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Abstract. In this paper we present a sphere-packing technique for Delaunay-based mesh genera-
tion, refinement and coarsening. We have previously established [10] that a bounded radius of ratio
of circumscribed sphere to smallest tetrahedra edge is sufficient to get optimal rates of convergence for
approximate solutions of Poisson’s equation constructed using control volume (CVM) techniques. This
translates to Delaunay meshes whose dual, the Voronoi cells diagram, is well-shaped. These meshes are
easier to generate in 3D than finite element meshes, as they allow for an element called a sliver.

We first support our previous results by providing experimental evidence of the robustness of the CVM
over a mesh with slivers. We then outline a simple and efficient sphere packing technique to generate
a 3D boundary conforming Delaunay-based mesh. We also apply our sphere-packing technique to the
problem of automatic mesh coarsening. As an added benefit, we obtain a simple 2D mesh coarsening
algorithm that is optimal for finite element meshes as well.

1 Introduction

The control volume method (CVM) is a popular method for solving partial differential equations, especially
when the underlying physical problem has some conservation properties, such as for heat or flow problems.
The domain is partitioned into small “control” volumes, and the approximation is derived using the conser-
vation properties over each control volume. The Voronoi diagram, and its dual, the Delaunay triangulation,
are particularly fitted for the control volume method, with the Voronoi cells acting as the control volumes,
and the Delaunay triangulation as the neighborhood structure of interacting Voronoi cells.

The quality of a triangular or simplicial mesh is measured in terms of both the shape of its elements and
their number. Unstructured Delaunay triangulation meshes are often used in conjunction with the finite
element method (FEM). In the context of the finite element meshes, the element shape quality is measured
by its aspect ratio. Several definitions for the element aspect ratio exist, and they are all equivalent up to a
constant factor: the ratio of the element height to the length of the base, the ratio of the largest inscribed
sphere to the smallest circumscribed sphere, or the size of the smallest element angle.

The problem of generating good aspect ratio meshes has been discussed extensively in the literature (see
the survey by Bern and Eppstein [2]). CVM mesh generation was assumed to pose the same requirements as
FEM mesh generation, and did not merit its own discussion. However, we have shown recently [10] that the
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error estimates of the CVM depend on a shape criteria weaker than the aspect-ratio. In particular, CVM
meshes require elements with a bounded ratio of radius of circumscribed sphere to smallest element edge,
among other requirements mentioned below. In 2D, this radius-edge ratio is equivalent to the standard aspect
ratio, but in 3D it allows a very flat element with arbitrarily small dihedral angles, and edges proportional
to the circumscribed sphere radius (see Figure 1). This type of element is referred to as a sliver.

Figure 1: Sliver: a very flat tetrahedra, with good radius-edge ratio

Generating a mesh of good radius-edge ratio appropriate for the CVM is the motivation behind this
paper. In 3D, it is an easier task than generating a mesh with a good aspect ratio. Our approach is to use an
approximate sphere-packing technique. In this paper we analyze the conditions under which a sphere-packing
yields a bounded radius-edge ratio mesh that conforms to a 3D domain description.

These are what we consider to be the main contributions of this paper:

e Comparing and contrasting the FEM and the CVM over a mesh with slivers. We provide experimental
evidence that the CVM is insensitive to slivers.

e Characterizing the requirements of CVM mesh generation.

e Proposing a new sphere-packing approach: we analyze the conditions under which a sphere-packing
yields a good radius-edge mesh that conforms to a 3D domain description. This also provides some
insight into the workings of other related mesh generation methods, such as advancing front methods
and Ruppert’s method, and also into the development of efficient 3D mesh generation.

e Applying the new sphere-packing technique to 2D provably optimal automatic mesh coarsening. In
2D, this automatic mesh coarsening applies to good aspect-ratio (FEM) meshes as well.

1.1 Previous Work

The study of mesh generation abounds in the literature. Bern, Eppstein and Gilbert [4] had the first provably
optimal 2D good aspect-ratio mesh generation algorithm. The mesh they generated is based on a quad-tree.
Ruppert [15] presented a simpler algorithm that produces smaller meshes in practice. Ruppert’s algorithm is
based on a Delaunay triangulation, and extends the approach Chew [6] suggested for quasi-uniform meshes
to general unstructured meshes.

3D mesh generation is still a mostly uncharted research area for good aspect-ratio meshes. Mitchell and
Vavasis [11] extended to 3D the quad-tree approach of Bern, Eppstein and Gilbert [4]. The simpler Delaunay
triangulation approach of Ruppert and Chew has not been successfully generalized. The work of Dey, Bajaj
and Sugihara [7] is a generalization of Chew’s algorithm into 3D. It is targeted at quasi-uniform meshes
only, and addresses only simple convex boundaries. Even for that simpler case their 3D generalization of
Chew’s approach fails to generate good aspect ratio Delaunay triangulation. It does, however, generate good
bounded radius-edge ratio meshes.

The failure of the Dey, Bajaj and Sugihara algorithm to produce good aspect-ratio meshes preempted
any discussion on how to generalize Ruppert’s related algorithm to 3D. Now that the weaker condition of
radius-edge ratio is proven useful, the question of generalization of Ruppert’s algorithm regains its relevance.
Even if this generalization were straight-forward, it would merit a lengthy discussion so that the issues of
conforming to 3D boundaries are thoroughly investigated.



However, the obvious generalization of Ruppert’s algorithm to 3D suffers from some drawbacks. Recall
that the basis of Ruppert’s scheme is to iteratively produce the target point set by maintaining a Delaunay
triangulation of the point set, picking any bad aspect-ratio triangle, adding its circumcenter to the point
set or splitting a segment if appropriate, retriangulating the point set and repeating until all triangles are
well-shaped. This scheme is simple and efficient in 2D in practice, though is not theoretically guaranteed
to be efficient. In 3D, two facts hinder us: (1) The intermediate 3D triangulation maintained is potentially
of size O(|P|?), P being the intermediate point set, whereas in 2D the triangulation is always linear. (2)
In 2D the triangulation is repaired by an edge flipping algorithm; the complexity of a repair can be O(n)
but in practice is smaller. In 3D each edge flip is more complex, and furthermore the total number of flips
necessary to update the Delaunay diagram can be of a worst case O(n?). Its complexity in practice remains
to be seen. (Note however that in this case, as the starting point of the incremental construction is a DT,
the edge flips algorithm is guaranteed to converge to a Delaunay diagram. This has been shown separately
by Joe [8], and Rajan [14]).

A different technique is therefore necessary to produce an efficient generalization of Ruppert’s algorithm
to 3D. In this paper we concentrate on one such technique: sphere-packing. It has been observed before [16]
that a pattern of tightly packed spheres led in nature to well shaped Delaunay triangulations and Voronoi
diagrams.

We are aware of at least two instances where sphere packing was used as a basis for mesh generation,
but with a different goal and underlying technique: (1) Shimada’s bubble packing: spheres are packed in
the domain in some initial configuration, and then a physically based iterative method is used to smooth
the mesh and obtain a better shaped mesh. Our method is not an iterative method, and its emphasis is
on laying down the spheres such that the corresponding Delaunay triangulation carries radius-edge ratio
guarantees. As such, it is orthogonal to Shimada’s method. (2) Bern, Mitchell and Ruppert [3] used sphere
packing to generate an O(n) non-obtuse triangulation of a polygonal domain in 2D. The elements produced
in that instance could be of bad aspect ratio and radius-edge ratio.

The rest of this paper is as follows: Section 2 provides definitions and experimental results related to
the CVM method. Section 3 outlines the sphere-packing technique for mesh generation and refinement, and
Section 4 presents the automatic mesh coarsening.

2 The Control Volume Method and Meshes

In this section we review the control volume method (CVM). The CVM associates to each interior mesh
point a volume. These volumes are non-overlapping regions whose union approximates the domain. The
Voronoi diagram provides a natural choice of control volumes. In the next subsections we define the Voronoi
diagram and its dual, the Delaunay triangulation.! We recall our previous error estimate [10] for the CVM
and the mesh structure this error estimate requires, and present a numerical experiment comparing and
contrasting the finite element and control volume algorithms on such meshes.

2.1 Voronoi Diagrams and Delaunay Triangulations

Given a set of points P = {p1,...,pn} C ]Rd, the convex hull of d + 1 linearly independent points from P
forms a Delaunay stmplex if their circumscribed ball contains no point from P in its interior. The union of
all Delaunay simplices forms the Delaunay triangulation, DT(P). If the set P is not degenerate then DT'(P)
is a simplicial decomposition of the convex hull of P. We refer to the circumsphere of a simplex in DT'(P)
as a Delaunay ball.

The geometric dual of the Delaunay Diagram is the Voronot Diagram, and consists of a set of Vorono:
Polyhedra {V1, ..., V,}, one for each point in P. Geometrically, V; is the set of points p € IR whose Euclidean
distance to p; is less than or equal to that of any other point in P. We call p; the center of the polyhedra V;.
The Delaunay triangulation is dual in the sense that two points p;, p; form an edge in DT'(P) if and only if
Vi and V; share a common face. In this instance, the Delaunay edge is perpendicular to the common face.

1We adopt the standard terminology where a decomposition of a region in an R? into simplices is referred to as a triangulation.



2.2 Control Volume Discretizations

We now review the control volume technique for approximating Poisson’s equation:
—AUIf, in Qa U|6Q:g,

where © C IR is a bounded domain, and A is the Laplacian (e.g. in three dimensions, Au = gy +tyy + ., ).
For simplicity we assume that €2 is a polygonal domain so that it can be triangulated exactly, and we consider
Delaunay triangulations of © whose Voronoi regions corresponding to interior vertices are contained within
Q. Letting V; be the Voronoi region corresponding to an interior vertex p;, we integrate the equation for u

over V; to get
[l ]t
Vi Vi ov, On

where the second equality follows upon integration by parts, and 9V} refers to the boundary of V;. Let the
length of the Delaunay edge joining vertex p; to p; be denoted by h;;, and let A to be the set of indices j
such that p; is connected to p; by an edge, i.e. the set of Delaunay neighbors of p;. For each Delaunay edge
there is an associated Voronoi face (or edge in two dimensions) common to V; and V;, which we denote by
A;; (see Figure 2). Letting u; be an approximation of u(p;) (u being the exact solution), the above equation

1s approximated by:
Ju Ju Uy — Uy
|Vi|fi:/ _8_22/ —3—ZZ|AM| Zh”‘7~
ovi 9N ey JAu O ey, g

In the above, f; is the average value of f over the Voronoi V;. This equation is to hold for each interior
vertex p;, and on the boundary we set u; = g(p;). The solution of the resulting linear system gives the
control volume approximation of Poisson’s equation. It is transparent that the matrix corresponding to this
system of linear equations is an M-matrix, so that the discrete maximum principle holds. MacNeal [9] shows
that in two dimensions this matrix is identical to that given by the finite element method constructed using
piecewise linear functions on the Delaunay triangulation; however, this is not the case in three dimensions.

Figure 2: The Voronoi diagram of p;, the Delaunay edge h;;, and the Voronoi face A;;.

2.3 Error Estimates and Mesh Geometry

We recall the error estimates Nicolaides [12] established for the control volume method. For quantities
defined on the edges of the Delaunay mesh define the inner product (., .)w by

(U, V)w =Y |AijlhiUs Vi

and corresponding norm ||.||w as

U1y = (U, U)w,

where Z(i i) indicates summation over all of the non-boundary Delaunay edges.



Theorem 2.1 (Nicolaides) Let {u;} be the discrete solution given by the control volume method, and define
Usij = (uj —uj;)/hij and Ul»(jl) and Ul»(jz) by

N . 1 ou
p0) — i) = ulpi) U.<.2>:_/ _ o
! |Aijl Ja,, O

Y hi; J n
(u is the exact solution) then ||[U — U ||y < [ UM = U®)||yy .

Note that the right hand side of this error estimate depends only upon the exact solution, and ||U||w is
a discrete version of the L?(2) norm of the gradient.

Nicolaides proceeded to estimate the error ||[U(1) — U/(?)||y under the assumption that the meshes had
simplices with bounded ratio of circum to inscribed sphere radius ratio; however, we showed previously [10]
that this hypothesis can be relaxed to the situation where the radius-edge aspect ratio is bounded.

Definition 2.2 The radius-edge ratio of a simplex is the ratio of the radius of the circumscribed sphere to
the shortest edge of the simplex.

Theorem 2.3 Let p = max; ;) rij/hij be the radius-edge aspect ratio of a Delaunay triangulation of Q, then
[V = US|y < (14 4p°) | Dl L2,
where D*u is the Hessian (matriz of second derivatives) of u, and h = max; ;) hij.

Note that, as usual, the estimate above can be localized in the sense that the right hand side is actually
the sum of products of h;; and the L? norm of the second derivatives in small regions containing the edge.
For this reason it is natural to refine the mesh in regions where the second derivatives are large.

2.4 Control Volume Meshes

The previous section established that a bounded radius-edge ratio is sufficient for optimal rates of convergence
for approximate solutions of Poisson’s equation constructed using the control volume method. Classical finite
element theory relies on a different aspect ratio condition: the smallest angle in the simplex is required to be
larger than some fixed constant. In 2D, the bounded smallest angle condition and the bounded radius-edge
ratio condition are equivalent up to a constant factor. In 3D, the radius-edge ratio is weaker than the smallest
angle bound. A slweris an element whose radius-aspect ratio is bounded by a constant, but whose smallest
(dihedral) angle can be as small as desired (see Figure 1). A CVM mesh relies on a weaker condition, and
consequently the generation of good 3D CVM meshes is an easier task.

As the dual Voronoi diagram plays a major role in the CVM, it is of interest to understand the bounded
radius-edge aspect ratio in the dual setting. The Voronoi cells of points of P that are on the convex hull of
P are infinite cells. Internal Voronoi cells are finite. In the next theorem we refer to a clipped form of the
infinite Voronoi cell (clipped by the boundary or the convex hull); the proof appeared previously [10].

Theorem 2.4 Let P be a set of points in RY, C' a constant such that the radius-edge ratio of DT(P) is
bounded by C. Let R be the radius of the smallest ball containing the (clipped or finite) Voronoi cell V(p), r
the radius of the largest ball contained in V(p). There exists a constant D depending on C' and the dimension
d only, such that R/r < D.

Intuitively, Theorem 2.4 implies the Voronoi cells resemble a sphere. These well-shaped Voronoi cells are
at the heart of the optimal rate of convergence of the CVM over bounded radius-edge ratio Delaunay based
meshes.

The physical meaning and the mathematical treatment of the CVM is more natural if the Voronoi cells of
interior mesh points are contained in the domain. It is therefore natural to consider algorithms that generate
such meshes. More accurately, if B; is some boundary feature (an input point, segment or face) we require
that p ¢ B; = V(p) N B; = 0.



FEM CVM
h e d/p | llu—unllmr |[Inu—unllw | [|Iau — unllw
1/4 ] 0.01 1126 30.22479 7.696399 0.2425438
0.001 11125 92.97309 8.692323 0.2411516
0.0001 111296 291.6406 8.917005 0.2410718
1/8 | 0.01 26230 12.98964 4.344101 0.07617430
0.001 166051 35.13775 6.865007 0.07531520
0.0001 1621745 108.1435 7.525118 0.07538803
1/16 | 0.01 14194 | 6.023042 2262189 0.02155074
0.001 105551 15.48025 4.457009 0.02005826
0.0001 1030956 45.91799 6.140328 0.02007369

Figure 3: Comparison of finite element and control volume methods.

2.5 Numerical Experiments

To illustrate the effectiveness of the CVM on meshes with slivers we consider approximating the function u
defined on the unit cube given by

u(z,y,z) = €™ cos(ﬂ'y/\/§) sin(ﬂ'z/\/i)

which satisfies —Awu = 0. Meshes with slivers are constructed by randomly perturbing the points of a uniform
mesh on the cube. The Delaunay triangulation of the perturbed points contains slivers on the horizontal
and vertical planes from which the points were perturbed. If the maximum perturbation is €, the dihedral
angle of the slivers decreases with e.

Figure 2.5 compares the control volume and finite element solutions for this problem. The radius-edge
ratio for all of the meshes considered is of order one, unlike the maximum ratio of circum to inscribed sphere
radius that is shown for each mesh. The difference between the interpolated exact solution (Ipu) and the
numerical solution for each approximation is tabulated. Classical finite element theory estimates the error
in the H} norm?, and this is included for the finite element solution.

It is clear from Figure 2.5 that the error in the control volume approximations is independent of €, as
predicted by the theorem. Also, the finite element solution deteriorates as the slivers become flatter and
flatter. Rates of convergence can also be estimated from the table. Note that for ¢ = 0.01 the error in the
finite element solution reduces by a factor of two when the mesh size is similarly reduced, implying unit rate.
While Theorem 2.3 also predicts a first order rate of convergence for the control volume approximations, a
better rate is achieved for this example; in fact the error almost reduces by a factor of four as the mesh size
is reduced by one half, indicating a second order rate of convergence. This is due to the extra symmetry of
the uniform mesh. On a uniform mesh the control volume scheme is second order accurate; indeed, it is clear
from the proof of Theorem 2.3 that the error is proportional to h? when all the Delaunay edges intersect
their corresponding Voronoi faces at their centroid.

Finite element theory shows that the finite element solution has the smallest error in the H{ of any
piecewise linear function on a particular mesh. In particular, this error is smaller than that obtained by
interpolating the exact solution. The interpolant of the exact solution will have small H{ errors on tetrahedra
having large ratios of circumscribed to inscribed sphere radius, and it is the slivers where the errors in the
gradient are large. It was observed that the control volume solution behaved in a similar fashion to the
interpolant. For example, if the H} norm is computed on the domain formed by removing the slivers (which
typically occupy less than 1% of the volume), then both the interpolant and control volume solutions gave
errors smaller than those of the finite element solution which spreads the error more uniformly among the
tetrahedra.
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3 Mesh Generation using Sphere-Packing

In this section we introduce the notion of a sphere-packing and show how it can be used to generate boundary
conforming Delaunay based meshes with bounded radius-edge ratio and size at most a constant factor away
from the size of any mesh of bounded standard aspect-ratio, such as those generated by Mitchell and
Vavasis [11]. This approach has a large overlap in ideas with that of Ruppert [15], but yet quite different
conceptually. It can be thought of as a framework for generating Delaunay-based meshes, which generalizes
Ruppert’s approach.

Let D be some domain in IR® and f a function from D to the positive reals. We say that f is a-Lipschitz
if |f(x) — f(y)| < ||z — y|| for all points 2,y in the domain. In this case we call f a spacing function for D
with Lipschitz constant «. An f-sphere of a point p € D is a sphere with center p and radius f(p).

A set of points P = {p1,---,pn} C D is a sphere-packing with respect to a spacing function f if the
interiors of their f-spheres do not intersect, i.e., |f(ps) + f(p;)| < ||pi — pj|| for ¢ # j. It is mazimal if P
i1s a maximal such set. We later consider relaxed forms of the notion of maximality, and the different mesh
generation algorithms they suggest.

As a simple example of the kind of results one can prove for sphere-packings, let D be all of IR? and let f
be the constant function f(x) = 1. A packing P is then just a packing of unit radii spheres. If P is maximal
then the Delaunay Diagram of P has radius-edge ratio at most one; by the fact that it is a packing every
edge must have length at least 2. The radius of every Delaunay ball must be at most two, otherwise the
center of the ball can be added to the packing, contradicting maximality. More generally one can show the
following:

Lemma 3.1 If D = RY, [ is a-Lipschitz, and P is a mazimal sphere-packing of D then the Delaunay
Diagram of P have radius-edge ratio at most 1/(1 — 3a).

Proof: Let e be the shortest edge of some Delaunay simplex whose circumball has center ¢ and radius r.
Further let p be the endpoint of e that minimizes f. Since it is a packing, 2f(p) < |e]. Since P is maximal,
there exists a point ¢ € P that prevents ¢ from being added, i.e., f(¢)+ f(q) > ||c — ¢|| = ' > r. Since f is a-
Lipschitz, f(q) < f(¢)+ar. Using the last two facts, 2f(¢) > (1 —a) > r(1 —«). Using again the Lipschitz
property of f it is the case that f(c) < f(p) + ar. Combining the previous facts, 2f(p) + 2ar > r(1 — «) or
el > 2/(p) > (1 — 30). 0

We next show how to use packing to generate Delaunay diagrams that conform to a boundary. The
boundaries we consider are piecewise linear, a generalization of the notion of a planar straight line graph [2]
to higher dimensions. A polytope is the convex combination of finite set of points P. The dimension of the
polytope is the dimension of the affine subspace generated by P. The boundaries as well as the domain we
consider are a collection of polytopes. We formally use the following definition:

Definition 3.2 A piecewise linear system is a set of polytopes S with the following properties:

1. The set S s closed under taking boundaries, i.e., for each P € 8§ the boundary of P is a union of
polytopes in S.

2. 8§ 15 closed under intersection.
3. If dim(P N Q) = dim(P) then P C Q, and dim(P) < dim(Q).

We also require that the angle between any two intersecting polytopes, when one is not contained in
the other, is at least 90°. The notion of a piecewise linear system is similar to a convex decomposition of
non-manifold polyhedra [1], but is more general. For example, a box with a segment in the interior can be
described as a piecewise linear system with no need to further decompose it.

A k-simpler S is a convex polytope of dimension & with & + 1 vertices. The d-circumball of S 1s a
d-dimensional open ball, whose center and radius are equal to the center and radius of the circumsphere of
S in the k-dimensional affine subspace containing S.

To generate a Delaunay mesh conforming to the piecewise linear system description, the sphere-packing
proceeds in increasing order of dimension, see Figure 4 for a pseudo-code description. First, we add the 0-
polytopes to the packing, with their corresponding f-spheres. The spacing function f can be set to guarantee



Algorithm: PACKING(S, f)

Input: S, a piecewise linear system of dimension 3.
f, a spacing function.

Output: A set of points P.
Method:

1. Let P, be of the O-polytopes of &. Let By be an empty set of protecting balls.
2. For :=1 to 3
(a) For each ¢-polytope () € § find a maximal sphere-packing P; of () with respect

to f, under the following restrictions for each p€ F,NQ:
i. The f-sphere of p is disjoint from the f-sphere of any point ¢ € U;IOP]' N
Q. '
ii. p is disjoint from any protecting ball in U;;%Bj whose center is on (.
iii. For ¢ = 2, p is far from each l-polytope contained in () (See Definition
3.3).
(b) For each ¢-polytope () € S compute the Delaunay Diagram on () using only the
points of (Py U --- U P,_1) N Q. For each i-simplex in that diagram find its
3-circumball. Set B; to be the collection of all these 3-circumballs.

end for

3. Return P=FPyU---U P5.

Figure 4: 3-dimensional sphere-packing algorithm.

that the f-spheres do not intersect. Next, the 1-polytopes of §, its segments, are sphere-packed: points are
placed on the segments such that their f-spheres are disjoint, and disjoint from the f-spheres of the 0-
polytopes. The packing of each segment naturally divides it into 1-simplices (edges). We want these edges
to appear in the final Delaunay triangulation, and therefore an empty open ball must be maintained around
each edge. We call these the edge protecting balls. The protective balls we use are the 3-circumballs of the
edges: balls centered at the middle of the edges, whose radius is half the edge length.

The 2-polytopes of § are then sphere-packed: a maximal set of points is placed on the faces such that
their f-spheres are disjoint, and disjoint from previously placed f-spheres, and such that the points do not
intersect the edge protecting balls and are far from the 1-polytopes contained in the face, see Definition 3.3.
Each face is then Delaunay triangulated with respect to the points on that face, and the 3-circumballs of
these Delaunay triangles are used as the triangle protecting balls of the 2-polytopes.

In Algorithm PACKING we maintained that points packed on a 2-polytope are far enough from the 1-
polytopes contained in it. We now formalize this notion:

Definition 3.3 Let Q be a 2-polytope. We say p € @ is far from a 1-polytope Q1 contained in @Q if the
2f-sphere of p (a sphere centred at p whose radius is twice the radius of the f-sphere of p) is disjoint from

Q1.

Finally, the 3-polytopes of § are sphere-packed, by placing a maximal set of points such that their f-
spheres are disjoint from each other and previously placed f-spheres, and such that the points are disjoint
from the edge and face protective balls.

We call the output of the packing procedure a mazimal f-packing of S. The result of the packing should
have three properties:

I. Global packing: In the procedure, every i-polytope was packed independently of other i-polytopes,
and independently of all lower dimensional polytopes not strictly contained in it. Nonetheless, the



result of the packing should be a sphere-packing globally: no two f-spheres in the packing should
intersect. Step (a)-iii of the algorithm was added to guarantee that.

II. Boundary conforming: Step (a)-ii of the algorithm forced boundary simplices to be contained in
empty open balls, to ensure they are also a simplex of the Delaunay triangulation. However, since any
two polytopes where one 1s not contained in the other were packed independently, we have to show the
protective balls are indeed empty.

ITI. Good quality mesh: The Delaunay simplices should be of bounded radius-edge ratio, and the Voronoi
cells of points in the interior of the d-polytopes should not intersect lower dimensional polytopes of S.
Step (a)-i of the algorithm is partly responsible for the bounded radius-edge ratio.

We first specify the function with respect to which we pack. Ruppert defined a function called the local
feature size, denoted Ifs(x). We extend Ifs in the natural way to the piecewise linear system S by setting Ifs(x)
to equal the radius of the smallest closed ball centred at # that intersects at least two disjoint polytopes of S.
Note that Ifs is 1-Lipschitz. For our algorithm a suitable spacing function is f = alfs with some appropriate
constant a < 1. Fixing the parameter « in order to satisfy the requirements above is dimension dependent.
In the discussion below we argue the three dimensional case.

The following Lemma states the global packing property. The proof, which we omit, relies on the 90°
limit on the angle between polytopes, and the fact f-spheres on faces are placed far from the 1-polytopes.

Lemma 3.4 Let P be the result of a 3-dimensional packing. If o« < /2 — 1 then the f-spheres of points
p,q € P laid independently on intersecting polytopes do not meet.

To prove boundary integrity, we have to show that protective balls in By U By contain no points of P in
their interior. Protective balls on a polytope S € § do not contain points from P placed on any polytope S’
intersecting S either by the 90° angle restriction between polytopes, or because of step (a)-ii of the algorithm.
The next two Lemmas show that if a is small enough, a protective ball can not contain a point p € P laid
on a disjoint polytope.

Lemma 3.5 Let ¢ be the center of the protective ball B, and let R its radius, then:
1. If B € By then f(¢) > R(1 — «)/2

2. If B € By then f(c) > RG22

Proof: We show only the first part. Let a and & be the end points of the edge defining B, and ¢ be their
midpoint. Assume, wlog, that f(b) > f(a).

(1) maximality = f(b) + f(c) > R.
(2) Lipschitz condition = f(b) < f(c) + aR.
(3) (1) and (2) = f(e) > R(L— )2

O

Lemma 3.6 Let B be a protective ball added when packing a polytope S € §. Let T € S be a polytope
disjoint from S, p € PNT. For a small enough «, the open ball B and p are disjoint.

Proof: Let R be B’s radius, ¢ its center. Let £ = ||e — p||]. We now derive a bound for « to guarantee that
R < £ so that the ball and point do not intersect. Lemma 3.5 showed f(c) > RS, where § depends on «
and on whether B € By or B € By. Hence, R < f(¢)/d < alfs(c)/§. Since ¢ and p lie on disjoint polytopes,
Ifs(e) < £ and R < af/d. Hence, it suffices to fix « such that o/6 < 1. For B € By this is true for 3a < 1.
For B € Bs this is true for (3 + 2\/5)0[ <1. a

We now address the quality of the resulting Delaunay triangulation. The following is important for CVM
meshes:



Lemma 3.7 The Voronot cell of a point p € P can only intersect a polytope S € 8§ containing p.

Proof: Let V), be the Voronoi cell of p. First, assume that p resides on a 3-polytope S. We now show that
the Voronoi cell at p intersects no 2-polytope contained in S, and hence can not intersect any 2-polytope.
By way of contradiction, assume there exists a point ¢ € V), N .S2, for some 2-polytope Sz € S contained in
S. According to our algorithm, So was first triangulated, and protecting balls in By were assigned to each
Delaunay triangle. Hence, before p was added, ¢ belonged to the Voronoi cell of some point ¢ € S». We
show that if ¢ was closer to p than to a, then p is inside a protective ball B € B, which is ruled out by
our algorithm. Divide the old Voronoi diagram of a into triangular sectors by connecting @ to its Voronoi
points, ¢ is in one of the sectors. We look at the two triangle protecting balls associated with the two end
points of this sector. If ¢ was closer to p than to @, p must be in one of those balls. Similarly, p’s Voronoi
diagram can not touch lower dimensional polytopes because of protecting balls in B;. The case when p is
on a 2-polytope or a 1-polytope can be argued similarly. a

Let T be a Delaunay tetrahedron generated by Algorithm PACKING. To show that the tetrahedron has
bounded radius-edge ratio we consider the possible reasons why its circumcenter ¢ can not be added to the
maximal packing: (1) the f-sphere of ¢ would intersect another f-sphere, (2) ¢ belongs to a protecting ball,
(3) ¢ was not in the polytope under consideration. Lemma 3.7 rules this case out.

Case (1) was handled by Lemma 3.1, leaving only case (2), which the following Lemma addresses.

Lemma 3.8 Let T be some Delaunay tetrahedron of a mazimal packing, R the radius of T'’s circumball, ¢
its center. Let £ be the shortest edge of T'. If ¢’s f-sphere intersects some protective ball B, then:

1—a(342v2)

1. If B € By then 75

I~
v

2. If B€ By then & > 1=olt2/2),
Proof: We show the first part only, the second part is proven similarly by substituting the appropriate
bound from Lemma 3.5. Let ¢ be the center of the protective ball B, @) its radius. Let L be the distance
from ¢ to ¢q. Let 63 = (1 — &) /2.

1) ¢ can not be added = ¢ is in the edge protecting ball and by Lemma 3.5 f(¢) > f(¢) —a@ > (61 —@)Q.

2) ¢ can not be added = L < Q.

3) Triangle inequality = L> + Q> R?> = Q > R/V?2.

)
)
)
4) (1) and (3) = f(c) > R(d1 — o)/V2.
)
)

(
(
(
(
(5) Letting p be an end point of £, f(¢) < f(p) + R = f(p) > R(61 — a — V2a)/V2.
(

6) Wlog, we can assume p is the end point for which f(p) < £/2.

O

There are several interesting issues with efficiently implementing our packing algorithm. The two main
computational issues are (1) computing the spacing function f and (2) ensuring that the packing is maximal.

The spacing function can be approximated by using a quad-tree or oct-tree to compute the local feature
size in linear work. The correctness of procedure PACKING is guaranteed for any a-Lipschitz function smaller
than alfs for an appropriately fixed «, thus an approximate spacing function suffices.

There are several ways to weaken the sphere-packing maximality condition, each of which suggests a
different generation algorithm. We consider two ways. The first is the notion of Vorono: mazimality. Observe
that the lemmas above argued only the addition of center points of Delaunay circumballs, which are the
Voronoi diagram points. We therefore define a sphere-packing to be Voronoi maximal if no circumcenter of
a Delaunay ball can be added. This definition leads to a Ruppert style algorithm, where the sphere-packing
is built iteratively. The centers of current Delaunay balls (at ascending order of dimension) are considered
for addition to the sphere-packing. The algorithm terminates once no circumcenter can be added.



The other weakening of maximality we consider is approximate maximality. A sphere-packing is e-
mazximal if each €f-ball contains a point that can not be added to the sphere packing, ¢ > 0. The lemmas
above can be restated and proved for e-maximal packings.

Using e-maximal packing allows us to analyze two new techniques for packing, oversampling and filtering.
Quversampling samples a point from every ef-ball. Filtering removes a subset of the oversampling to obtain
an approximate sphere-packing. Our filtering technique first builds a conflict graph C'G' on the sampled
points. The graph C'G has an edge between two sample points if their f-spheres intersect. We call taking a
maximal independent set of C'G filtering.

Oversampling and filtering can be extended to the boundary case in a natural way. In procedure PACKING
we replace maximal packing with e-packing. We use oversampling and filtering to guarantee that we generate
an e-packing at each level. We iteratively oversample and filter in ascending order of dimension, so that the
conflict graph also contains edges corresponding to protective balls of lower dimensional objects. The next
section discusses another application of this technique.

As mentioned above, a coarse oct-tree can be used as the basic data-structure to compute an approxima-
tion to Ifs, and to find the CG edges. In the oversampling stage, each oct-tree box can be sampled uniformly.
We have not yet evaluated the quality of the resulting mesh versus other 3-dimensional mesh generators.

4 Automatic mesh coarsening: sphere unpacking

The problem of automatic mesh coarsening is that of producing a hierarchy M; - - - My, of respectively coarser
good aspect ratio meshes given an initial fine unstructured mesh My. A coarsening M;y1 of mesh M; is a
mesh whose elements are point-wise larger than M;’s, but still conforms (possibly in a relaxed sense) to the
same domain.

For meshes obtained in a refinement process, this hierarchy can be obtained by undoing the refinement
process; this assumes intermediate meshes were kept. In contrast to that approach, automatic mesh coars-
ening assumes no knowledge of how the mesh was generated.

Such a hierarchy of coarsening meshes is necessary, for example, for the hierarchical and multi-level
technique, which has become one of the most effective and successful numerical techniques for solving partial
differential equations (PDEs). It is used in multi-grid methods [5] and multi-level domain decomposition.
The use of unstructured meshes is inevitable in the solution of complex problems with more intricate domain
geometry and solutions.

This section applies the sphere-packing technique of the previous section to the problem of two dimen-
sional mesh coarsening. Recall that in two dimensions the radius-edge ratio is equivalent to the standard
aspect ratio. Hence, the 2D techniques of this section are relevant for FEM meshes as well as CVM meshes.

4.1 The Coarsening Hierarchy

We enumerate the assumptions we make about the initial unstructured mesh, and the requirements of the
coarsening hierarchy:

e The initial mesh Mj: This is an unstructured, two dimensional bounded radius-edge ratio mesh. To
simplify the discussion, this section concentrates on the important case of quasi-uniform unstructured
meshes: a mesh whose element sizes differ only by a constant factor.

e Nested Hierarchy: Our algorithm generates a node-nested coarsening hierarchy. A coarsening hierar-
chy can be classified as element-nested, node-nested or non-nested. In general, a triangular unstructured
mesh does not have any element-nested coarsening, unless it was carefully crafted as such.

e The meshes My, ..., Mj: The elements of two consecutive meshes in the hierarchy should approximate
each other well; we require an element of mesh M; 11 to intersect at most a constant number of elements
of M;, for 0 < i < k.

The problem of automatic mesh coarsening is that of producing a hierarchy with size and shape guaran-
tees: My - - - M} must have a uniformly bounded element aspect-ratio, and the number of elements in each
mesh M; 1 must be as small as possible while still conforming to the coarsening hierarchy restrictions.



4.2 Previous Approaches

Figure 5: Repeated applications of MIS can degrade the aspect ratio. In the figure the ratio of the largest
edge to the smallest edge is respectively 1, 3/2 and 9/4.

The problem of mesh coarsening has received much attention. Multi-grid papers either present a heuristic
form of mesh coarsening algorithm, or assume the availability of a mesh coarsener with size and shape
guarantees [13]. Outside of the Multi-grid domain, heuristic mesh coarsening techniques are used to reduce
the size of meshes, as an intermediate step between the mesh generation and the solution phases [4].

The general method used for coarsening unstructured triangular meshes i1s that of picking some subset
of the original mesh nodes and triangulating that set to form the coarsening. A commonly used technique
is that of the Maximal Independent Set (MIS). The mesh is viewed as a graph, and a subset of the graph
nodes is picked such that no two subset nodes share an edge (independence) and such that no node can be
added to the set without violating independence (maximality).

The MIS technique is very successful in reducing the mesh size to a fraction of its original size; however
it carries no guarantees for the other qualities of the mesh hierarchy, such as its aspect-ratio. The problem is
illustrated in Figure 5: certain choices of an MIS of the original mesh degrade the aspect ratio of the coarser
mesh. The aspect ratio degradation compounds with repeated applications. This can be observed even for
highly uniform meshes.

We note that the MIS technique is usually employed randomly, and it would be intriguing to get prob-
abilistic bounds for the aspect ratio of a mesh coarsening hierarchy thus generated; however the method
outlined in the next subsection is simple, efficient and provides aspect-ratio and size guarantees.

4.3 Our Coarsening Algorithm

Repeated application of the MIS technique to construct a coarsening hierarchy can degrade the aspect ratio
of the meshes. Intuitively, the information contained in each mesh is increasingly noisier. One way to avoid
this escalating degradation is to build mesh M; from mesh M, rather than from mesh M;_;.

The method we propose uses the initial mesh My to reconstruct a sphere-packing spacing function. A
hierarchy of coarser spacing-functions is then used to guide the sphere-packing for each level of the coarsening
hierarchy.

Refer to Figure 6 for the algorithm. We now discuss some of the steps:

¢ Reconstructing the spacing function (step 1): The first spacing function computed, fo, is half
the distance to the nearest neighbor. fy is 0.5-Lipschitz, since for any two points p,q € Py fo(p) = r
implies fo(q) < 0.5||p — ¢|| + r. By the nearest neighbor definition the spheres of radii {fo(p;)|p;i € P}
do not intersect, hence My is a sphere-packing with respect to fy.

e The spacing function for mesh M; (step 3a): f; is generated by taking a maximum of a constant
function and a 0.5-Lipschitz function and so is 0.5-Lipschitz itself. A simple max operation to obtain
the spacing function of the coarser mesh is sufficient in that case since the original mesh was quasi-
uniform. This has the effect of coarsening out only features smaller than a certain value. For more
general meshes, it is desirable to coarsen out features of different sizes simultaneously.

The size of the node set P; associated with level 7 is small compared to | Pyl. Tt is inefficient to explicitly
compute f; for each and every point of Py. Instead, the points Py are bucketed using buckets of size
O(2%). The function value f;(p) is explicitly computed only when point p is referred to. A variation
of the algorithm can be implemented such that only a few points from each bucket are ever touched.

e The node set of mesh M, (steps 3a-3¢): Increasing the spacing function causes a fraction of the
points to be pruned out when the MIS of the conflict graph C'G; is generated. In step 3¢, @ can always



Algorithm: COARSEN(M))

Input: My, a triangular mesh
Specified by: F; the mesh nodes; Iy the mesh edges.
k, the number of levels in the output.

Output: M, --- My, the coarsening hierarchy meshes.
Method:

1. Vp € Py compute fy(p) = 0.5 mingzp.qep, lp— 4|l
2. Let pu = minp, fo.
Let Q=10.

3. For i=k down to 1

(a) Vp € Py compute f;(p) = max(u2, fo(p)).

(b) Comstruct a conflict graph CG; = (V. E) of Py with respect to f; as follows:
V="F and E={(p,q):llp—qll < filp) + file)}.

(c) Let F; be a completion of () into an MIS of CG;.

(d) M; is a Delaunay triangulation of P;.

(e) @Q=F;.

end for

Figure 6: The coarsening algorithm.

be completed to an MIS of C'G; since CG; C C'Giy1. The conflict graph C'G is an auxiliary graph,
and is not generated explicitly in an efficient implementation of the algorithm. We use the bucketing
scheme mentioned above. The MIS of C'(G is generated point by point. As a point is added to the MIS,
all the points in buckets that conflict with it are removed from consideration.

The issue of the boundaries was omitted from the discussion so far. The geometry of the boundary poses
restrictions on the amount of coarsening that can be done while still maintaining boundary integrity, or
using good aspect ratio elements. The right way to coarsen the boundary beyond the boundary geometry
restrictions is an interesting research issue. Our approach can be adapted to different solutions: (1) User
supplied descriptions of the coarser boundaries or heuristically changing the boundary when coarsening
beyond boundary integrity, and (2) Tolerating bad aspect ratio triangles on the boundary only.

Assuming coarsening beyond boundary integrity is not required, the coarsening algorithm 6 is adapted
to the boundary case much like algorithm 4. The boundary is coarsened in ascending order of dimension.
First, a conflict graph C'G° with respect to the coarsening function is generated over the boundary input
points, and a set of nodes Sy which is an MIS of C'G? is obtained. Then the conflict graph C'G* is generated
over the input segments. The node set of Sy is completed to a node set .S; which is an MIS of CG'. The
conflict graph C'G? also contains the edge protecting spheres corresponding to the edges of nodes from Sj.
Sy, the MIS of C'G?, is the final node set for the coarser mesh. This concludes one coarsening iteration, as
in step (3) of algorithm coOARSEN, which is then repeated to produce coarser and coarser meshes. Figure 4.3
demonstrates this approach, for the more interesting, non quasi-uniform, air-foil mesh. See Table 4.3 for the
triangle statistics.

We sum up with the following theorem:

Theorem 4.1 Let My be a quasi-uniform mesh whose radius-edge ratio is bounded by p. Let My --- My, be
the coarsening hierarchy generated by algorithm COARSEN. There exist constants p1,Z and C' < 1, depending
on p only, such that:

1. The radius-edge ratio of all the elements of all the meshes My - - - My s bounded by p; .



2. Fori=1---k—1, |M;j11| < C|M;|, where |[M()| is the number of nodes in the mesh.

3. Fori=1---k—1, each element of mesh M; 1 nlersects at most T elements of mesh M;.
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Figure 7: Repeatedly coarsening the air-foil mesh. No special attention was paid to coarsening the outside
boundary, thus bad aspect ratio triangles formed by the coarsening on the outside boundary were simply
removed from the mesh. The internal boundaries were coarsened using sphere-packing, thus no bad aspect
ratio triangles formed near them. To achieve that, the shape of the internal boundaries has to be coarsened

as well.

number of | number of max | min | avg max | avg min
nodes elements | angle | angle angle angle
4253 8034 | 117.08 | 8.18 69.5 55.5

1039 1848 | 132.67 | 15.45 77.9 45.10

416 706 | 127.28 | 20.09 80.99 42.42

217 359 | 131.84 | 20.21 82.67 41.67

86 134 | 126.76 | 17.38 81.93 41.04

Angle statistics of the coarsened meshes. The first row presents statistics for the original mesh,
the latter rows for the iterative coarsenings of the mesh.
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