
A EV ALU OF STR HT-LINE CODE AND

A M ITS*

L.

Abstract. A new parallel algorithm is given to evaluate a straight-line program. The algorithm evaluates

a program over a commutative semi-ring R of degree and size 17 in time using

processors, where is the number of processors required for multiplying n x matrices over the

semi-ring R in n) time.

Key words. parallel computation, straight-line code, arithmetic circuits

subject classifications.

Introduction. In this paper, we consider the problem of dynamic evaluation of
a straight-line program in parallel. This is a generalization of the result of Valiant,

Skyum, Berkowitz, and Rackoff [VSBR]. They consider the problem of taking a

straight-line program and transforming it into a program of “shallow” depth. Their

transformation is performed by a sequential polynomial time algorithm. We show how

to construct this “shallow” program with at most the same size and the same time

bounds on-line, no preprocessing, as their off-line algorithm.

We consider two basically equivalent models of evaluation over a semi-ring:

straight-line programs and arithmetic circuits. In the introduction we will restrict our

discussion to the former model while most of the rest of the paper will deal with the

latter model. A straight-line program over a commutative semi-ring R = (R, x,

is a sequence of assignment statements of the form a + or a x where and

are either elements of R or previously assigned variables. We will assume that the

semi-ring operations can be performed in unit time. Let denote the number of

processors required to multiply two x n matrices in log n time over the semi-ring R

[AHU],

A special case of a straight-line program is a Boolean circuit. Ladner has shown

that the Boolean circuit evaluation problem is P-complete [Lad]. It is therefore believed

that this evaluation problem is not in [Coo]. In this paper, we show that circuits

degree d and size n (we define the degree of a circuit in Definition 2.3) can be

evaluated in time nd)) using processors. The crucial difference

between this result and the result in Valiant, Skyum, Berkowitz, and Rackoff [VSBR]

is that our algorithm need not know the degree of the circuit in advance. As a nontrivial

application of our procedure we can also compute the degree of a circuit in the above

time and processor bounds. This follows because the operations of maximum and sum

form a commutative semi-ring over the nonnegative integers. We know of no other

Received by the editors April 22, 1987; accepted for publication (in revised form) August 19, 1987.

A preliminary version of this paper “Efficient Parallel Evaluation of Straight-Line Code,” appeared in

Lecture Notes in Computer Science, Vol. 227, 236-245, 1986, Springer-Verlag.

Mathematical Sciences Research Institute and Department of Computer Science, University of

Southern California, Los Angeles, California 90089-0782. The research of this author was supported in part
by National Science Foundation grant DCS-8514961.

Mathematical Sciences Research Institute and Coordinated Science Laboratory, University of Illinois,

Urbana, Illinois 61801-3082. The research of this author was supported by National Science Foundation

grant ECS-8404866, Semiconductor Research Corporation grant RSCH 84-06-049-6, and by an Faculty

Development Award.

Mathematical Sciences Research Institute and Computer Science Department, Rensselaer Polytechnic

Institute, Troy, New York 12181.

687

688 K A I I N

parallel algorithm for computing the degree that satisfies the above time and processor

bounds.

2. Preliminaries. We view a straight-line program as a special case of a more

general object, an arithmetic circuit. Our results are more easily applied to arithmetic

circuits:

DEFINITION 2.1. An arithmetic circuit is an edge-weighted directed acyclic graph

(DAG) (where the weights on the edges are from the semi-ring R) satisfying the

following conditions:

Each node is labeled as one of three types: a leaf, a multiplication node, or an

addition node.

Leaves are assigned a value in R, denoted value for a leaf

The indegree of a leaf node is zero, a multiplication node is two, and an addition

node is nonzero.
All edges are directed away from leaves.

There are no edges from multiplication nodes to multiplication nodes.

Note that any circuit can be modified to satisfy the last condition by simply adding

a dummy addition node of indegree and outdegree 1 in the middle of each edge that

connects two multiplication nodes. We say an edge is a edge if it connects

two addition nodes. The size of an arithmetic circuit is the number of nodes in

The subcircuit evaluating denoted by is the subcircuit induced by all nodes that

are contained on some path to A node w is a child of i f there exists an edge from

w to A node of outdegree 0 is called an output node.

DEFINITION 2.2. We define the of each node in an arithmetic circuit

by induction on the size of The value for a leaf is given by the definition of an

arithmetic circuit. If the node is an additional node with children , then

the value of is defined by:

k

value = value

where is the weight on the edge from to If , on the hand, is a multiplication

node with children and then

I

value =value value .
We will restrict our attention to circuits where any edge a multiplication node

has weight 1. All the algorithms in this paper preserve this restriction. Thus, the value

of the multiplication node is value (u ,) value The of a circuit is a vector

of all its node values.

Given a straight-line program, we obtain its arithmetic circuit by constructing a

node for each statement and for each input variable, and a n from node i to node

j if j is a statement that uses the variable at statement i. All edge weights

are set to 1, and nodes corresponding to input variables are given values assigned to

the corresponding variables.

DEFINITION 2.3. The (algebraic)degree of a node in an arithmetic circuit is defined

inductively: a leaf has degree 1, an addition node has degree equal to the maximum

degree of its children, and a multiplication node has degree equal to the sum of the

degree of its children. The degree of an arithmetic circuit is the maximum over the

degree of its nodes.

3. The algorithm. In this section, we describe our for arithmetic circuit

evaluation. The value of the circuit will be obtained repeated application of a

procedure called Phase. This procedure takes as input a n arithmetic circuit and returns

PARALLEL EVALUATION 689

a new circuit with the same nodes such that every node will have the same value as

before. Repeated application of Phase will eventually return with the value of the circuit.

In a natural way an arithmetic circuit can be viewed as an upper-triangular matrix

with zero diagonal, where the entry is the weight on the edge from node to

node if the edge exists; it is zero otherwise. We need three submatrices derived from

if and are addition nodes

0 otherwise,

if an addition node

0 otherwise,

if or is not an addition node

otherwise.

=

=

=

The matrix +)corresponds to the subcircuit containing only plus-plus edges,

while +) corresponds to the subcircuit containing any edge terminating at an

addition mode. While the matrix X)corresponds to the subcircuit containing

those only edges such that at least one end node is not an addition node. Thus,

+)+ X)= U. We can now define the procedure Matrix Multiply (MM).

The procedure uses one matrix multiplication and one matrix addition over the

semi-ring R. Thus, it can be performed in n) time using processors for

many semi-rings. In Fig. 1, we give an example of procedure MM.

Procedure MM(U)

+) +)+

We need two more procedures called Plus Evaluate see Fig. and

Multiplication Evaluate or Shunt , see Fig. 3). The first of these procedures

simply evaluates an addition node if all its children have been evaluated. The first part

of the second procedure evaluates a multiplication node if both its children have been

evaluated. The new idea is the second part of the procedure which we call Shunt. Here

we do partial evaluation of a multiplication node when only one of its two arguments

F IG. An arithmetic circuit before and after an application of procedure MM.

690 MILLER, R A M A C H A N D R A N , A N D KALTOFEN

has been evaluated. Figure 4 shows the effect of applying to a circuit. Leaves

are denoted by square boxes and nonleaves by circles. The value of each leaf is written

in its box and the weight of an edge is written alongside it. The left circuit is before

and the right is after Zero weight edges have been removed.

The procedures and MM can all be performed on a PRAM in

n) time. The processor count for MM is the number of processors required for

matrix multiplication for the particular semi-ring of the circuit. Procedures and

need only processors. To see that can be performed with

processors, note that the number of terms in line (*) is at most the number of

edges. Thus, we simply sort these terms on their key (1, i) using say a randomized

parallel bucket sort [Rei] or a deterministic comparison-based sorting algorithm [Col],

[AKS] and then sum the terms using parallel list-ranking [MR], [Vis], [CV], [AM].

It is interesting to point out a strong analogy the procedures Rake and

Compress used to evaluate expression trees, see [MR], and our new procedures. One

can view and as removing the leaves of an arithmetic circuit, Rake;

while Matrix Multiplication, MM, “compresses” addition chains, a natural generaliz-

ation of Compress [MR]. In fact, the is a combination of a Rake and a Compress

step since it removes leaves in the first part and does a partial compress in the second

part.
Another analogy can be made between Top-Down algorithms and Bottom-Up ones.

Brent gave a Top-Down parallel algorithm for expression evaluation Bre], while Miller

and gave a Bottom-Up parallel algorithm for the problem [MR]. On the other

hand, Valiant, Skyum, Berkowitz, and gave a Top-Down parallel algorithm

for arithmetic circuit evaluation [VSBR]; in this paper, we give a Bottom-Up parallel

algorithm for this problem.

Procedure

for all addition nodes whose children are leaves do

value value (u ,) .
set to a leaf

for . . . ,n }

od

FIG. The procedure plus evaluation

Procedure

for all multiplication nodes with children and both of which are leaves,

do

value value .value

Set to a leaf

and

od

for all where is a multiplication node with children and

and is a leaf and is not do

value .
od

for all pairs do

+

od

3 . procedure multiplication evaluation or shunt.

PARALLEL EVA 691

F IG . 4. An arithmetic circuit before and after an application of procedure Eval,

We combine these three procedures, MM,Eval,, and Eval, , into a single pro-

cedure Phase that we will repeatedly apply until the value of the arithmetic circuit is

returned:

Procedure Phase

do

U)

od

To show that Phase is correct (sound) it will suffice to prove the following lemma.

LEMMA 3.1. The procedures MM, Eval, ,and Eval, applied to an arithmetic circuit

return new circuits with the same value.

The proof of the lemma follows, by a straightforward proof by induction on the

size of U, using the associative, commutative, and distributive properties of R.

In Fig. 5 , we show the of applying the different procedures to a circuit. We

represent leaves by square boxes and addition or multiplication nodes by circles. All
isolated nodes have been deleted and edge been ignored. We start with

the circuit (a) and apply procedure M M obtaining circuit to which circuit (b) we

apply procedure Eval, obtaining circuit (c), to which we then apply Eval, obtaining

circuit (d).

4. The height of an arithmetic circuit. this section, we define the height of a

node. This notion is the main tool we shall use to analyse the procedure Phase. In

Theorem 4.2, we will prove an upper bound on the height in terms of the size and the

degree of a circuit. We will show in the next section that every application of Phase

reduces the height of the circuit by a factor of approximately one half. The above two

facts prove the main theorem of this paper.

D E F I N I T I O N 4.1. The height of a node is defined inductively:

(1) A leaf has height 1 .

(2) A multiplication node has height equal to the sum of the heights of its children.

(3) If v is an addition node then the height of equals max (a where

a equals the maximum height of any child of which is an addition node.

and m equals the maximum of the heights of the children which are either

leaf or a multiplication node.

The height of a circuit is the maximum height of any node in

692 MILLER, R A M A C H A N D R A N , A N D KALTOFEN

5

F IG. 5 . An arithmetic circuit after successive application of the procedures: MM, and .

We say a child w of an addition node v is dominant if either w is a multiplication

node and = w) or it is an addition node and v) = w)+f, the height of

determines the height of We can now prove the upper bound on the height of a
circuit.

THEOREM 4.2. If is an arithmetic circuit of degree d and e is the number of
plus-plus edges, then the height of d +d.

The proof is by induction on the number of nodes n in the subcircuit

We start with subcircuits of size one, leaves. The height of a leaf is one which is clearly
less than or equal to e +1. Suppose the theorem is true for subcircuits of size We

show the theorem holds for circuits of size n +1. Let be a subcircuit with n +1

nodes. Let , , be the children of having degrees , and heights

, , respectively. Thesubcircuits evaluating v , , , are of size n.Therefore,
by induction h, fe 'd ,+ for 1 i where e' i s the number of plus-plus edges in

PARALLEL EVALU N 693

There are two cases: is either an addition node or a multiplication node. We

treat the two cases separately.

First, suppose that is a multiplication node. The degree d of equals d ,+ . +
and the height, by induction, is +d, , which is equal to +d. Thus, the

theorem holds in this case, since Second, suppose that is an addition node.

Again, there are two cases: either a dominant child is an addition node or it is a

multiplication node. The most interesting case is the first case. Suppose that is a

dominant addition node, h, h, , 1I k. Here the degree d of will be greater

than or equal to d , , while the height h = h, + +d Since we

have at least one new plus-plus edge we know that Thus, h
e - +d + = - +d + Using the fact that d 1 we get the desired estimate,

5. Analysis of the algorithm. In this section we use the height of a circuit to analyse

the number of applications of Phase needed to evaluate a circuit of height h. We start

by stating and proving the main technical lemma from which the main theorem will

follow. Recall that all procedures defined so far take circuits to circuits. They modify

the edge structure but map nodes to nodes in a one-to-one way. Thus, we may view

the as of circuits to circuits which are themselves surjective on nodes.

sertion let be a circuit and its image under the transformation

Phase. Similarly, if is a node of then its image under Phase will be denoted by u’.

LEMMA 5.1. If and are arithmetic circuits as above and is a node of

which is not a leaf and not an output node, then the height of is at least twice the

Let be a node of which is neither a leaf nor an output node. The

proof will be by induction on the size of the subcircuit We begin with the case

when all the children of are leaves. There are two subcases: either is an addition

node or it is a multiplication node. First, suppose that is an addition node. We must

show that the height of is at least 2, where is the preimage of Suppose by way

of a contradiction that the height of is Now, cannot be of height 1 because a

height 1 node must either be a leaf or all its children are leaves. Thus, one application

of Eual, will transform into a leaf, a contradiction. If, on the other hand, the height

is 3/2 then all the dominant children of are addition nodes whose children are leaves.

Thus, after M M and Eual, the node will be a leaf, and hence u’ will be a leaf. This

proves the case when is an addition node of height 1 .

We next consider the more interesting case when is a multiplication node with

both its children leaves. It will suffice to show that both children of have height at

least 2. Suppose that one child w has height less than 2. In this case, after M M and

Eual, the node w will be a leaf. Thus, after Eual, the vertex will be either a leaf or

an output node, depending on whether the other child of is a leaf or not after ,
a contradiction. This proves the initial cases of the induction.

The inductive case for multiplication nodes is rather straightforward. The only

difficulty arises when one of the two children of is a leaf. We handle this by noting

that in the last paragraph we actually proved something slightly stronger. Namely, if

is a multiplication node which is not an output node and w’ is a child of which

is a leaf then the height of w is at least 2. Thus, induction for the multiplication nodes

follows. We have only to prove the induction for addition nodes.

Suppose that is an addition node. Let w’ be a dominant child of w’ is a

multiplication node the theorem follows easily. Thus, we may assume that w’ is an

addition node. It will suffice to prove the following claim.

C L A I M . The height of w is the height of minus 1 , -

of

.

694 M I L L E R , R A M A C H A N D R A N , A N D K A L T O F E N

Proofofclaim. Note that both and w are addition nodes. I f there is a path in

from w to containing two or more edges, then the claim follows by the definition

of height. Thus, the only path from w to is a singleton edge. But this is a contradiction,

since procedure MM will then remove this edge and the procedures Eval, and

cannot replace it since there are now no paths from to This proves the claim and

the theorem.

By Lemma 5.1, after [log, applications of Phase to a circuit of height h the

resulting circuit will contain only leaves and output nodes. Thus, in one more applica-

tion of Phase (only and Eval, are needed) all nodes will be leaves; the circuit

has been evaluated. With a slightly more careful analysis the number of applications

can be bounded by [log, +1. We state this fact as a theorem.

THEOREM 5.2. is an arithmetic circuit with height h, then after h + 1

applications of Phase, all nodes of are evaluated.

The upper bounds given in Theorem 5.2 are optimal for our procedure Phase. In

Fig. 6 we exhibit a circuit for k 2, of height which requires applications

of Phase. It is not hard to see that requires 2 applications of Phase; and the subcircuit

evaluating contained in Phase equals for k 2.

We can now prove the main theorem of the paper.

THEOREM 5.3. If is an arithmetic circuit of degree d and size n then the value

can be computed in parallel in time n d)) using at most processors.

0

0

0
k

2

F IG. 6 . arithmetic circuit ; a worst-case example fo r Phase.

By Theorem 5.2, procedure Phase need only be applied + 1 times,

where h is the height of By Theorem 4.2, h = d) . Thus, Phase is applied

times. Now, each application of Phase requires only log n parallel time.

The processor-expensive step is the matrix multiplication in MM, which can be

performed using n)) processors.

We give a few simple corollaries to Theorem 5.3. We say a function is

pseudopolynomial in n if = for some constant k. That is log

COROLLARY 5.4. To determine a straight-line program has pseudopolynomial

degree is in for each constant k.

PARALLEL EVALUATION 695

COROLLARY 5.5. The a straight-line program pseudopolynomial degree

can be computed in NC each constant k where the input values are integers and

operations are addition and multiplication.

To see the last corollary we observe that the output of a straight-line program of

pseudopolynomial degree has polynomial size in binary in terms of the size of the

program.

6. Open questions. We know of no similar results for noncommutative rings. We

note that for arithmetic circuits over the ring of n x n matrices one can expand the

matrix operations into the underlying commutative ring operations and apply the

methods of this paper.

Extension of this work to rings with division would ako be interesting.

Several new related results have occurred since the original of this paper.

Matrix multiplication can now be performed using processors, The

ideas in this paper have been extended to more complex domains, [MT]. Finally, an

analysis of the main theorem has been found that does not use the height metric, [May].

REFERENCES

A. AHO, J. HOPCROFT, A N D J. ULLMAN, The Design and Analysis of Computer Algorithms,

M. AJTAI, J. A N D E. SZEMEREDI, An log n) sorting network, Proc. 15th Annual

R. ANDERSON A N D G. L. MILLER, Optimal parallel algorithm for list ranking, 16th Annual

R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach.

R. COLE, Parallel merge sort, IEEE, Toronto, October 1987, pp. 511-516.

S. A. COOK, Towards a complexity theory of synchronous parallel computation,

pp. 99-124.

A N D Deterministic coin tossing with applications to optimal list ranking,

Inform. and Control, 70 pp. 32-53.
D. COPPERSMITH A N D S . Matrix multiplication via arithmetic progressions, Proc.

19th Annual ACM Symposium on Theory of Computing, ACM, New York, May 1987, pp. 1-6.

D. COPPERSMITH A N D S. W INOGRAD, On the asymptotic complexity of matrix multiplication,

SlAM J. Comput., I I

R. E. LADNER, The circuit value problem is log space complete for News, 7

E. W. MAYR, The Dynamic Tree Expression Problem, Tech. Report STAN-CS-87-1156, Stanford

University, Department of Computer Science, May 1987.

G. L. M ILLER A N D J. H. Parallel tree contraction and its applications, Proc. 26th Symposium

on Foundations of Computer Science, IEEE, Portland, OR, 1985, pp. 478-489.

G. L. M ILLER, V. RAMACHANDRAN, A N D E. KALTOFEN, Parallel Evaluation of

Straight-Line Code, pp. 236-245, Lecture Notes in Computer Science, 227, Springer-Verlag,

Berlin, New York, 1986.

G. L. M ILLER A N D S.-H. TENG, Dynamic parallel complexity of computational circuits, Proc. 19th

Annual ACM Symposium on Theory of Computing, ACM, New York, May 1987,pp. 254-264.

J. H. An optimal parallel algorithm for integer sorting, Proc. 26th Annual Symposium on

Foundations of Computer Science, IEEE. Portland, OR, October 1985, 496-504.

U. Randomized speed-ups in parallel computation, Proc. 16th Annual ACM Symposium

on Theory of Computing, ACM, Washington D.C., April 1984, pp. 230-239.

L. G. VALIANT A N D S. S KYUM , Fast Parallel Computation of Polynomials Using Few Processors,

pp. 132-139, Lecture Notes in Computer Science, 118, Berlin, New York,

1981.

VAL IANT , BERKOWITZ, A N D Fast of

using few processors, J. Comput., 12 641-644.

Addison-Wesley, Reading, MA, 1974.

Symposium on the Theory of Computing, ACM, Boston, April 1983, pp. 1-9.

International Conference on Parallel Processing, submitted.

21 201-208.

18-20.

