Computational Power fdr Networks of Threshold Devices in
an Asynchronous Environment

Margaret Lepley & Gary Miller

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract: A boolean circuit is a network of threshold devices which is run either
synchronously or asynchronously in an analog fashion. If any gates were to sit idle for long
periods of time, the computation might be incorrect. We will examine the behavior of such
networks when they are run in various types of asynchronous environments. Different types
of asynchronous behavior change the computational power of a circuit. We exhibit
polynomial size circuits which when run in a random asynchronous environment simulate
PSPACE machines with only exponentially small probability of error. We conjecture that
worst case asynchronous behavior will work only on problems in DTIME(N).

Keywords: asynchronous, boolean circuit, double-rail logic, latch, network, threshold
device, PSPACE-complete, DTIME(N).

1. Introduction

All boolean functions can be composed of and, or, and not, which are threshold
functions. Neurons also seem to act as threshold devices, and various types of neural
networks have been used to simulate associate memory [2]. The difference between neural
networks and boolean circuits is the time at which the processors respond to their inputs.
When a network is highly asynchronous, the result is dependent on the timing of the
processors relative to each other.

General networks of threshold devices can be depicted by directed graphs with weighted
edges. These graphs have varing behaviors depending upon whether the weights of the
edges are positive or negative, whether the edges are directed, and whether the devices
update synchronously or asynchronously. We will show how powerful these networks are
under several combinations of these conditions. Inparticular we will show that any PSPACE
computation can be performed with exponentially small error on a network of threshoid
devices with random asynchronous update. :

The remainder of the paper is divided into three sections. In Section 2, we describe the
mathematical model and some previous results in greater detail. In Section 3, we restrict our
study to the asynchronous environment. We conclude in Section 4, with a table of results
and related problems. '

This research was supported in part by the National Science Foundation Grant NSF CS 80-07756 and the Air
Force Office of Scientific Research AFOSR-82-0326.

.......

2. Preliminaries

2a) Mathematical model

A thréshbld device acts like a simple step function. For each device, d, there is an
associated threshold, T, For any input vector, x, the output is

a if Zx, < T
i d
sy(0) = ‘
b _ if Zx,. 2 T,
For example, in and and-or gates: a=0, b=1 T, = 1 and Tang = fan-in. o

A network of N of these processors can be thought of as a directed graph where each
node is a threshold device and an incoming edge denotes an input to the device. Every
edge is assigned a fixed weight, Wij€R' and each node is labelled with a binary vaiue, s;, the
output of that device. Since the edge weights are real, we can assume without loss of
generality that s;=+1. Furthermore all the thresholds can be changed to zero by introducing
"forcing” nodes (see Fig.1). The inputs to processor j are the products, SWii from the
incoming edges.

Figure 1: Changing the threshold to zero by adding a "forcing" node.

The values of all the nodes, therefore change according to the following rule
-1 if Esiwil. <0
§ =
+1 if).'Js’.w’.l. > 0. , .

But the nodes do not update their values continuously. Instead each node is "dormant"
for @ period of time before becoming “attive for an instant. The relative times at which
ditferent ncdes are active will control the behavior of the network. The timing is
synchronous if all the nodes become active simultaneously. The timing is asynchronous
when only one node becomes active at a time.

2b) Previous results

If w; =w; for all ij then the graph is said to be undirected. Polak & Sura[3] showed that
undirected graphs, when run synchronously, reach a cycle of size at most two. Using an
"energy" function, it is also easy to see that undirected graphs when run asynchronously,
must always reach a stable configuration where no node needs to change. In fact, if all the
cdge weighls are posilive then a slable conliguration can be reached quickly. The following
result by Alon[1] shows how this can be done even in the directed case.

Proposition: A directed network with only positive edge weights can reach a Stable
configuration via this algorithm: .
1. Activate all nodes that need to change to +1. T B}
When there are no mo'_re nades needing to become + 1, then
2. Activate all nodes that need to change 1o -1.
This algorithm requires at most 2N value changes.

When the graph is directed the situation changes drastically. One can easily construct
from a PSPACE Turing machine and its input a poly-sized circuit with feedback, composed
entirely of and and or gates and negations which when run synchronously, simulates the
Turing machine. Obviously- these networks can have large cycles. Since the timing is
synchronous, all négations can be removed by using double-rail fogic [4]. In double-rail
logic each line is doubled and 071=1 and 10=0. We have just shown that synchronous
networks with only positive edges are PSPACE-hard. Since any network of threshold devices
running synchronously can easily be simulated in poly-space, we see that directed graphs

with non-negative edge weights are - PSPACE-complete.

Asynchronous directed networks though behave very difterently when all the edges are
non-negative. By the above Proposition a stable configuration can still be reached with at
most one change per node. When negative edges are present cyc'les can appear and the
network never reaches a stable configuration. We will now discuss the computational ability
of these types of networks.

3. Directed Networks in an Asynchronous Environment

There are two types of asynchronous behavior that we will examine here. First is
random asynchronous behavior, where each node that needs to change has equal
probability of becoming active at any time. This means that there is a possibility of some
node remaining unchanged long enough to invalidate a computation with teedback. The
second type of asynchronous behavior is a type of worst case analysis. We would like these
machines to be able to run for a long time without cycling. An adversary will try to choose
the order in which the nodes become active so that the computation stabilizes or cycles
quickly. The question then is: How powerful is the network when an adversary is running it?

3a) Random asynchronous update °

When all the edges have positive weights then it is always possible to reach a stable
configuration. The number of value changes when the active nodes are chosen at random
can be larger than linear. For instance the network in Fig.2 needs O(N?) changes on
average with random asynchronous updating.

-

(-1) Alledge weights = +1 (+)

oD 9, 3

Figure 2: Aandom asynchronous network averaging
O(N?) changes to reach stability {random walk).

Negative edges allow a network to enter a cycle. Simple clocks can be made from these .
cycles. so it is possible to perform PSPACE computations with high accuracy.

Theore.m. 1: For any LEPSPACE and for any allowable error €0 there is a network of
threshold devices of poly-size which decides L with error at most .

Proof sketch: As was remarked before, there is a poly-sized logical circuit, C, which
simulates a Turing machine to decide L. Asynchronous update will produce errors in the
feedback loop. One possible solution to this problem is shown in Fig.3.

{_.DI“I.”I' [
ouble Latches _| Clock -
| L] | | |
i]

‘ Circuit C

[-r..’v'-.-:nJ" c_.,-cia.‘.:s

=5 ¥ == Jj

S

Figure 3: Random asynchronous network with high probability of
simulating logical circuit C.

This circuit would work perfectly if we could be sure that the latches and the clock
always performed their functions correctly. Unfortunately this is not the case. The latch in
particular creates problems. Fig.4a shows a circuit which acts as a latch under normal
circumstances.

Cortral — 0@k~ Comtrol ——a(®)
\E)@ﬁ& \)\o"&‘m\“ >
e, Tk — a

&) !
Figure 4: a) A latch for a synchronous circuit '
b) Alateh for a random asynchronous network.

But if G, and G, get updated before G, when the control variable changes from 7 to 0, all
information is lost and only 0 can be output.

To make this occurance extremely unlikely we add some delay nodes on the edge
leading from the control node to G,. Now we need to know how long a delay is needed and
whether we have enough time to add it to the circuit.

Lemma 1: A latch will perform correctly for an exponential number of repelitions with a
delay line of polynomial -length.

Proof: This proof makes use of the fact that each node is equally likely to hecame active
at any time. So the dormant time betwe_en activities is exponentially distributed. If the delay
line has length D then the probability that G, is active before G, is

°°co)
/ [xPe*/T(D+ 1)*eY dy dx = 20
o "X

To perform the computation correctly the latch must work at each iteration, so after an
exponential number of iterations the error must still be exponentially small. The above
statement produces a D a polynomial. 0O

In Fig.4 there are double latches sb that there won't be feedback while the latch is trying
to sample the new value. Because of this we need a clock with four different outputs. Fig.5
shows one possibility for such a clock.

JOB N asa'l |
L= j?/ A \:@h» c

v/

Vo)) ¥
S

\.H 2% ;/ [,

\..a]

> C,

Figure 5: A clock with four different nearly equal length periods.

The length of the clock cycle will be a function of the depth and the width of main
section of the circuit, as well as the number of latches and the error allowed. By an analysis
similar to the one in Lemma 1 we can show that

Lemma 2: A clock that will ensure that random asynchronous update runs this circuit
with only exponentially small error, has at most polynomial size, '

This finishes the sketch of the proof of Theorem 1. That is, any problem in PSPACE can
be done with only exponentially small error on a network of threshold devices if random
asynchronous updating is used.

3b) Worst-case asynchronous update

A network with only non-negative edges is not very powerful under worst-case
conditions. .

Theorem 2: Worst-case asynchronous networks with no negative edges are a subset of
DTIME(N).

Proof: The algorithm in the Proposition requires only O(N) changes. This can be
simulated by a Turing machine in linear time. O

Unfortunately double-rail logic does not lend itself well to asynchronous systems, so the
negative edges cannot be eliminated in this manner. When negative edges do occur we
believe the worst case behavior is still linear. By that we mean that only a linear number of
changes are required to reach a cycle and the cycle length is < N,

4. Conclusions

The following table summarizes the results we have so far for directed networks of
threshold devices. :

~
\ Timing Synch. Asynch.
Edges random worst-case
Nan-negative PSPACE-complete QN?) DTIME(N)
Real PSPACE-complete PSPACE with & error ?

Better bounds are needed in both the positive edge, random asynchronous environment and
the worst-case asynchronous environment with both positive and negative edges.

In undirected networks, we still do not know how many changes are necessary in either
worst -case or random asynchronous environments. Besides determining the number of
changes in the values s; it would be useful to know what the parallel computational time is
for a network of threshold devices.

Acknowledgements

We would like to thank Noga Alon, and Bruce Bayly for many helpful discussions.

References
[1] Alon,N., Personal communication.
[2] Hopfield,J.J., "Neural networks and Physical systems with emergent collective

computational abilities," Proc Nat/ Acad Sci USA, Vol.79, April 1982, pp. 2554-2558.

[3] Poljak,S., Sura,M., "On Periodical Behaviour in Societies with Symmetric Influences,"
Combinatorica, Vol.3, No.1 (1983), pp. 119-121.

[4] Leiserson,C., Personal communication.

