Fully Incremental 3D Delaunay Refinement Mesh
Generation

Gary L. Miller* Steven E. Pav' Noel J. Walkington?

August 1, 2002

ABSTRACT

The classical meshing problem is to construct a triangulation of a region that conforms to the boundary, is as coarse as
possible, and is constructed from simplices having bounded aspect ratio. In this paper we present a fully incremental
Delaunay refinement algorithm. The algorithm is an extension of one introduced by Ruppert. The algorithm is
fully incremental in the sense that it does not need any preprocessing to find an initial Delaunay triangulation or an
initial refinement to refine away all encroached simplices of input faces. The paper includes a careful statement of
the algorithm, an outline of a proof of correctness even when the input may be degenerate, and bounds on the mesh
size. The input angle assumption has been relaxed to arccos Zlﬁ ~ 70° for all but dihedral angles.

Keywords:Delaunay Refinement, Delaunay Triangulation, Mesh Generation, Ruppert’s Algorithm

1 INTRODUCTION

dimensional Delaunay refinement meshing algorithm.

In 1992 Ruppert [1, 2], building upon an idea of Chew
[3], introduced a two dimensional Delaunay Refine-
ment meshing procedure that is conceptually very el-
ementary, provably producing meshes within a con-
stant factor of optimal in size. The algorithm as im-
plemented in Triangle [4] works remarkably well in
practice, with thousands of users. Moreover, the ideas
introduced by Ruppert to establish these results are
very elegant and have been useful in a much broader
context [5, 6, 7]. Shewchuk [8], has developed a three
dimensional version of Ruppert’s Delaunay refinement
ideas. At the time of this writing we do not know
of any publicly available implementation of a three

*Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213. Supported in part by
National Science Foundation Grants CCR-9902091, CCR-
9706572, and ACI-0086093.

TDepartment of Mathematical Sciences, Carnegie Mel-
lon University, Pittsburgh, PA 15213 Supported in part by
National Science Foundation Grants DMS-9973285, CCR—
9902091, and ACI-0086093.

iDepartment of Mathematical Sciences, Carnegie Mel-
lon University, Pittsburgh, PA 15213. Supported in part by
National Science Foundation Grants DMS-9973285, CCR—
9902091, and ACI-0086093. This work was also supported
by the NSF through the Center for Nonlinear Analysis.

We have implemented a fully incremental refinement
algorithm with some success [9]. One of the goals of
this paper is to give a complete enough exposition
so that one may relatively easily implement a three
dimensional Delaunay refinement meshing algorithm.
We hope to release our version shortly and have in-
cluded some simple figures from it.

While it is easy to state how Delaunay refinement algo-
rithms should function, many subtle points arise when
implementing them in three dimensions. These al-
gorithms construct distinct triangulations of each in-
put edge, face, and region; however, these triangu-
lations can not be maintained independently of each
other. Understanding and controlling the interactions
between this partial order of meshes is critical for anal-
ysis and correctness of any algorithm. This issue is
not addressed in the high level descriptions of these
algorithms stated in the literature. By making the
algorithm fully incremental, and by introducing cer-
tain induction hypotheses, these interactions becomes
more explicit and easier to understand. Geometric
degeneracies also give rise to subtle problems rarely
addressed in the high level descriptions of the algo-
rithms. In the absence of degeneracies, upon termi-

nation of the algorithm all of the “distinct” triangula-
tions of the edges and faces agree with the triangula-
tions inherited from the three dimensional region. In
practice, geometric degeneracies can cause Delaunay
refinement algorithms to recurse infinitely (even if ex-
act arithmetic is assumed). To resolve this problem we
introduce a partial order on the “work queue” which
guarantees certain compatibilities between the partial
order of meshes and in the presence of exact arithmetic
eliminates problems associated with degeneracy.

The optimal run time of Delaunay refinement algo-
rithms is still an unknown and we do not address this
here. Examples suggest that, in the worst case where
there are both very large and very small features, the
running time is Q(M?) where M is the size of the out-
put mesh. One goal of this paper is to present an algo-
rithm which is not blatantly quadratic in its run-time.
As stated above, many of the algorithms in the liter-
ature do not make explicit how certain steps should
be implemented. One could assume that they had in
mind an auxiliary data structure, such as an octree,
to facilitate various searches; the details are usually
lacking. We are able to construct our mesh incremen-
tally. That is, we begin by picking a small number
of points, say four in 3D, and forming the mesh on
these four vertices. At each stage we add either a new
input or Steiner point to the mesh induced on these
points. In some sense our algorithm is the “minimal
perturbation” required to change the Bowyer Watson
triangulation algorithm into a meshing algorithm.

While degeneracy is frequently dismissed as “an event
having probability zero,” this is not the case in practice
since mechanical components typically contain rectan-
gular faces and circular holes. Also, algorithms in com-
putational geometry involve many “real to Boolean”
operations so are inherently ill posed. As stated above,
even if exact arithmetic is assumed geometric degen-
eracies can cause infinite recursions and other modes
of failure. Our analysis assumes all quantities are com-
puted exactly. Shewchuk [10] developed precise real to
Boolean predicates, and empirical evidence shows that
this approach has minimal impact upon performance.
In this situation algorithms must still accommodate
the geometric degeneracies. For example, if four points
are cocircular, then the Delaunay triangulation is not
unique. In two dimensions only one mesh is being con-
structed, so any runtime breaking-of-symmetry works.
As stated above, in three dimensions there is a partial
order of independently maintained two and three di-
mensional meshes and at termination they must agree.
Our algorithm was carefully constructed to accommo-
date this requirement and effectively breaks symme-
tries in each mesh in a consistent fashion.

In order to show that a mesh is size optimal it is neces-
sary to consider the local feature size of a piecewise

linear system (PLS) (i.e. a collection polytopes with
specified intersection conditions) [7]. Recall that the
local feature size at a point & € R? is the distance to
the second nearest disjoint feature (polytope) in the
PLS. When the input data and output mesh are con-
sidered as PLS’s, it is known that an output mesh
with bounded aspect ratio that conforms to the input
is size optimal if and only if the local feature size of
the input and output are bounded above and below
by a constant of each other.! Delaunay refinement al-
gorithms in three dimensions do not produce meshes
satisfying this definition of optimality. The meshes
they produce are pointwise optimal in the sense that
(i) they conform to the input, (ii) each simplex has a
bounded ratio of circumradius to shortest edge, and
(iii) the distance from any point z € R to the second
nearest mesh point, which we denote by [fso(z), is
bounded below by some constant times the local fea-
ture size of the input (see Section 5). In particular,
meshes constructed using Delaunay refinement algo-
rithms typically contain slivers. On the other hand, It
has been shown that meshes satisfying the radius-edge
condition have many important properties, including
the fact that the the number of tetrahedra that share a
given point is bounded, [5]. Thus if we bound the num-
ber of vertices in the mesh we also get a bound on the
number of tetrahedrons. Recent results [11, 12] con-
struct “smoothing” algorithms which perturb a point-
wise optimal mesh into an optimal mesh.

Prior to Ruppert’s paper the only two-dimensional
meshing algorithm having a sound theoretical foot-
ing was the quadtree algorithm introduced by Bern,
Epstein, and Gilbert [13]. Meshes produced by the
quadtree algorithm have “Cartesian character” and
are not invariant under rotation of the input data;
moreover, empirical evidence suggests that while the
output size of this algorithm is within a constant of
optimal, the constant is significantly larger than that
of Ruppert’s procedure. The quadtree algorithm was
extended to three dimensions by Mitchell and Vava-
sis [14]. Their octree algorithm is non-trivial; how-
ever, they have implemented a very general version
of it [14, 15] and it is the only provably correct three
dimensional meshing algorithm that we are aware of
that has actually been implemented.

2 BACKGROUND
2.1 Notation

In order to clearly define the input we recall the fol-
lowing definitions from Miller, et al. [7]

Definition 2.1 (Polytope and PLS) 2 A polytope

I This definition of optimal is slightly stronger the usual
concept of size optimal.
2Some authors have started using the term piecewise-

is the conver combination of finite set of points P C
R?. The dimension of the polytope is the dimension of
the affine subspace generated by P.

A piecewise-linear system, or PLS, is a set of polytopes
W with the following properties:

o The set W is closed under taking boundaries, i.e.,
for each polytope P in W, the boundary of P is a
union of polytopes in W .

e W is closed under intersection.

e For polytopes P, Q in W, if dim(PNQ) = dim(P)
then P C @Q and dim(P) < dim(Q).

The dimension of a PLS is the dimension of the
highest-dimensional polytope in that PLS, and we think

of the polytopes of a d-dimensional PLS as being em-
bedded in R?.

Our code does not restrict itself to convex polytopes.
In fact the code appears to handle a wider class of
input, for example the input as shown in Figure 8, one
of whose 2D faces is a square annulus. Future work
should specify exactly the class of input “polytopes”
allowed.

In several of the proofs it is very useful to know the
dimension of the lowest dimensional polytope contain-
ing a given point we call this the containing dimension
of the point.

Definition 2.2 Let W be a PLS and p be some point.
The Containing Dimension of p in W, denoted
CD(p), is the dimension of the lowest dimensional
polytope in W that contains p. If no polytope con-
tains p then CD(p) is the dimension of the underlying
space, i.e., d.

We adopt Ruppert’s terminology which distinguishes
the set of input edges So in the PLS from other edges
by referring to them as input edges, and we refer to
(them or) their subdivisions as segments. In three di-
mensions the input will also consist of a set of planar
two dimensional polytopes denoted by Fy which we
refer to as the input faces. These faces will be tri-
angulated and we will refer to the triangles in these
triangulations as facets and denote their union as F.
The “empty sphere” property of Delaunay triangula-
tion plays an important role of our algorithm and the
following definitions are useful in this context.

Definition 2.3 Let K C R? be a simplez.

e The diametral ball of K, denoted B(K), is the
open ball of minimal diameter containing the

linear complex(PLC) but the definition is the same as a
PLS.

vertices of K. If dim(K) = d then B(K) is the
circumball of K.

o Let p € RY, then p encroaches upon K if p €
B(K). If K is a simpler in a triangulation, we
say it is encroached if any vertex of the triangu-
lation 1s inside its diametral ball.

The boundary sphere if B(K) is denoted by S(K).

e The radius-edge ratio of K is the ratio of the
length of the radius of B(K) to the length of the
shortest edge of K.

2.2 Incremental Delaunay Algorithm

Our meshing algorithm is based upon the Bowyer
Watson incremental Delaunay triangulation algorithm
which we briefly recall here.

The incremental algorithm for computing the Delau-
nay triangulation of a set of points is initialized by
determining a large bounding simplex (or box) which
contains all of the points P and initializing 7 to be
this simplex. Next, the points in P are added one at
a time to 7 as follows. Given p € P, remove all of
the d-simplices in 7 that contain p in their circum-
balls B(t). This leaves a “cavity” (the Delaunay Cav-
ity) in the triangulation bounded by a set of simplices
K = {ki,ks,... ,kn} (see Figure 1). The cavity is
filled by adding simplices to 7 of the form K = (p, k;)
having apex p and opposite simplex k; € K.

The algorithm for determining the simplices in 7 con-
taining p in their circumsphere needs to be specified.
This is a crucial step in the analysis of the algorithm.
One method is to assign every point p € P not yet in
the triangulation to a simplex K for which p € B(K).
Given a point-simplex pair, (p, K), all simplices K’ for
which p € B(K') can be determined by a local search
since their union forms a connected patch (the cavity).
As the search proceeds and simplices K' in the cav-
ity are removed, the points {p'} that were assigned to
them are gathered, and reassigned to one of the new
simplices having p as an apex, see [16]. An alterna-
tive method is to maintain a data structure for point
location which essentially stores the decision tree used
to assign the points to simplices in the “gather and
reassign” step just described. This procedure has the
advantage that the new points (such as segment split
points) can be introduced at any stage.

2.3 Degeneracy

Given a collection of points P, the classical Delaunay
“empty ball” criterion states that if an empty ball B
contains ¢+1 points on its boundary then the /-simplex
formed from their convex hull is present in the Delau-
nay triangulation of P. This statement holds in the
absence of degeneracy; that is, when the convex hull

(a) point to be added.

(b) cavity removed.

(c) tent panels added.

Figure 1: The incremental Delaunay construction.

of any ¢+ 1 points lying on the boundary of an empty
ball has dimension /. When the dimension is less than
¢ the empty ball criterion does not determine a trian-
gulation of the convex hull of the input points, instead
it defines a decomposition into a unique collection of
Delaunay polytopes.

Example: If the empty ball criterion is used to “trian-
gulate” the eight vertices of a cube, the decomposition
into Delaunay polytopes would consist of the cube, its
six square faces and the edges of the cube.

In this situation Delaunay triangulation algorithms,

represent the Delaunay polytopes as a union of sim-
plices; clearly these triangulations are not unique. The
triangulation produced by the incremental algorithm
will depend upon the order in which the points are pro-
cessed. We have defined the circumballs of a simplex
to be open; however, the incremental algorithm will
also produce a consistent, but different, Delaunay tri-
angulation if the balls are chosen to be closed. The two
dimensional meshing algorithm introduced below will
work if diametral balls are defined to be open or closed;
however, in three dimensions degeneracies could result
in an infinite recursion if the diametral balls are de-
fined to be closed. By defining circumballs to be open
and assigning an order in which points are inserted
into the triangulations we avoid the problem with de-
generacies encountered by Shewchuk [8]. In [8] distinct
Delaunay triangulations of faces input to the three di-
mensional meshing algorithm had to be adjusted to
agree.

3 AN INCREMENTAL 2D MESHING
ALGORITHM

3.1 Overview

Our incremental algorithm is a modification of the in-
cremental Delaunay triangulation algorithm described
above. Central to the implementation and analysis are
the following invariants that we maintain throughout.

Induction Hypotheses: At each stage a set of points
P, segments S, and a Delaunay triangulation 7 of a
subset of P is maintained. These three sets satisfy

1. If the two end points of a segment s € S are in T
then s is an edge in T

2. Segments present as edges in 7 are not en-
croached by vertices in 7.

We implicitly assume that the union of the sets of
points, P, and segments, S, form a PLS in the sense
outlined in Definition 2.1. Notice that in the absence
of degeneracy hypothesis (2) implies hypothesis (1).

In order to interpret the induction hypotheses it is im-
portant to correctly interpret what is and what is not
a segment. Input to the algorithm is a set of points
Po and a set of pairs of points Sp which correspond to
input line segments. During the execution of our al-
gorithm we maintain a set of points, P, and segments,
S. These sets are initialized as P = Pp and S = So,
and subsequently an edge (p,r) in the triangulation is
called a segment if and only if (p,r) € S. Frequently
such a segment (p, r) will be split. This corresponds to
removing (p,r) from S and adding in the two halves
5« (S\ {(p,r)}) U{(p,q), (q,r)} where ¢ is the mid
point of (p,r). Notice that after this operation (p,r),
while still an edge in the triangulation, is no longer
considered to be a segment (it is not in S).

1. Procedure add-point2d ()

2. INPUT: A point p, the current triangulation, a
set P of points queued for Force’d addition to
the triangulation, a set of segments S, a queue
of skinny triangles, and additionally an option
Force|Provisional.

3. OuTpUT: The updated triangulation (with p in-
serted), segment set and queue of skinny trian-
gles, or an exception which returns a segment mid
point.

4. Let t be a triangle which p encroaches.
5. DETERMINE THE DELAUNAY CAVITY:

e Beginning at t, search adjacent triangles
to determine all triangles # which p en-
croaches.

e If removal of a triangle eliminates a seg-
ment from the triangulation split the seg-
ment and, (a) if this is a Force’d addition,
add the mid point to the queue P and con-
tinue; otherwise, (b) if this is a Provisional
addition, abort and return the segment mid
point.

e As each boundary edge (g, r) is located, de-
termine if it is a segment. If so, and if p
encroaches upon it then split the segment
and (a) if this is a Force’d addition add the
mid point to P and continue; otherwise, (b)
if this is a Provisional addition, abort re-
turning the mid point.

6. FILL THE CAVITY: Remove the triangles in the
cavity from the mesh and for each edge (¢,r) on
the cavity boundary

e Add the triangle (p,q,r) to the triangula-
tion.

e If (p,q) is a segment and r encroaches upon
it then split (p,q) and add the mid point
to P. Similarly if (p,r) is a segment and is
encroached upon by ¢ it is split.

e If (p, g, r) has radius-edge ratio greater than
p2, add it to the queue of skinny triangles.

7. If p is the end point of a segment (p, g) not in the
triangulation (¢ is in the triangulation, but not
on the cavity boundary) split the segment and
add the split point to the queue P.

8. If P # (), remove a point p from P and recursively
call add-point2d(p, ... ,Force).

Figure 2: Point Insertion Algorithm for the 2d Incre-
mental Algorithm

The function add-point2d() described in Figure 2 is
a variant of the incremental Delaunay procedure de-
signed to maintain the induction hypotheses. This
function is the heart of our incremental algorithm and
is lazy in the sense that it never splits segments until
an encroachment is detected during the construction
of a Delaunay cavity. Since the procedure for finding a
triangle encroached by the point in Step 4 is identical
to that used for the incremental Delaunay algorithm
the details for doing this have been omitted. The pa-
rameter ps occurring in Step 6 is threshold radius-edge
ratio; triangles having a smaller ratio are declared to
be skinny.

The initial call to add-point2d() with the Force op-
tion will produce a mesh that conforms to the input.
The final stage, where skinny triangles are eliminated,
is accomplished by a function rm-tri() which simply
makes judicious calls to add-point2d () as indicated in
Figure 4. The complete algorithm then consists of the
following three steps which are illustrated in Figure 3

1. INITIALIZATION: After reading the input sets of
points and segments, initialization is exactly as
in the incremental Delaunay triangulation algo-
rithm, ¢.e., construct a bounding triangle that
contains all the input points.

2. CoNSTRUCT A CONFORMING TRIANGULATION:
The initial call to add-point2d(... ,Force)
constructs a triangulation which conforms to the
input and satisfies the induction hypotheses.

3. ELIMINATE SKINNY TRIANGLES: This is accom-
plished by a call to rm-tri().

The following two lemmas, which we state without
proof, verify that our algorithm will maintain the in-
duction hypotheses and that circumcenters of triangles
do not get “too close” to input edges. This later con-
dition being required to prove pointwise optimality of
the final mesh.

Lemma 3.1 If a mesh satisfies the induction hypothe-
ses, then the mesh obtained by inserting a new point
into the mesh by add-point2d () satisfies the induction
hypotheses.

Lemma 3.2 Let p be the circumcenter of a skinny tri-
angle that is added to the triangulation. Then p doesn’t
encroach upon any segment in the triangulation when
it is added, and mever emcroaches upon any segment
subsequently added to the triangulation.

4 A 3D IMPLEMENTATION
4.1 Overview

We extend the incremental algorithm developed for
the two dimensional problem to solve the meshing

(a) Input data.

(c) Final triangulation.

Figure 3: The three steps of our incremental Rup-
pert algorithm.

problem in three dimensions. Input points to the three
dimensional algorithm will be handled as they were in
the two dimensional algorithm; they are always in-
serted (Force’d) into the triangulation. As in the two
dimensional algorithm, points will be added to input
features to ensure that they are represented in the fi-
nal (3d) mesh. In order to see the analogy between
the two and three dimensional algorithm it is conve-
nient to recall how input edges are accommodated in
the two dimensional algorithm.

e A “Delaunay triangulation” of each input edge is
maintained (as a set of segments) independently
of the two dimensional triangulation.

e The triangulation of an edge was refined in or-
der to ensure it appeared in the two dimensional
mesh. The refinement operation, while essen-
tially an atomic operation in two dimensions,

1. Procedure rm-tri()

2. INpUT: The current triangulation, the segment
set, and the queue of triangles to be removed from
the mesh.

3. OutpuT: The triangulation and set of segments.

4. Let t be a triangle in the queue. If ¢ it is no longer
in the triangulation remove it from the queue and
continue; otherwise, attempt to add its circum-
center, p, to the triangulation using the proce-
dure add-point2d(p, ... ,Provisional). This
can have two outcomes:

e The addition is successful in which case ¢
has been eliminated, so can be removed
from the queue of skinny triangles.

e An exception is raised and a point p’ is
returned. At this stage the triangulation
and queue of skinny triangles have not been
modified. p’ is now Force’d into the tri-
angulation by a call to add-point2d(p’,
... ,Force) which does update the trian-
gulation, segment set and queue of skinny
triangles.

5. Recursively call rm-tri() until the set of skinny
triangles is emptied.

Figure 4: Function to Eliminate Triangles.

could be decomposed into the following steps:

— If a “simplex” (segment) in the triangula-
tion of an edge was found to violate the
induction hypotheses it was queued for re-
moval from the triangulation of the input
edge containing it.

— To annihilate a segment from the triangu-
lation of an edge it’s (circum)center was in-
serted into the edges triangulation.

— The segment center was then queued for
Force’d addition into the two dimensional
mesh.

The three dimensional algorithm will maintain inde-
pendent triangulations of each input edge and input
face. We refer to triangles in the triangulation of an
input face as facets to distinguish them from other tri-
angles appearing in the three dimensional mesh. The
facets are then accommodated in the fashion outlined
above for the segments with one modification: if the
addition of a facet circumcenter to a 2d triangulation
encroaches upon a segment (in the same triangula-
tion), then annihilation of the facet is postponed until
the segment is annihilated. In essence facets are an-
nihilated like the skinny triangles were in two dimen-
sions, and are processed with rm-tri (). If simplices in
the triangulations of input edges and faces are queued

Figure 5: Distinct triangulations of cocircular
points may occur in different meshes.

for annihilation it is first necessary to insert circum-
centers of the lowest dimensional simplex since these
can eliminate a higher dimensional simplices. Below
we precisely state the minimal (partial) order required.

Unlike the two dimensional case, angle bounds upon
the input may not eliminate infinite recursion in three
dimensions arising from degeneracy. This is illustrated
in Figure 5 where a square face is required to be repre-
sented in a 3d mesh. Since the square has two possible
Delaunay triangulations it is possible that distinct tri-
angulations appear in the (independently maintained)
2d triangulation of the face and the 3d triangulation.
This would cause the center of the square to be in-
serted into the 2d triangulation. Since refinement of
the square by repeated insertion of triangle circum-
centers always results in degeneracies (four or more
cocircular points) this process may recurse indefinitely.
Assuming exact arithmetic, we show that this recur-
sion can be eliminated by inserting points into each
mesh in the same order.

4.2 Description of the Algorithm

A triangulation of each input polytope will be main-
tained. While the triangulation of an input edge is
trivial, it is convenient to view it as a triangulation
since all input polytopes are processed similarly. An
initial Delaunay triangulation of each face will be con-
structed which satisfies the two dimensional induction
hypotheses stated in Section 3. Our two dimensional
algorithm, with the following minor modifications, is
used to maintain these triangulations:

e Whenever a segment is split, the split point is
queued for addition to the mesh of every polytope
containing the edge.

e Similarly, whenever the circumcenter of a trian-
gle in the triangulation of an input face is inserted
into a two dimensional mesh, it is queued for ad-
dition to the 3d mesh.

e The queue of “skinny triangles” may now contain
other facets queued for removal.

A work queue is maintained during the execution
of the incremental algorithm. We process jobs with
smaller priority value first. The queue contains pairs
of the form (p, F'), where p is a point to be added to
a polytope F of the input PLS, or pairs of the form
(K, F) where K is a simplex to be annihilated from
the triangulation of F; dim(K) = dim(F'). The work
queue is processed in an order consistent with the fol-
lowing partial order.

Definition 4.1 (Work Order) A total order is first
assigned to points queued for insertion into the mesh.
A fized linear order of the input points is picked and
these points have smallest priority values, and at the
time a Steiner point is first inserted into any mesh of
any polytope it i1s ordered to be greater than any point
constdered previously. Denote this order by <,. We
can now define the partial order < on the work queue

by

e If (p,F) is a point-polytope pair and (K, F') is
a simplez-polytope pair, then (p, F) < (K, F') if
dim(F) < dim(F").

e If(p,F) and (q, F) are point-polytopes pairs with
the same polytope, then (p,F) < (q,F) if and
only if p <p q.

e If(K,F) and (K', F') are simplez-polytope pairs,
then (K, F) < (K', F') if dim(F) < dim(F").

This partial order states that points queued for ad-
dition to the mesh of a polytope F' can be inserted
at any time; however, they must be done in the or-
der given by <,. A simplex (K, F) can be processed
for annihilation only if all queued points (p, F') with
dim(F") < dim(F) have been processed and all sim-
plices (K', F') in polytopes having strictly lower di-
mension, dim(F') < dim(F), have been processed.
Notice that the recursive calls in the two dimensional
algorithm provide an elegant way of processing the
points in an order consistent with the above. Since
the three dimensional algorithm is more complex, be-
low we explicitly implement a scheduler. In this in-
stance it is assumed that the recursive calls in the two
dimensional algorithms are omitted. Our algorithm
may attempt to add the circumcenter p of a triangle
to the triangulation of an input face; however, such
attempts may fail if p encroaches upon a segment. In
this situation p is not included in the order <, it
would only be included if the insertion succeeds.

The functions to add a point to the three dimensional
mesh and to process a tetrahedra for removal are given

in Figures 6 and 7 respectively. The high level descrip-
tion of our incremental algorithm is:

o Initialize the triangulations of each two and three
dimensional polytope to be a large bounding sim-
plex containing all of their input points. The ini-
tial triangulation of an input edge is the segment
containing their two end points.

e Initialize the work queue with the all pairs of the
form (p, F') for which p is an input point in the
polytope F' and dim(F) > 1.

e If the work queue is not empty, select a jobs in
W of highest priority.

- If W = (p,F) is a point-polytope pair,
call add-pointi¢d(... ,Force) where ¢ =
dim(F).2

- I W = (K,F) is a simplex-polytope pair,
(i) if K is a segment, split and queue the
mid-point for addition to every polytope
containing it. (ii) If K is a triangle or
tetrahedra call rm-tri() or rm-tet() re-
spectively.

4.3 Induction Hypotheses

As in the two dimensional algorithm, the function
add-point3d () essentially augments the incremental
Delaunay construction to maintain induction hypothe-
ses which, in turn, guarantee that the input features
are represented in the mesh.

Induction Hypotheses: A set of points, P, seg-
ments, §, and facets, F, and a 3d Delaunay trian-
gulation, 7, of a subset of P is maintained. These
sets satisfy:

1. F is the union of the triangles in the (2d) Delau-
nay triangulations of the input faces. These tri-
angulations satisfy the induction hypotheses for
the two dimensional algorithm.

2. If the two end points of a segment are in the tri-
angulation, then either the segment is present as
an edge in 7 and its circumball is empty (con-
tains no vertices of 7)), or the segment has been
queued for annihilation.

3. If the three vertices of a facet are in the triangu-
lation, then either the facet appears as a triangle
in 7 and its circumball is empty (contains no ver-
tices of T'), or the facet is in the queue of simplices
to be annihilated.

The following two lemmas are the three dimensional
analogies of lemmas 3.1 and 3.2 respectively.

3 Actually a variant of add-point2d is used which is con-
sistent with the 3-d work queue implementation.

. Procedure add-point3d ()
. INPUT: A point p to be added to the (3d) mesh

and an option Force|Provisional. The PLS
data structure is also required to facilitate inte-
gration of other triangulations and insertion into
the work queue.

. OutpuT: The updated data structure with the

point p added to the triangulation, or an excep-
tion returning a lower dimensional segment or
facet k' in the triangulation of an input polytope
P.

. ForM THE CaviTY: The first step is to remove

tetrahedra 7" which p encroaches upon, and deter-
mine the boundary of the cavity. The tetrahedra
are determined by a search starting from a tetra-
hedra T for which p € B(T).

e Beginning at T search the dual graph to find
all T which p encroaches upon, p € B(T).

e When traversing a face of T check to see if
it is a facet (a triangle in the triangulation
of in input face P;). If so then

— If this a Forced add, (£, P') to the work
queue.
— Otherwise, this is a Provisional add;

raise an exception returning the pair
(&, P').

. Examine the removed cavity: if any removed edge

is a segment, either raise an exception, returning
the segment and the input edge containing it, or
insert the segment into the queue of simplices to
be annihilated from the input edge, depending on
if the add is Provisional or Forced, as above.

. Examine the cavity boundary; if any face or edge

on the boundary is a facet or segment, and if p
encroaches upon it, either raise an exception or
queue it for annihilation as above.

. FILL THE CAvITY: Remove tetrahedra in the cav-

ity from the mesh and for each triangle ¢ on the
cavity boundary:

e Form the tet T' = (p : t) and insert it into
the triangulation. Check if any face or edge
of T is a facet or segment, and if it is en-
croached by a vertex of T'. If so, queue the
encroached segment/facet for annihilation.

e If T' is of poor quality (radius-edge ratio
greater than ps), queue it for annihilation.

. If p is a vertex of a segment or a facet, and the

other vertices of the segment/facet are present in
the triangulation but the segment/facet is not,
queue the segment or facet for annihilation.

Figure 6: Point addition routine for three dimen-
sional meshes.

1. Procedure rm-tet ()

2. INPUT: A tetrahedra T to be removed from the
(3d) triangulation, and the PLS data structure
to facilitate modification of the triangulation and
work queue.

3. OurpuT: Updated triangulation, and work
queue.

4. If T is no longer in the triangulation return.
5. Let p be the circumcenter of T. Attempt to
add p to the triangulation with add-point3d(p,

... ,Provisional). There are two possible out-
comes:

e An exception was raised returning an en-
croached simplex ¢’ in some sub-polytope
P’. Add (¢, P') the work queue and return.

e Otherwise the point addition succeeded and
T is annihilated. Remover T from the work
queue and return.

Figure 7: Function to annihilate tetrahedra for the
Incremental 3-d Algorithm.

Lemma 4.2 The induction hypotheses are satisfied.

Lemma 4.3 Clircumcenters of tetrahedra that get
added to the triangulation are never inside the circum-
balls of any segments or facets.

The work order specified in Definition 4.1 guarantees
that vertices common to distinct input polytopes get
inserted into the (distinct) triangulations of each poly-
tope in the same order. In this situation our algo-
rithm will produce the same triangulation of geomet-
rically degenerate points in each polytope; in particu-
lar, the problem illustrated in Figure 5 will not occur.
The proof of this elementary observation appears as
Lemma 4.7 in [9] and is used to establish the following
important corollary.

Corollary 4.4 At the time a simplex K is queued for
annihilation from the mesh of the input polytope F
containing K (dim(F) = dim(K)) either (a) K was
encroached, or (b) K was skinny, or (c) the circum-
sphere of K contains a vertex v € F' from the triangu-
lation of another polytope.

Statement (c) of this corollary states that if a simplex
in the triangulation of an input polytope is annihilated
for no “apparent reason” (i.e. (a) or (b) fail), then the
circumsphere of the simplex contains a vertex in the
triangulation of another input polytope. This shows
that the circumsphere intersects two distinct input fea-
tures from which estimates on the local feature size can
be deduced.

(a) Conforming triangulation.

(b) Final triangulation.

Figure 8: The two steps of our fully incremental re-
finement algorithm. The input was given by a PLS
of a cube with a pyramid removed.

5 CORRECTNESS OF THE ALGORITHMS

In this section we state our main theorem showing that
the meshes produced by our incremental algorithm are
pointwise optimal. Space limitations prohibit the in-
clusion of the proofs which may be found in the tech-
nical report [9].

The functions occurring in the following definition are
the fundamental quantities that characterize the mesh
point densities produced by our algorithm. Ruppert
introduced the definition of local feature size. Here we
consider a slight generalization to his definition which
will allow us to state our main theorem about the out-
put mesh size. Let W be a PLS.

Definition 5.1 The local feature size at z in W,
denoted Us[W](z) equals the distance to the second
nearest disjoint polytope in W, i.e. the radius of the
smallest radius closed ball centered at x which inter-

(b) Final triangulation.

Figure 9: The same figure as Figure 8, but viewed
from above.

sects two feature in W which do not intersect.

We let Ifs equal 1fs[W] where W in the input PLS when
there is no confusion. Since the final mesh is also a
PLS we may speak of its local feature size as well.
It will be useful to restrict the number of polytopes
in a PLS we consider. We let W|; denote the PLS
consisting of polytopes of dimension at most . Thus
Ifs[Wo](z) is the distance from z to the second nearest
point. We let Ifso[W](z) denote ls[IW|o](x)

We can now state our main theorem and the corollary
which establishes pointwise optimality of our meshes.
The proofs are available in [9].

Theorem 5.2 Suppose that the input PLS satisfies:

e the angles between any two non-disjoint input seg-
ments is bounded below by 0 > 7/3;

o the angle between a non-disjoint face and segment
is bounded below by ¢ > cos™ (1/2V/2);

(a) Conforming triangulation.

(b) Final triangulation.

Figure 10: The same figure as Figure 8, but viewed
from below.

e if two faces meet at a point x, then the angle be-
tween any pair of rays emanating from x into each
plane is bounded below by ¢ > cos™(1/2v/2);

e the dihedral angle between non-disjoint faces is
bounded below by /2.

Let the radius-edge ratio threshold for splitting skinny
triangles satisfy p2 > /2, and the threshold for split-
ting skinny tetrahedra be ps > 2v/2. Then there exist
constants C;, 0 <1 < 3, such that at the time an at-
tempt is made to insert the circumcenter p of a simplex
K into the (unique) mesh W' of dimension dim(K),
then Ifs[p] < Cilfso[W'](p) where i = CD(p).

Corollary 5.3 Suppose the algorithm is run on input
that satisfies the hypotheses of the lemma. Then for
all vertices p in the mesh Ifs[p] < (1 + C1)lfso[W'](p)
where W' is the mesh output..

(b) Final triangulation.

Figure 11: The mesh of a complicated input which
has been meshed by the algorithm.

6 COMMENTS ON IMPLEMENTATION

At several places in the procedures we needed to deter-
mine for a given point a simplex whose circumsphere
contains the point, i.e., the point location problem.
Besides point location the two dimensional algorithm
is conceptually easy to implement once the fundamen-
tal data structures to represent a triangulation and the
segments set have been developed. We have a second
implementation of the algorithm in C++ for 2D, [17].
This implementation uses the edge flipping algorithm
as described in [16, Chapter 9] to guide the point lo-
cation and it associates points queued for addition to
the mesh with triangles. The only time a segment is
split and there is no triangle to assign the mid point to
occurs in Step 7. In this step the two end points of a
segment are present in the mesh but the segment does
not appear. In this situation we have just inserted
the second end point in the mesh, so have a triangle
containing this second point. To locate a triangle con-
taining the mid point we implement a geometric search

along the segment starting from a triangle containing
the end point.

The 2D code also accommodates inputs with small
angles. We implemented a version of the technique
suggested by Ruppert [2]. Essentially the input is
“sroomed” so that segments forming a small angle
form isosceles triangles in the mesh, and these isosce-
les triangles are never declared to be skinny. Similar
approaches were considered by Shewchuk in [18]. We
point out that all known heuristics for handling small
angle do not have optimality results associated with
them—one only proves that the algorithm terminates,
so it generates a finite, though possibly very large,
mesh.

For both the two and three dimensional codes pre-
cise in-sphere tests were used to determine if points
encroached upon simplices. These functions use the
variable precision floating point arithmetic proposed in
[10] and were automatically generated from “straight
line code” using the compiler developed in [19]. When
generating the two dimensional Delaunay meshes of
an input face embedded in three dimensions the three
dimensional in-sphere test was used to determine en-
croachment. This was done so that the two and three
dimensional components of the code would always use
the same function to determine encroachment. In par-
ticular, we did not map the faces into the (z,y) plane
and back, since the associated roundoff errors may
cause the two and three dimensional routines to have
a different view of degenerate data.

For our three dimensional code, when a point p was
inserted into a mesh of a polytope F for the first time
(the mesh of dimension dim(F) = CD(p) containing
p) it was inserted (Force’d) into the meshes of all poly-
topes containing F'. It is easy to verify that this is
consistent with the work order in Definition 4.1. As p
is inserted into each mesh the simplices having p as a
vertex are carried forward. This provides a convenient
way to implement Steps 7 of the two dimensional algo-
rithm and Step 8 of the three dimensional algorithm
where the simplices containing the point being inserted
are required.

As an initializiation step, our code creates, for each
input polytope, a large bounding simplex in the sup-
porting hyperplane of the polytope and which contains
all the input points of that polytope. The use of a
bounding simplex avoids the need for code to add a
point exterior to a triangulation. Moreover, maintain-
ing a mesh of a convex connected region which contains
the input polytope simplifies our point location proce-
dure. We must be careful, however, to avoid requiring
that triangles outside the 2-d polytope not be treated
as facets, which we require to be in the 3-d mesh. The
simplest way of dealing with this problem is by mark-
ing triangles in the 2-d meshes as belonging “in” or

“out” of the input polytope. When points are added
to the 2-d meshes, the algorithm may not be able to
discern those which are inside and those outside the
input polytope. However, by the ordering of the work
queue (Definition 4.1), all one dimensional annihila-
tion requests have been processed before the algorithm
works on removing two dimensional features, and these
midpoints have been added to the 2-d meshes. The
algorithm can thus, when a batch of one dimensional
requests have been all processed, sweep through the
2-d meshes and properly mark unknown triangles as

“in”

or “out.” A request to annihilate a triangle which

happens to be “out” can be safely ignored: it is im-
material if the triangle is of poor quality, as it will be
removed before the final meshes are output; that it
does not appear in the 3-d mesh is of no relevance (in
fact we don’t want to force it to be there); a request
to kill it will not be put back on the queue.

[1]

References

Ruppert J. “A new and simple algorithm for qual-
ity 2-dimensional mesh generation.” Proceedings
of the Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (Austin, TX, 1993), pp. 83—
92. ACM, New York, 1993

Ruppert J. “A Delaunay refinement algorithm
for quality 2-dimensional mesh generation.” J.
Algorithms, vol. 18, no. 3, 548-585, 1995. Fourth
Annual ACM-STAM Symposium on Discrete Al-
gorithms (SODA) (Austin, TX, 1993)

Chew L. “Guaranteed-quality
meshes.” CS 89-983, Cornell, 1989

Shewchuck J.R. “Triangle: A two-
dimensional Quality Mesh Generator and
Delaunay Triangulator.”, 1995. See:
http://www.cs.cmu.edu/~quake/triangle.html

Miller G.L., Talmor D., Teng S., Walkington N.J.
“A Delaunay Based Numerical Method For Three
Dimensions: generation, formulation and parti-
tion.” Proceedings of the 27th Annual ACM Sym-
posium on Theory of Computing, pp. 683-692.
ACM Press, 1995

Miller G.L., Talmor D., Teng S., Walkington N.J.
“On the Radius—Edge Condition in the Control
Volume Method.” STIAM J. Numer. Anal., vol. 36,
no. 6, 1690-1708, 1998

Miller G.L., Talmor D., Teng S., Walkington N.J.,
Wang H. “Control Volume Meshes using Sphere
Packing: Generation, Refinement and Coarsen-
ing.” 5th International Meshing Round Table,
‘96, pp. 47-62. Sandia National Laboratories,
1996

Shewchuk J.R. “Tetrahedral Mesh Generation
by Delaunay Refinement.” Proceedings of the
Fourteenth Annual Symposium on Computational

Geometry (Minneapolis, Minnesota), pp. 86-95.
ACM, June 1998

triangular

[9]

[10]

[11]

[15]

[16]

Miller G., Pav S.E., Walkington N.J. “An

Incremental Delaunay Meshing Algorithm.”
Tech. rep., Department of Mathematics,
Carnegie Mellon University, 2002. URL

www.math.cmu.edu/cna

Shewchuk J.R. Delaunay Refinement Mesh Gen-
eration. Ph.D. thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh,
Pennsylvania, May 1997. Available as Technical
Report CMU-CS-97-137

Edelsbrunner H., Li X., Miller, Stathopou-
los G., A. Talmor D., Teng S., Ungor A,
Walkington N.J. “Smoothing and cleaning
up slivers.” ACM Symposium on Theory
of Computing, pp. 273-277. 2000. URL

citeseer.nj.nec.com/edelsbrunner0Osmoothing.html

Li X.Y., Teng S.H. “Generating well-shaped De-
launay meshed in 3D.” Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 28-37. ACM Press, 2001

Bern M., Eppstein D.; Gilbert J.R. “Provably
good mesh generation.” 31th Annual Symposium

on Foundations of Computer Science, pp. 231-
241. Oct. 1990

Mitchell S.A., Vavasis S.A. “Quality mesh gen-
eration in three dimensions.” Proceedings of the
ACM Computational Geometry Conference, pp.
212-221. ACM Press, 1992. Also appeared as
Cornell C.S. TR 92-1267

Mitchell S.A., Vavasis S.A. “Quality mesh gener-
ation in higher dimensions.” SIAM J. Comput.,
vol. 29, no. 4, 1334-1370 (electronic), 2000

de Berg M., van Kreveld M., Overmars M.,
Schwarzkopf O. Computational Geometry.
Springer, 2000

Kadow C. “A fully incremental Delaunay refine-
ment algorithm.” Posterpresentation 10th Inter-
national Meshing Roundtable, Oct. 2001

Shewchuk J.R. “Mesh generation for domains
with small angles.” Proceedings of the Sizteenth
Annual Symposium on Computational Geometry
(Hong Kong, 2000), pp. 1-10 (electronic). ACM,
New York, 2000

Nanevski A., Blelloch G., Harper R. “Automatic
Generation of Staged Geometric Predicates.” In-
ternational Conference on Functional Program-
ming, pp. 217-228. Florence, Italy, September
2001

