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1. INTRODUCTION

fa
The shuffle-exchange graph is one of the best structures |
known for parallel computation. Among other things, it can b
be used to compute discrete Fourier transforms, multiply
matrices, evaluate polynomials, perform permutations and i
sort lists [P80, S80, St71]. The algorithms needed for p

these operations are extremely simple and for the most part,
require no more than logarithmic time and constant space per
processor. The only exceptions are sorting lists (for which
the best algorithm known requires Q(log2n) time) and per-
forming arbitrary permutations (which may require Q(logn)
space per processor).

With the development of integrated circuit technology,
it has become possible to place large numbers of very simple
processors on a single chip. Thus the question of how best
to lay out the shuffle-exchange graph on a grid (using as
little area as possible) has gained practical as well as
theoretical importance. Thompson was the first to address
the issue in the context of VLSI. In his thesis [T80], he
showed that any layout of the n-node shuffle-exchange graph
requires at least Q(n?/log2n) area. 1In addition, he des-
cribed a layout requiring only 0(n2/logl/2n) area. Shortly
thereafter, Hoey and Leiserson [HL80] improved the upper
bound by finding an 0(n2/logn)-area layout. By combining
the techniques of Thompson, Hoey and Leiserson, both Rodeh
and Steinberg [RS80] and Leighton, Lepley and Miller [LLM81]
independently found 0(n4/log3/2n)-area layouts. The area
layout question was finally settled by Kleitman, Leighton,
Lepley and Miller [KLLM81] who employed entirely new methods
to find an 0(n?/logén) area-layout for the n-node shuffle~
exchange graph, thus achieving Thompson's lower bound.

Although the O(ng/loggn)—area layout for the shuffle-
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exchange graph described in [KLLM81] is (up to a constant)
asymptotically optimal, it is not optimal for small values
of n (e.g., n=27). 1In fact, none of the general layout pro-
cedures thus far discovered [HL80, KLLM81, LLM8L, RS80, T80]
provide good layouts for small shuffle-exchange graphs. For
practical applications, however, these are precisely the
shuffle-exchange graphs for which we need good layouts.

Tn this paper, we describe techniques for finding good
layouts for small shuffle-exchange graphs. Although the
techniques do not yet constitute a general procedure for
finding truly optimal layouts for all shuffle-exchange
graphs, they can be used to find very nice layouts for small
shuffle—exchange graphs. As examples, we have included lay-
outs for n = 8,16,32,64 and 128. The layouts are very nice
in the sense that:

1) they require much less area than previously discovered

layouts,

2) they have a certain natural structure which facili-
tates efficient layout description, chip manufacture
and I/0 management, and

3) they require the minimal amount of area for layouts
with such structure.

2. PRELIMINARIES
(a) The shuffle-exchange graph

The shuffle-exchange graph consists of n=2K nodes and 3n/2
edges. Each node is associated with a unique k-bit binary
string a; ;...d, wo nodes w and w' are linked via a shuffle

edge if w' is a left or right cyclic shift of w (i.e., if w=
T— -

ap_7°++ % and w Qg+ Aoy 7 or w agak_j...aj). Two nodes

w and »' are linked via an exchange edge if w and w' differ

; : = T
Only.ln the last bit (i.e., if w ak_l...aIO and w ak—]"'ail
or vice-versa).
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Fig. 1. The 8-node shuffle-exchange graph.
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For example, we have drawn the 8-node shuffle-exchange
graph in Figure 1. 1In this figure, as well as throughout the
rest of the paper, we have drawn the shuffle edges with dashed
lines and the exchange edges with solid lines.

(b) Necklaces

The collection of all cyclic shifts of a node w is called
a necklace and is denoted by <w>. For example, the necklace
generated by 001 is <001> = {001, 010, 100}. Note that each
necklace corresponds to a cycle in the shuffle-exchange graph
(see Figure 1) and that shuffle edges always link nodes which
are in the same necklace.

I1f a necklace contains precisely k nodes, then it is said
to be full. Otherwvise a necklace contains less than k nodes
and is said to be degenerate. For example, <001> is full

.

while <000> is degenerate. A
The partition of the shuffle edges into necklaces is a key

part of the layout technique described in Section 3. b

(¢) The Thompson model

In what follows, we will descibed layouts for the shuffle-
exchange graph in terms of the grid model developed by Thomp-
son [T80]. 1In this model, processors are represented by :
points which are located at the intersection of grid lines.
Wires connect pairs of processors and must follow along grid
lines. Two wires can cross each other but only at the inter-
section of grid lines (i.e., two wires cannot overlap for any
distance). In addition, wires are not allowed to overlap
processors. The area of a layout is defined to be the product |
of the number of vertical tracks and the number of horizontal '
tracks containing a processor or wire of the network. (1
As an example, we have included a Thompson model layout of ;
the 8-node shuffle-exchange graph in Figure 2. This layout
requires 2 horizontal tracks and 6 vertical tracks, thus
having area 12 (which is optimal). For simplicity, we have
replaced the 3-bit binary string associated with each node
by its numeric value.
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Fig. 2. An optimal Thompson model layout for the 8-node f
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(d) Rational for using the Thompson model

We have chosen to use the Thompson model to illustrate our
techniques because of its widespread acceptance and its sim-
plicity. Although the assumption that processors can be rep-
resented by points is clearly false in practice, good Thompson
model layouts can still be used to develop good practical lay-
outs. The manner in which a Thompson model is useful varies
with the size of the processors involved. TFor example, if one
desires to use the shuffle-exchange graph as a permuter, then
each processor need only contain k storage registers and some
I/0 hardware. Such a processor can easily be hardwired in a
k by k square. In order to achieve maximum parallelism, each
wire of the Thompson model layout is reproduced k% times so
that an entire k-bit word can be transmitted in each time step.
For example, the optimal Thompson model layout in Figure 2
(where k=3) can be transformed into the more realistic 6xI18
layout shown in Figure 3 by tripling the grid lines and replac-
ing point processors by 3x3 boxes (into which the guts of each
processor will later be wired).
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Fig. 3. A transformed Thompson model layout of the 8-node
shuffle-exchange graph.
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For some applications, the processors themselves require an
entire chip. For example, every processor of a shuffle-
exchange graph used to compute discrete Fourier transforms
must be equiped with a floating point multiplier. Using the
best technology currently available, only a few floating point
multipliers can be wired onto a single chip. 1In this case, a
Thompson model layout can be used to design an efficient
Layout of chips where each chip contains a single processor.
(Such a device is currently under development at IBM). The
wires, as before, are replicated to achieve maximum parallelism
but now serve as links between chips. Since the wires must be
much wider in such a device, the side length of a processor
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(the chip) is about the same as the combined width of all the
wires (pins) attached to it. By following an expansion pro-
cedure similar to the one described in the previous example,

a good Thompson model layout can thus be used to design a good
practical layout.

3. LAYOUT TECHNIQUES
(a) A general class of layouts

In what follows, we will consider layouts of the shuffle-
exchange graph for which:

1) each necklace appears as a rectangle consisting of
arbitrarily long segments of two vertical tracks and unit
length segments of two horizontal tracks,

2) the horizontal tracks are divided into pairs, each pair
containing at most one full necklace and any number of degen-
erate necklaces, and

3) each exchange edge appears as a horizontal line segment.

For example, the layouts in Figures 2 and 4-7 have this
form. In [LLM81], Leighton, Lepley and Miller show that such
a layout exists for every shuffle-exchange graph. 1In fact, by
rearranging the left-to-right ordering of the necklaces and/or
the top-to-bottom ordering of the exchange edges, it is easy
to produce a large class of such layouts for any shuffle-
exchange graph. In particular, we will be interested in
those layouts which use the smallest number of vertical and
horizontal tracks. The layouts in Figures 2 and 4-7 are
optimal in this respect.
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Fig. 4. A 3x8 Thompson model layout for the 16-node shuffle-
exchange graph.

As is easily observed, these layouts require a surprisingly
small amount of area. Further, the structure of the layouts
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For example, for small wvalues of »n, it is feas-

ible to attach a pin to each of the 0(n/logn) necklaces, thus
allowing »n values to be loaded into an n-node shuffle-exchange

facilitates efficient description, chip manufacture and data
graph in just O(logn) steps.

management.
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Fig. 6. A 6x14 Thompson model layout for the 32-node shuffle-
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Fig., 6. An 11x18 Thompson model layout for the 64-node shuffle-

exchange graph.
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(b) Optimization Techniques

In order to find the layouts in Figures 2 and 4-7, we em—
ployed a combination of heuristics and exhaustive searches.
The basic techniques are summarized in the following three
steps.

Step 1: Partition the shuffle edges into necklaces. Order
the necklaces linearly from left to right so that the number
of exchange edges that overlap at each point of the ordering
is kept small. More precisely, find an ordering of the neck-
laces for which the maximum number of exchange edges overlap-
ping at any point is minimized. For example, no more than 6
exchange edges overlap at any point of the ordering used to

‘produce the layout for the 32-node shuffle-exchange graph

shown in Figure 6. If we switch the necklace <5> with <11>,
then 9 exchange edges would overlap in the gap between <7>
and <5>. Since the maximum overlap is a lower bound on the
number of horizontal tracks necessary to insert the exchange
edges, we can easily see that the latter ordering is inferior
since any layout it produces must have at least J horizontal
tracks. Note that the layout in Figure 5 has just 6 horizon-
tal tracks.

It is not known how best to order the necklaces in general.
For small shuffle-exchange graphs, however, there are several
simple heuristics which produce optimal orderings. For exam-
ple, if we initially order the necklaces from left to right
so that nodes with binary numbers containing r zeros are
placed to the left of nodes containing r-I zeros for I<rs<k,
then an optimal ordering can be produced by making at most
one or two switches. The optimal ordering for k=5 (n=32)
shown in Figure 5 was produced by this method. Note that no
switches were needed in this case. (See [LLMB1] for a detaile
theoretical discussion of such layouts).

A different but equally useful heuristic orders the neck-
laces from left to right so that the minimum value of the
nodes in each necklace form an increasing sequence. The
ordering in Figure 5 could also be produced by this method.
In this case, the minimal values are 0, 1, 3, &, 7, 11, 15
and 3I. Layouts produced by this method are discussed from
an asymptotic point of view in [KLLM81].

Probably the most difficult task is proving that a good
ordering is optimal. The techniques we have used to prove
optimality depend heavily on exhaustive searches, For k<8,
the techniques have succeeded in proving the optimality of
good orderings. For 9<ks<13, we have found good orderings but
have not been able to determine whether or not they are opti-
mal. We have summarized the results in Table 1. Note that
for each k, the maximum overlap of the best known ordering
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serves only as a lower bound on the number of horizontal

tracks that will be required for any layout with that ordering.
In some cases (e.g., k=6,7), additional horizontal tracks may
be required.

TABLE 1

Maximum Overlap of Best Known Ordering

k n maximum overlap optimal?
a8 8 2 ves
4 16 3 yes
5 32 8 yes
& 64 10 yes
7 128 18 yes
8 256 33 yes
9 012 62 ?
10 1024 115 ?
11 2048 214 ?
12 40886 388 ?
13 8192 754 ?

Step 2: The next step is to insert the exchange edges using
as few horizontal tracks as possible. The techniques we used
to find the layouts in Figures 2 and 4-7 are extensions of the
theoretical ideas developed in [LLM81]. In that paper, the
authors use the structural properties of the shuffle-exchange
graph to produce layouts of the desired form but with an ex-
cessive number of horizontal tracks.

In our layouts, we first insert those exchange edges which
cross a region of maximum overlap. To do this, we (for the
most part) follow the top-to-bottom ordering given in [LLM81],
making sure that every (or, as in the case with k= and 7,
nearly every) horizontal track contains an edge in the region
of maximum overlap. We next insert the exchange edges which
cross neighboring regions in such a way that no new horizontal
tracks are required. This process continues until all of the
exchange edges are inserted. If done carefully, the number of
horizontal tracks used will be the same as or only slightly
larger than the maximum overlap.

Step 3: The third and final step is to adjust (if possible)
the exchange edges so that degenerate necklaces can be doubled
up with full necklaces and inserted into the same pair of ver-
tical tracks. Since degenerate necklaces have substantially
fewer nodes than do full necklaces, it is usually possible to
accomplish this task without increasing the number of horizon-
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tal tracks used. For example, the number of vertical tracks
needed to lay out the If-node and 64-node shuffle-exchange
graphs can be substantially reduced by this procedure.

(e) Other layouts

To this point, we have considered only a specific class of
layouts for the shuffle-exchange graph. As these layouts are
quite good, it is not clear that we need to consider others.
Nevertheless, it is worth pointing out that slightly better
layouts do exist for some shuffle-exchange graphs. For exam—
ple, by considering layouts in which the exchange edges are
allowed to bend and in which two or more full necklaces can
occupy the same pair of wvertical tracks, it is possible to
construct the layout for the 32-node shuffle-exchange graph
shown in Figure 8.
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Fig. 8. A 7x8 Thompson model layout for the 38-node shuffle-
exchange graph.

It is likely that slight improvements can also be made for
larger shuffle-exchange graphs. At this point, however, we
feel that research efforts should be directed more towards
implementation of the good layouts already discovered. Once
this is done, it will be much clearer whether or not the effort
necessary to further reduce the layout area is justified,
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