where D is a diagonal matrix with non-negative

elements, and LG is the Laplacian of a graph G. Given a good preconditioning chain {C,K} for G, a vector

x such that ||x−A+b||A < �||A+b||A can be computed in time O((m1
√
κ1 +m2

√
κ1κ2) log(1/�)).

Before we proceed to our algorithm for building the chain we will need a modified version of a result
by Abraham, Bartal, and Neiman [ABN08], which we prove in the next section.

Theorem 4.4 There is an algorithm LowStretchTree that given a graph G = (V,E,w) it outputs a

spanning tree T of G in O(m log n+ n log n log log n) time such that:

�

e∈E
stretchT (e) ≤ O(m log n log log3 n).

8

BuildChain

Input: Graph G, scalar p with 0 < p < 1
Output: Chain of graphs C = {G = G1, H1, G2, . . . , Gd}, List of numbers K.

1: (* cstop and κc are explicitly known constants *)
2: G1 := G
3: T := LowStretchTree(G)
4: H1 := G1 + Õ(log2 n)T
5: G2 := H1

6: K := ∅; C := ∅; i := 2
7: ξ := 2 log n
8: ET2 := ET

9: (*ni is the number of nodes in Ai*)
10: while ni > cstop do

11: Hi = (Vi, ETi
∪ Li) := IncrementalSparsify(Gi, ETi

, κc, pξ)
12: {Gi+1, Ti+1} := GreedyElimination(Hi, Ti)
13: C = C ∪ {Gi, Hi}
14: i := i+ 1
15: end while

16: K = {Õ(log2 n), κc, κc, . . . , κc}
17: return {C,K}

Algorithm BuildChain generates the chain of graphs.

Lemma 4.5 Given a graph G, BuildChain(G, p) produces with probability at least 1− p, a good precon-

ditioning chain {C,K} for G, such that κ1 = Õ(log2 n) and for all i ≥ 2, κi = κc for some constant κc.
The algorithm runs in time proportional to the running time of LowStretchTree(G).

Proof Let l1 denote the number of edges in G and li = |Li| the number of off-tree samples for i > 1. We
prove by induction on i that:

(a) li+1 ≤ 2li/κc.

(b) stretchTi+1(Gi+1) ≤ li/(CS log ti log(1/(pξ))) = κct̂i, where CS , t̂i and ti are as defined in Theorem 3.2
for the graph Gi.

For the base case of i = 1, by picking a sufficiently large scaling factor κ1 = Õ(log2 n) in Step 4, we can
satisfy claim (b). By Theorem 3.2 it follows that l2 ≤ 2l1/κc, hence (a) holds. For the inductive argument,
Lemma 3.3 shows that stretchETi

(Hi) is at most li/(CS log ti log(1/(pξ))). Then claim (b) follows from
Lemma 4.1 and claim (a) from Theorem 3.2.

A key property of GreedyElimination is that if G is a graph with n − 1 + j edges, the output Ĝ
of GreedyElimination(G) has at most 2j − 2 vertices and 3j − 3 edges [ST06]. Hence the graph Gi+1

returned by GreedyElimination(Hi) has at most 6li/κc edges. Therefore µi = 6li/κc is an upper bound
on the number of edges in Gi+1 and:

µi

µi+1
=

6li/κc
6li+1/κc

≥ 3li+1

6li+1/κc
≥ κc

2

9

At the same time we have Gi � Hi � 54κcGi. By picking κc to be large enough we can satisfy all the
requirements for the preconditioning chain.

The probability that Hi has the above properties is by construction at least 1−p/(2 log n). Since there
are at most 2 log n levels in the chain, the probability that the requirements hold for all i is then at least

(1− p/(2 log n))2 logn > 1− p.

Finally note that each call to IncrementalSparsify takes Õ(µi log n log(1/p)) time. Since µi decreases
geometrically with i, the claim about the running time follows. �

Combining Lemmas 4.3 and 4.5 proves our main Theorem.

Theorem 4.6 On input an n×n symmetric diagonally dominant matrix A with m non-zero entries and a

vector b, a vector x satisfying ||x−A+b||A < �||A+b||A can be computed in expected time Õ(m log n log(1/�)).

5 Speeding Up Low Stretch Spanning Tree Construction

We improve the running time of the low stretch spanning tree given in [EEST05, ABN08] while retaining
the O(m log n log log3 n) bound on total stretch given in [ABN08]. Specifically, we claim the following:

Theorem 5.1 There is an algorithm LowStretchTree that given a graph G = (V,E,w) it outputs a

spanning tree T of G in O(m log n+ n log n log log n) time such that:

�

e∈E
stretchT (e) ≤ O(m log n log log3 n).

We first show that in the special case of the graph having k distinct edge weights, Dijkstra’s algorithm
can be modified to run in O(m + n log k) time. Our approach is identical to the algorithm described in
[OMSW10]. However, we obtain a slight improvement in running time over the O(m log nk

m
) bound given

in [OMSW10].
The low stretch spanning tree algorithm in [EEST05, ABN08] also make use of intermediate states of

Dijkstra’s algorithm with the routines BallCut and ConeCut. Therefore, we proceed by abstracting
out the data structure that’s common to these routines.

Lemma 5.2 There is a data structure that given a list of non-negative values L = {l1 . . . lk} (the distinct

edge lengths), maintains a set of keys (distances) starting with {0} under the following operations:

1. FindMin(): returns the element with minimum key.

2. DeleteMin(): delete the element with minimum key.

3. Insert(k): insert the minimum key plus lk into the set of keys.

4. DecreaseKey(v, k): decrease the key of v to the minimum key plus lk.

Insert and DecreaseKey have O(1) amortized cost and DeleteMin has O(log k) amortized cost.

Proof We maintain k queues Q1 . . . Qk containing the keys with the invariant that the keys stored in
them are in non-decreasing order. We also maintain a Fibonacci heap containing the first element of all
non-empty queues. The invariant then allows us to support FindMin in O(1) time.

Since lk ≥ 0, the new key introduced by Insert or DecreaseKey is always at least the minimum
key. Therefore the minimum key is non-decreasing throughout the operations. So if we only append
keys generated by adding lk to the minimum key to the end of Qk, the invariant that the queues are

10

monotonically non-decreasing is maintained. Specifically, we can let Insert(k) append the element to the
tail of Qk,

For DecreaseKey(v, k), suppose v is currently stored in queue Qi. We consider two cases:

1. v has a predecessor in Qi. Then the key of v is not the key of Qi in the Fibonacci heap and we can
remove v from Qi in O(1) time while keeping the invariant. Then we can insert v with its new key
at the end of Qk using one Insert operation.

2. v is currently at the head of Qi. Then simply decreasing the key of v would not violate the invariant
of all keys in the queues being monotonic. As the new key will be present in the heap containing the
first elements of the queues, a decrease key needs to be performed on the Fibonacci heap.

Deletemin can be done by doing a delete min in the Fibonacci heap, and removing the element from
the queue containing it. If the queue is still not empty, it can be reinserted into the Fibonacci heap with
key equaling to that of its new first element. The amortized cost of this is O(log k) +O(1) = O(log k). �

The running times of Dijkstra’s algorithm, BallCut and ConeCut then follows:

Corollary 5.3 Let G be a connected weighted graph and x0 be some vertex. If there are k distinct values

of d(u, v) for some value k, Dijkstra’s algorithm can compute d(x0, u) for all u exactly in O(m + n log k)
time.

Proof Same as the proof of Dijkstra’s algorithm with Fibonacci heap, except the cost of a DeleteMin

is O(log k). �

Corollary 5.4 (corollary 4.3 of [EEST05]) If there are at most k distinct distances in the graph, then

BallCut returns ball X0 such that:

cost(δ(X0)) ≤ O

�
m

rmax − rmin

�

In O(vol(X0) + |V (X0)| log k) time.

Corollary 5.5 (Lemma 4.2 of [EEST05]) If there are at most k distinct values in the cone distance ρ,
then

For any two values 0 ≤ rmin < r�max, ConeCut finds a real r ∈ [rmin, rmax) such that:

cost(δ(Bρ(r, x0))) ≤
vol(Lr) + τ

rmax − rmin

max

�
1, log2

�
m+ τ

vol(E(Bρ(r, rmin)) + τ

��

In time O(vol(Bρ(r, x0)) + |V (Bρ(r, x0))| log k). Where Bρ(r, x0) is the set of all vertices v within

distance r from x0 in cone length ρ.

Proof The existence such a Lr follows from Lemma 4.2 of [EEST05] and the running time follows from
the bounds given in Lemma 5.2. �

We next bound the running time of star-partition from [ABN08] with BallCut and ConeCut

replaced by ones that use the heap described in Lemma 5.2.

Lemma 5.6 Given a graph X that has k distinct edge lengths, The version of star-partition that uses

ImpConeDecomp as stated in corollary 6 of [ABN08] runs in time O(vol(|X|) + |V (X)| log k).

11

Proof Finding radius and calling BallCut takes O(vol(|X|) + |V (X)| log k) time. Since the Xis form
a partition of the vertices and ImpConeDecomp never reduce the size of a cone, the total cost of all calls
to ImpConeDecomp is:

�

i

(vol(Xi) + |V (Xi)| log k) ≤ vol(X) + |V (X)| log k

The queue operations in star-partition can each be performed in constant time, while the last step of
interleaving them can be done by looping through the 3 queues using 3 fingers. �

We now need to ensure that all calls to star-partition a small value of k. This can be done by
rounding the edge lengths so that at any iteration of hierarchical-star-partition, the graph has
O(log n) distinct edge weights.

Algorithm 1 Rounding of Edge Lengths

RoundLengths

Input: Graph G = (V,E, d)

Output: Rounded graph G̃ = (V,E, d̃)

1: Sort the edge weights of d such that d(e1) ≤ d(e2) · · · ≤ d(e|E|).
2: i� = 1
3: for i = 1 . . .m do

4: if d̃(ei) > 2d(e�
i
) then

5: i� = i
6: end if

7: d̃(ei) = d(e�
i
)

8: end for

9: return G̃ = (V,E, d̃)

The cost of RoundLengths is dominated by the sorting the edges lengths, which takes O(m logm)
time. Before we examine the cost of constructing low stretch tree on G̃, we show that for any tree produced
in the rounded graph G̃, taking the same set of edges in G gives a tree with similar average stretch.

Lemma 5.7 For each edge e, 1
2d(e) ≤ d̃(e) ≤ d(e)

Lemma 5.8 Let T be any spanning tree of (V,E), and u, v any pair of vertices, we have:

1

2
dT (u, v) ≤ d̃T (u, v) ≤ dT (u, v)

Proof Summing the bound on a single edge over all edges on the tree path suffices. �
Combining these two gives:

Corollary 5.9 For any pair of vertices u, v such that uv ∈ E,

1

2

d̃T (u, v)

d̃(u, v)
≤ dT (u, v)

d(u, v)
≤ 2

d̃T (u, v)

d̃(u, v)

Therefore calling Hierarchical-Star-Partition(G̃, x0, Q) and taking the same tree would give a
low stretch spanning tree for G with O(m log n log log3 n) total stretch. It remains to bound its running
time:

12

Theorem 5.10 HierarchicalStarPartition(G̃, x0, Q) runs in O(m logm+ n logm log logm) time on

the rounded graph G̃.

Proof It was shown in [EEST05] that the lengths of all edges considered at some point where the farthest
point from x0 is r is between r · n−3 and r. The rounding algorithm ensures that if d̃(ei) �= d̃(ej) for some
i < j, we have 2d̃(ei) < d̃(ej). Therefore in the range [r, r · n3] (for some value of r), there can only
be O(log n) different edge lengths in d̃. Lemma 5.6 then gives that each call of star-partition runs in
O(vol(X) + |V (X)| log log n) time. Combining with the fact that each edge appears in at most O(log n)
layers of the recursion (theorem 5.2 of [EEST05], we get a total running time of O(m log n+n log n log log n).
�
References

[ABN08] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. CoRR,
abs/0808.2017, 2008. 1, 4, 5, 5, 5, 5.6

[BHV04] Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving elliptic finite element
systems in near-linear time with support preconditioners. CoRR, cs.NA/0407022, 2004. 1

[Chu97] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathemat-

ics. American Mathematical Society, 1997. 1

[CKM+10] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in undi-
rected graphs. 2010. 1

[DS00] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000. 2, 3

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
494–503, 2005. 1, 1, 5, 5, 5.4, 5.5, 5, 5

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298–305,
1973. 1

[Gre96] Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant

Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU CS
Tech Report CMU-CS-96-123. 2

[GT83] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of
disjoint set union. In STOC ’83: Proceedings of the fifteenth annual ACM symposium on

Theory of computing, pages 246–251, New York, NY, USA, 1983. ACM. 3

[JMD+07] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Harmonic coordi-
nates for character articulation. ACM Trans. Graph., 26(3):71, 2007. 1

[KM09] Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning trees.
Foundations of Computer Science, Annual IEEE Symposium on, 0:13–21, 2009. 1

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
systems. CoRR, abs/1003.2958, 2010. 1, 2, 3, 3, 3, 4, 4

13

[KMST09] Ioannis Koutis, Gary L. Miller, Ali Sinop, and David Tolliver. Combinatorial preconditioners
and multilevel solvers for problems in computer vision and image processing. Technical report,
CMU, 2009. 1

[KMT09] Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and multi-
level solvers for problems in computer vision and image processing. In International Symposium

of Visual Computing, pages 1067–1078, 2009. 1

[MP08] James McCann and Nancy S. Pollard. Real-time gradient-domain painting. ACM Trans.

Graph., 27(3):1–7, 2008. 1

[OMSW10] James B. Orlin, Kamesh Madduri, K. Subramani, and M. Williamson. A faster algorithm
for the single source shortest path problem with few distinct positive lengths. J. of Discrete

Algorithms, 8:189–198, June 2010. 1, 5

[SD08] Daniel A. Spielman and Samuel I. Daitch. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on Theory of

Computing, May 2008. 1

[Spi10] Daniel A. Spielman. Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices.
In Proceedings of the International Congress of Mathematicians, 2010. 1

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 563–568,
2008. 1, 3

[ST96] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and
finite element meshes. In FOCS, pages 96–105, 1996. 1

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM

Symposium on Theory of Computing, pages 81–90, June 2004. 1

[ST06] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006. 1,
4, 4, 4

[Tar79] Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–
715, 1979. 3

[Ten10] Shang-Hua Teng. The Laplacian Paradigm: Emerging Algorithms for Massive Graphs. In
Theory and Applications of Models of Computation, pages 2–14, 2010. 1

14

	1 Introduction
	2 Background and notation
	3 Incremental Sparsifier
	4 Solving using Incremental Sparsifiers
	5 Speeding Up Low Stretch Spanning Tree Construction

