7

Efficient Parallel Evaluation of
Straight-line Code and Arithmetic Circuits

Gary L Miller!

Mathematical Sciences Research Institute and
University of Southern California
Computer Science Department
Los Angeles, CA 90089-0782

Vijaya Ramachandran®
Mathematical Sciences Research Institute and
University of Illinois
Coordinated Science Laboratory
Urbana, IL 61801-3082

Erich Kaltofen®
Mathematical Sciences Research Institute and
Rensselaer Polytechnic Inst.
Computer Science Department
Troy, NY 12181

Abstract
A new parallel algorithm is given to evaluate a straight line program. The algorithm
evaluates a program over a commutative semi-ring R of degree d and size n in time
O (log n(log nd)) using M(n) processors, where M(n) is the number of processors required for

multiplying n X n matrices over the semi-ring R in O (log n) time.

Research supported in part by National Science Foundation Grant MCS-800756 AOL.

Research supported by NSF under ECS-8404866, the Semiconductor Research Corporation under RSCH
84-06-049-6, and by an IBM Faculty Development Award.

3Reme:aurch Supported in part by NSF Grant DCR-8504391 and by an IBM Faculty Development Award

237

1. Introduction

In this paper we consider the problem of dynamic evaluation of a straight line program in
parallel. This is a generalization of the result of Valiant et al [7]. They consider the problem of
taking a straight line program and transforming it into a program of "shallow® depth. Their
transformation is performed by a sequential polynomial time algorithm. We show how to
construct this “shallow® program with slightly smaller size and the same time bounds on-line,
no preprocessing, as their off-line algorithm.

We consider two basically equivalent models of evaluation over a semi-ring: straight line
programs and arithmetic circuits. In the introduction we will restrict our discussion to the
former model while most of the rest of the paper will deal with the latter model. A straight line
program over a commutative semi-ring f=(R,+,%,0,1) is a sequence of assignment statements
of the form @ +— b+c or a «— bXc where b and ¢ are either elements of R or previously assigned
variables. The value of a variable is the natural one. We will assume that the semi-ring
operations can be performed in unit time. Let M{n) denote the number of processors required
to multiply two nXn matrices in log n time over the semi-ring R [1, 3].

A special case of a straight line program is a Boolean circuit. Ladner has shown that the
Boolean circuit evaluation problem is P-Complete [5]. It is therefore believed that this
evaluation problem is not in NC [Co80]. In this paper, we show that circuits of degree d and
size n (we define these terms in Definition 3) can be evaluated in time O (log n(log nd)) using
M(n) processors. The crucial difference between this result and the result in Valiant et al. [7] is
that our algorithm need not know the degree of the circuit in advance. As a nontrivial
application of our procedure we can also compute the degree of a circuit in the above time and
processor bounds. This follows because the operations of maximum and sum form a
commutative semi-ring over the nonnegative integers. We know of no other parallel algorithm

for computing the degree that satisfies the above time and processor bounds.

2. Preliminaries
We view a straight line program as a special case of a more general object, an arithmetic

circuit. Our results are more easily applied to arithmetic circuits:

Definition 1: An arithmetic circuit is a edge-weighted directed acyclic graph (DAG)

(where the weights on the edges are from the semi-ring R) satisfying the following conditions:

1. Each node is labeled as one of three types: a leaf, a multiplication node, or an addition
node.

2. Leaves are assigned a value in R, denoted value(v) for a leaf v.

3. The indegree of a leaf node is zero, of a multiplication node is two, and of an addition

i
!

238

node is nonzero.
4. All edges are directed away from leaves.

5. There are no edges from multiplication nodes to multiplication nodes.
Note that any circuit can be modified to satisfy the last condition by simply adding a
dummy addition node of indegree and outdegree 1 in the middle of each edge that connects two
multiplication nodes. We say an edge is a plus-plus edge if it connects two addition nodes. The

size of an arithmetic circuit U is the number of nodes in U. The subcircuit evaluating v,

denoted by U, is the subcircuit induced by all nodes that are contained on some path to v. A

node w is a child of v if there exists an edge from w to v. A node of outdegree 0 are called an
output node.

Definition 2: We define the value of each node v in an arithmetic circuit Uv by induction
on the size of Uu. The value for a leaf is given by the definition of an arithmetic circuit. If the

node v is an addition node with children Vypey ¥y then the value of v is defined by:
k

value[v]:Z value(v;)-Ulv,,v)

where U[‘l::l}) is the weight on the edge from v, to v. If, on the other hand, v is an
multiplication node with children v, and v,, then

vafue(v):va!ne{vl}-value(nz}-U{vl,v)-U(vg,v}.

We will restriet our attention to circuits where any edge entering a multiplication node has
weight 1. All the algorithms in this paper preserve this restriction. Thus, the value of the

multiplication node v is value(v,)-value(vy). The value of a circuit is a vector of all its node

values.

Given a straight-line program, we obtain its arithmetic circuit by constructing a node for
each statement and for each input variable, and an edge from node ¢ to node j if jis a
statement that uses the variable evaluated at statement i. All edge weights are set to 1, and

nodes corresponding to input variables are given values assigned to the corresponding variables.

Definition 3: The (algebraic) degree of a node in an arithmetic circuit is defined
inductively: a leaf has degree 1, an addition node has degree equal to the maximum degree of it
children, and a multiplication node has degree equal to the sum of the degree of its children.

The degree of an arithmetic circuit is the maximum over the degree of its nodes.

239

3. The Algorithm

In this section we describe our algorithm for arithmetic circuit evaluation. The value of the
circuit will be obtained by repeated application of a procedure called Phase. This procedure
takes as input an arithmetic circuit and returns a new circuit such that every node will have
the same value as before. Repeated application of Phase will eventually return with the value
of the circuit.

In a natural way an arithmetic circuit can be viewed as an upper triangular matrix U with
zero diagonal where the entry UU. is the weight on the edge from node v; to node v, if the edge

exists and it is zero otherwise. We need three submatrices derived from U

U.. if v and v are addition nodes

UI+,+),-j={ Y

0 otherwise

U’.J.

0 otherwise

if v; is an addition node

U+, ={

U,; ifv,orv.is not an addition node
UX,X); :{ i e
70 otherwise.

The matrix U{+,+) corresponds to the subecircuit containing only plus-plus edges, while
U(X,+) corresponds to the subcircuit containing any edge terminating at an addition node, and
similarly for U(X,X). We can now define the procedure Matrix Multiply (MM). The procedure
uses one matrix multiplication and one matrix addition over the semi-ring R. Thus, it can be

performed in O (log n) time using O (n24%) processors for many semi-rings.
Procedure MM(U)
U« (/r[X,+}U(+,+]+U(X,X}

We need two more procedures called Plus Evaluate (Eval+, see Figure 3-1), and
Multiplication Evaluate or Shunt (Eval,, see Figure 3-2). The first of these procedures simply
evaluates an addition node if all its children have been evaluated. The first part of the second
procedure evaluates multiplication nodes if both its children have been evaluated. The new
idea is the second part of the procedure which we call Shunt. Here we do partial evaluation of
a multiplication node when only one of its two arguments has been evaluated. It is interesting
to point out a strong analogy between the procedures Rake and Compress used to evaluate
expression trees, see [6], and our new procedures. One can view Eval and Eval as removing
the leaves of an arithmetic circuit, i.e., Rake; while Matrix Multiplication, MM, ®compresses®
addition chains, a natural generalization of Compress [6).

We combine these three procedures, MM, Eval+, and Eva!x, into a single procedure Phase

that we will repeatedly apply until the value of the arithmetic circuit is returned:

240

Procedure Eml+(Lf}

for all addition nodes v; whose children are leaves do
value(v) — E?gl value(v)-U,;
Set v to a leaf
U'.J‘i--‘ Oforie€ {1,.,n}

od

Figure 3-1: The Procedure Plus Evaluation
Procedure Eval, (U)
for all multiplication nodes v, with children v, and v, do
if v, andv, are leaves then
va!ue(vj] «— value(v,)-value(v)
Set v; to a leaf
Ukj«— 0 and Utj —0
else if v, is a leaf then for all i € {1,...,n}
U, U“—l—vafue[t)k}-Uj‘.
U.—0
Ji

od
Figure 3-2: The Procedure Multiplication Evaluation or Shunt

Procedure Phase(U)
do
U+ MM(U)
U« Eval (U)
U« Eval (V)
od

To show that Phase is correct (sound) it will suffice to prove the following Lemma.
Lemma 4: The procedures MM, E‘vaf+, and Eval'x applied to an arithmetic circuit return

a new circuit with the same value.
The proof of the Lemma follows by a straightforward proof by induction on the size of U,

using the associative, commutative, and distributive properties of K.

241

In Figure 3-3 we show the effect of applying the different procedures to a circuit. We
represent leaves by square boxes and addition or multiplication nodes by circles. All isolated
nodes have been deleted and edge weights have been ignored. We start with the circuit (a) and
apply procedure MM obtaining circuit (b). To which circuit (b) we apply procedure Eval +
obtaining circuit (c); which we then apply Eualx obtaining cireuit (d).

(d)

(c)
Figure 3-3: An arithmetic eircuit after successive application of the procedures:
MM, Evai+, and Evalx.

4. The Height of an Arithmetic Circuit

In this section we define the height of a node. This notion is the main tool we shall use to
analyse the procedure Phase. We will show that every application of Phase reduces the height
of the circuit by a factor of approximately one half. In Theorem 6 we will prove an upper

bound on the height in terms of the size and the degree of a circuit.

Definition 5: The height of a node is defined inductively:
1. A leaf has height 1.

2. A multiplication node has height equal to the sum of the heights of its children.

3. If v is an addition node then the height of v equals maz{a+1/2,m) where a equals the
maximum height of any child of v which is an addition node, and m equals the height of

242

any child which is either a leaf or a multiplication node.

The height of a circuit U is the maximum height of any node in U.
We say a child w of an addition node v is dominant if either w is a multiplication node and
h(v)=h(w) or it is an addition node and h(v)=h(w)+1/2, i. e., the height of w determines the

height of v. We can now prove the upper bound on the height of a circuit.
Theorem 6: If U is an arithmetic circuit of degree d and e is the number of plus-plus edges

then the height of U < ((1/2)e-d+-d).

Proof: The proof is by induction on the number of nodes n in the subcircuit U . We start
with subcircuits of size one, leaves. The height of a leaf is one which is clearly less than or
equal to e+1. Suppose the theorem is true for subcircuits of size < n. We show the theorem
holds for circuits of size n+1. Let U, be a subcircuit with n+1 nodes. Let v,...,v, be the
children of v having degrees dl""’dk and heights hp‘“!hk’ respectively. The subcircuits
evaluating v},...,v, are of size < n. Therefore, by induction h; < (1/2)e'd+d, for 1 < i < k,
where ¢ is the number of plus-plus edges in U, . There are two cases: v is either an addition

i

node or a multiplication node. We treat the two cases separately.

First, suppose that v is a multiplication node. The degree d of v equals d;+...4+d, and the

height, by induction, is < Zf___l (1/2)e'd +d, which is equal to (1/2)e'd+d. Thus the theorem
holds in this case, since ¢ < e. Second, suppose that v is an addition node. Again, there are
two cases: either a dominant child is an addition node or it is a multiplication node. The most
interesting case is the first case. Suppose that v, is a dominant addition node, i.e.,
hy = hy1 <4 < k. Here the degree d of v will be greater than or equal to d;, while the height
h=h,+1/2 < (l/2}e’d1+dl+1f2 < (1/2)¢'d+d+1/2. Since we have at least one new plus-plus
edge we know that ¢ < e—1. Thus, h < (1/2)(e—1)d+d+1/2 = (1/2)ed—(1/2)d+d+1/2. Using
the fact that d > 1 we get the desired estimate, h < (1/2)ed+d. O

5. Analysis of the Algorithm

In this section we use the height of a circuit to analyse the number of applications of Phase
needed to evaluate a circuit of height h. We start by stating and proving the main technical
lemma from which the main theorem will follow. Recall that all procedures defined so far take
circuits to circuits. They modify the edge structure but map nodes to nodes in a one-to-one
way. Thus, we may view the procedures as maps of circuits to circuits which are themselves
surjective on nodes. Throughout this section let U be a circuit and U' its image under the

transformation Phase. Similarly, if v is a node of U then its image under Phase will be denoted
by .

Lemmaz 7: If Uand U’ are arithmetic circuits as above and +' is a node of U’ which is not a

243

leaf and not an output node then the height of v is at least twice the height of +/.

Proof: Let ¢/ be a node of U’ which is neither a leaf nor an output node. The proof will be
by induction on the size of the subcircuit U’ ;. We begin with the case when all the children of
v/ are leaves. There are two subcases: either +' is an addition node or it is a multiplication
node. First, suppose that ¢/ is an addition node. We must show that height of v is at least 2,
where v is the preimage of v/, Suppose by way of a contradiction that the height of v is <2.
Now, v cannot be of height 1 because a height 1 node must either be a leaf or all its children
are leaves. Thus, one application of Emf+ will transform v into a leaf, a contradiction. If, on
the other hand, the height is 3/2 then all the dominant children of v are addition nodes whose
children are leaves. Thus, after MM and E‘uai+ the node v will be a leaf and hence ¢/ will be a
leaf. This proves the case when ¢/ is an addition node of height 1.

We next consider the more interesting case When ¢/ is a multiplication node with both its
children leaves. It will suffice to show that both children of v have height at least 2. Suppose
that one child w has height less than 2. In this case, after MM and Eval | the node w will be a
leaf. Thus after Fval, v will either be a leal or an output node, depending on whether the
other child of v is a leaf or not after Eval o 8 contradiction. This proves the initial cases of the
induction.

The inductive case for multiplication nodes is rather straight forward. The only difficulty
arises when one of the two children of v/ is a leaf. We handle this by noting that in the last
paragraph we actually proved something slightly stronger. Namely, if ¢' is a multiplication
node which is not an output node and w' is a child of ¥/ which is a leaf then the height of w is
at least 2. Thus, induction for the multiplication nodes follows. We have only to prove the
induction for addition nodes.

Suppose that +/ is an addition node. Let w' be a dominant child of /. If v/ is a multiplication
node the theorem follows easily. Thus, we may assume that «' is an addition node. It will
suffice to prove the following claim:

Claim: The height of wis < the height of v minus 1, i.e., h(w) < h{v)—1.

Proof of Claim: Note that both v and w are addition nodes. If there is a path in U from w
to v containing two or more edges then the claim follows by the definition of height. Thus the
only path from w to v is a singleton edge. But this is a contradiction since procedure MM will
then remove this edge and Eval cannot replace it since there is now no paths from w to v. This

proves the claim and the Theorem. (]
O

By the last Theorem after [1092 h] applications of phase to a circuit of height A the resulting
circuit will contain only leaves and output nodes. Thus, in one more application of Phase (only

Eval+ and Eva!'x are needed) all nodes will be leaves; the circuit has been evaluated. With a

IR W S TS }

P’")
M)

o)1)

By

244

slightly more careful analysis the number of applications can be bounded by 1_!092 hl+1. We

state this fact as a theorem:

Theorem 8: If Uis an arithmetic circuit with height h then after |log, h|+1 applications of

Phase all nodes of U are evaluated.

The upper bounds given in Theorem 8 are optimal for our procedure Phase. In Figure 5-1
we exhibit a circuit C}, for k > 2, of height 2"—1/2 which requires ok applications of Phase. It
is not hard to see that C, requires 2 applications of Phase; and the subcircuit evaluating v

contained in Phase(C) equals Cp for k> 2.

||
©
% : VoK.
*)
[F—)—()—)—®)
V2 Vie=1 Vie

Figure 5-1: The Arithmetic Circuit C}; A Worst Case Example for Phase

We can now prove the main theorem of the paper:
Theorem 9: If [/ is an arithmetic circuit of degree d and size n then the value can be

computed in parallel in time O (log n(log nd)) using at most M(n) processors.

Proof: By Theorem 8 procedure Phase need only be applied |log h|+1 times, where h is the
height of U. By Theorem 6, h=0 (e-d). Thus, Phase is applied at most O (log nd) times. Now,
each application of Phase requires only log n parallel time. The processor expensive step is the
matrix multiplication in MM, which can be performed using O (Mln)) processors, at least for

sufficiently large n.]

6. Open Questions

We know of no similar results for moncommutative rings. We note that for arithmetic
circuits over the ring of mXn matrix one can expand the matrices operations into the
underlying commutative ring operations and apply the methods of this paper.

Extension of this work to rings with division would also be interesting.

245

References

e bt A SRR

1. A. Aho, J. Hoperoft, and J. Ullman. The Design and Analysis of Computer Algorithma.
Addison-Wesley, 1974.

2. R.P. Brent. "The Parallel Evaluation of General Arithmetic Expressions®. JACM 21, 2
(April 1974), 201-208.

3. S. A. Cook. Towards a Complexity Theory of Synchronous Parallel Computation.
Internationales Symposium uber Logik und Algorithmik zu Enren von Professor Hort Specker, ,
February, 1980, pp. .

4. D. Coppersmith, and S. Winograd. ®*On The Asymptotic Complexity of Matrix
Multipication®. SIAM J. Comput. 11, 3 (August 1982), 472-492.

5. R. E. Ladner. *The Circuit Value Problem Is Log Space Complete for P*. SIGACT News
7, 1 (1975), 18-20.

6. G.L. Miller and J.H. Reif. Parallel Tree Contraction and Its Applications. 26th Symposium
on Foundations of Computer Science, IEEE, Portland, Oregon, 1985, pp. 478-489,

7. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. "Fast Parallel Computation of ’
Polynomials Using Few Processors®. SIAM J. Comput. 12, 4 (November 1983), 641-644,

8. L. G. Valiant, and S. Skyum. Lecture Notes in Computer Science. Volume 118: Fast
Parallel Computation of Polynomials Using Few Processors. In , Spinger-Verlag, New York,
1981, pp. 132-139.

