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Optimal Good-Aspect-Ratio Coarsening for Unstructured Meshes

Gary L. Miller*

Abstract
A hierarchical gradient of an unstructured mesh Mg
is a sequence of meshes My,..., My such that |Mj]

is smaller than a given threshold mesh size . The
gradient is well-conditioned if for each i in the range
1 < i<k (1) M; is well-shaped, namely, elements
of M; have a bounded aspect ratio; and (2) M; is
a coarsened approximation of M;_;. The gradient
is node-nested if the set of the nodes of M; is a
subset of that of M;_;. The problem of constructing
well-conditioned coarsening gradients is a key step for
hierarchical and multi-level numerical calculations. In
this paper, we give an algorithm for finding a well-
conditioned hierarchical gradient of a two dimensional
unstructured mesh. Our algorithm can be used to
generate both node-nested and non-nested gradients.
The gradient M;,..., M) we generate is optimal in
the following sense: there exists a constant ¢ such
that for any other well-conditioned hierarchical gradient
M;i, ..., My, |M;| < c|M{|, that is, the size of the mesh
at each level is smaller up to a constant factor.

1 Introduction

The class of hierarchical and multi-level techniques has
become one of the most effective and successful classes
of numerical techniques for solving partial differential
equations (PDEs). These techniques have been used in
multigrid methods [4] and multi-level domain decompo-
sition [5].

Numerical methods such as the finite element, finite
difference, and finite volume methods apply the follow-
ing five basic steps to solve a PDE over a domain Q.

1. Formulate the problem (e.g., in term of PDEs)
and describe the geometry and the boundary of a
continuous domain D (sometime called geometric
modelling).

2. Generate a well-shaped mesh M to approximate
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the domain.

3. Generate a system of linear or non-linear equations
over M for the governing PDEs (e.g., assemble the
stiffness matrix and the right hand vector).

4. Solve the system of equations and estimate the
error of the solution.

5. Adaptively refine the mesh and return to step (3)
if needed.

Once the mesh M is generated, we need to solve a
system of linear equations defined over M. A hierarchi-
cal method solves this linear system by first construct-
ing a hierarchical gradient of meshes My, . .., My, where
My = M is the finest mesh that discretizes . For each
i in the range 1 < ¢ < k, the mesh M; is a geometric
coarsening of M;_;. The gist of multigrid methods and
other hierarchical numerical methods is the transforma-
tion of partial solutions from mesh M; to mesh M;_,
using interpolation, and from mesh M; to mesh My
using restriction. Informally, these hierarchical methods
solve a PDE on (2 by first obtaining an initial vector so-
lution either for My or for My, and then improving the
quality of the vector by transforming it hierarchically
up and down the hierarchy while applying some simple
and efficient iterative methods at each level.

The simplest form of a hierarchical gradient is a se-
ries of nested structured meshes (regular grids). Brandt
showed, by carefully using restriction and interpolation,
that the solution for My can be obtained very efficiently
using multigrid methods. See also Bramble, Pasciak and
Xu [10]. Nested structured hierarchical gradients are
attractive choices in practice because they can be eas-
ily generated and because the convergence of the struc-
tured multigrid methods is well understood. However,
the use of structured regular grids limits the applica-
bility of this simplest class of hierarchical gradients to
problems whose domains are simple and whose solution
functions have small or constant Hessian [12, 5, 18].

The use of unstructured meshes is inevitable in
the solution of complex problems with more intricate
domain geometry and solutions. This paper concerns
with the problem of generating quality hierarchical
gradients for unstructured meshes.

The effectiveness of a hierarchical method that uses
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an unstructured hierarchical gradient Mg, ..., My de-
pends on the quality of this gradient [10, 5, 6]. In
particular, Chan and Zou provided sufficient conditions
for multilevel additive Schwarz methods to work on un-
structured meshes. Informally, their conditions require,
for each ¢ in the range 1 < i < k, that (1) M; is well-
shaped, e.g., in two dimensions elements of M; should
have a bounded aspect ratio; and (2) M; approximates
M;_1 in the numerical formulation. The coarsening
problem can thus be informally defined as: Given a well-
shaped mesh Mj and a threshold size b, construct a gra-
dient My, ..M with |Mg| < b that satisfies conditions
(1) and (2).

In this paper, we give an algorithm for the coarsen-
ing problem. Our algorithm guarantees the quality of
the hierarchical gradient (i.e., it produces gradients that
satisfies conditions (1) and (2)). It also minimizes the
size of the mesh at each level up to a constant factor. A
gradient is node-nested if the set of the nodes of M; is
a subset of that of M;_;. Our algorithm can be used to
generate both node-nested and non-nested coarsening
gradients.

A version of this research, for the simpler case
of quasi-uniform mesh coarsening, was included in a
survey of our work we submitted to the 5th international
meshing roundtable [13]. In this paper we address the
problem of general unstructured mesh coarsening.

2 The problem of Mesh Coarsening

2.1 Mesh qualities. A two dimensional domain Q
is a planar straight-line graph (PSLG), whose boundary
is polygonal. The edges in the PSLG can represent
boundaries between two materials, points of special
interest or holes. In this extended abstract we assume
a simple form of this general definition. Qur domain is
the unit square, and its boundary is the square’s four
edges.

A mesh is a discretization of the domain. The
discrete components of the mesh are the mesh elements.
We mostly discuss triangular meshes, whose elements
are triangles. We will often refer to the following three
categories of meshes: (1) grids: a mesh whose elements
are squares of equal size. (2) quasi-uniform unstructured
meshes: a mesh whose elements’ side lengths differ by
at most a constant factor. (3) unstructured meshes: a
general mesh, with no restriction of the elements’ size
and shape.

Not all meshes perform equally well in numerical
computations. Numerical and discretization error de-
pend on the geometric shape and size of the mesh el-
ements [17]. We will use the following definitions for
quantifying the geometric shape and mesh element size.

DEFINITION 2.1. The edge-length function of a
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mesh M, ely, is defined for each z € Q to be the length
of the longest edge of all the mesh elements that coniain
4,

DEFINITION 2.2. The aspect ratio of a triangular
mesh element is the smallest angle of the element.
The aspect ratio of a mesh is the smallest angle of its
elements.

A mesh is said to be of bounded aspect ratio if its
aspect ratio is larger than @, where 8 is a predefined
parameter quantifying the mesh quality. We note that
there are many definitions for the aspect ratio of a two
dimensional mesh which are interchangeable with the
above definition [2].

The el function is a measure of the mesh element
size; the aspect ratio is a measure of the element shape.
These two qualities are often at odds: to produce a good
aspect ratio mesh conforming to the boundary the mesh
often has to be finer. The goal of mesh generation is to
construct a good aspect ratio mesh whose element sizes
are as large as possible (so that the number of mesh
elements is as small as possible).

2.2 Mesh coarsenings. A coarsening M’ of a mesh
M is a mesh whose edge length function ely is point-
wise bigger than elj but still conforms to the same
domain.

The coarsening can be classified as element-nested,
node-nested or mon-nested. In general, a triangular
mesh does not have any element-nested coarsening,
unless it was carefully crafted as such. Furthermore,
coarsening, even in the relaxed sense of node-nested
meshes, can cause a degradation in the aspect ratio
of the coarser mesh compared to that of the finer
mesh. In this paper, we are interested in generating
a sequence of respectively coarser meshes - a gradient
of mesh coarsenings. This sequence will be referred
to as the hierarchical coarsening gradient of M. The
objective of this paper is to develop an automatic mesh
coarsener which guarantees good aspect ratio of the
entire coarsening gradient. We now introduce some
definitions to formalize our discussion.

DEFINITION 2.3. The depth of an hierarchical
gradient is the number of meshes (levels) in the gra-
dient; The width of level i of the gradient is |M;|, the
number of elements in the mesh M;.

DEFINITION 2.4, Let 0 be a constant in the range
0 <0 < w/2; and let b,I be two positive constants.
A hierarchical gradient My, ..., M} in two dimensions is
a (6,Z,b)-Well-Conditioned Hierarchical gradient
if |[Mi| < b and for each i in the range 1 <i<k each
angle B in M; satisfies 6 < B < 7 — 4. Furthermore,
every two adjaceni meshes are T-locally similar, i.e.
elar,,, < Tely,.
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The first condition, good aspect ratio, is motivated
by the requirement from iterative methods: The multi-
grid method and multi-level domain decomposition use
an iterative method to “smooth” the residual error
at each level. The convergence properties of iterative
methods are related to the aspect ratio of the underly-
ing mesh. Chan and Zou [6] showed that bounded as-
pect ratios at each level are important for both additive
Schwarz based multi-level domain decomposition and
multigrids. The second condition, the local similarity,
is motivated by the restriction and interpolation phases
of the multigrid methods, which are used to transform
partial solution between meshes in adjacent levels of the
hierarchy. To reduce the interpolation and restriction
errors, adjacent meshes should approximate each other
well. Both local similarity and bounded aspect ratio
were used in Chan and Zou’s analysis, which showed
that they are sufficient for multilevel additive Schwarz
methods to work on unstructured meshes.

Given My and (6,Z,b), the problem of hierarchical
mesh coarsening is to find a (6, Z, b)-well conditioned
hierarchical gradient with smallest depth and width.

2.3 Previous approaches to mesh coarsening.
To produce a node nested coarsening, a subset of the fine
mesh nodes is picked, and retriangulated to form the
coarse mesh. Various approaches to mesh coarsening
differ in the methods they use to pick the coarser
mesh nodes, and the retriangulation method. The
problem of mesh coarsening received much attention,
see [9, 19, 11, 15, 1, 7]. However, none of the papers we
found address the geometrical issues of mesh coarsening.
Properties such as element quality of the mesh or the
size of the intersection of the coarse and fine mesh (their
local similarity) are not discussed beyond empirical
observations.

Picking the node set of the coarser mesh using a
maximal independent set (MIS) technique seems to be
the most popular approach [5, 9, 19, 11, 15, 7]. The
1D skeleton of the fine mesh is viewed as a graph,
and a set of nodes such that no two share an edge
is picked (independence). A node not picked for the
coarse mesh must neighbour a node that was retained,
so the independent set is maximal. An MIS can be
constructed to ensure a constant factor reduction in the
number of the mesh nodes. However, we now show that
the MIS technique can not guarantee the aspect ratio
of the coarsened meshes, both for quasi-uniform and for
general unstructured meshes.

Quasi-uniform unstructured mesh coarsen-
ing: The MIS on the 1D skeleton technique is very suc-
cessful in reducing the mesh size to a fraction of its orig-
inal size; however it carries no guarantees for the other

qualities of the mesh hierarchy, such as its aspect-ratjq
The problem is illustrated in Figure 1: certain choiceg
of an MIS of the original mesh degrade the aspect s
tio of the coarser mesh. The aspect ratio degradatiop
compounds with repeated applications. This can be oh.
served even for very uniform meshes, as in the grid-like
mesh of the figure.

Figure 1: Repeated applications of MIS can degrade the
aspect ratio.

General unstructured mesh coarsening:
Above we gave an example of a quasi-uniform mesh for
which certain choices of the MIS cause repeated degra-
dation of its aspect ratio. For general unstructured
meshes, a much stronger statement is true: there ex-
ists an unstructured mesh such that all possible choices
of MIS result in a coarsening hierarchy with increasingly
worse aspect ratio.

Let My be a one dimensional mesh whose nodes are
P={2-1—-1:i{=1...n}. The edges of the mesh
are between adjacent points, My is a line graph of n
nodes. The aspect ratio of a one dimensional mesh is
the maximum ratio between two adjacent edges, hence
the aspect ratio of My is equal to 2.

For this mesh there is no well-conditioned coarsen-
ing gradient of depth logn. This statement is a corol-
lary of the results presented in this paper. Since the
MIS technique reduces the size of the mesh by a con-
stant factor at each level, it fails to produce good aspect
ratio coarsenings.

In particular, the MIS technique defines a hierar-
chical gradient where the jth mesh {M;} has node set
Pj={2%-1'—-1:i=1...n/2/}. In other words, P; is
formed by taking every other point of P;_;. The aspect
ratio of mesh M; is therefore at least 22’ — 1, and wors-
ens super—exponentially. This one dimensional example
can easily be extended to two and three dimensions.

As part of the results in this paper, we will ob-
tain bounds for the shortest (up to a constant) well-
conditioned gradient for this mesh and provide simple
algorithms for its generation.

3 Function Based Mesh Coarsening

In this section, we present our approach to mesh coars-
ening. In order to construct a well-conditioned hier-
archical gradient we have to overcome the escalating



degradation of the mesh quality, demonstrated in the
previous section.

Rather than using only the information present in
the respectively coarser meshes, we use an intermediate
representation which we term “spacing functions”. The
spacing functions, along with the point set of the
initial mesh, capture the information necessary for the
generation of the coarser meshes.

At a high level, My defines a spacing function fo
which describes the typical size and point spacing of
Mo. Our idea is to compute a spacing function f;
for each level, and use it to generate M;. Given the
spacing functions our task is then to create a point
set that is “spaced” according to that function, and
triangulate it (as for mesh generation [12]). We refer
this mesh coarsening technique as function-based
coarsening. It contains four steps: (1) recover the
spacing function of the initial mesh; (2) increase the
spacing value of the mesh points smoothly to obtain the
new spacing functions; (3) delete some mesh nodes so
that the remainder nodes are spaced according to the
new spacing function; and (4) compute the Delaunay
triangulation of the nodes obtained in Step (3).

3.1 Recovering the spacing function: We first
formalize our notion of a spacing-function.

DEFINITION 3.1. Let 8 > 1 be a real number. A
point set P is B-spaced according to a function f if for
any two points p,q € P, f(p1)+ f(p2) < Bllp — ql|- The
function f is then referred to as the B-spacing function
of P.

The initial spacing function we use is based on the
natural spacing of the original mesh:

DEFINITION 3.2. The nearest neighbour (NN)
function of a point set P C Q assigns to each point
p € P the distance 1o the point ¢ € P nearest to it
such that ¢ # p. It can be eztended to the domain Q by
assigning to a point € Q the radius of the smallest
closed ball ceniered at = and containing at least iwo
points from P.

3.2 Coarsening the spacing functions:
DEFINITION 3.3. Let P be a point set in a domain
Q in R?. Lel g be a spacing function over Q. Let C > 1
be a real number. The C-coarsening of f with respect
to P is a spacing function over Q such that for allz € Q

fo.c.p(2) = min fo.c(®),

where for each point p € P, focp(z) = C - g(p) +
|lp— z||. When clear from the context, we omit g from
the notation.

We can use a simpler way to generate the coarsening
function for quasi-uniform functions g:
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Procedure: ONE_LEVEL_COARSEN(M)

Input: M, a mesh over a square (2.
C', the coarseing factor.
g, the (-spacing function of M.

Output: M;, a coarser triangular mesh.

Method:

1. Let P, be the square’s corners; P; the
mesh nodes located on the square’s
edges; P, the rest of the mesh nodes.

2. Compute f(p;) = fy,c,p(pi) for each p; € P.

3. Let P, be the set of points {p} in P
whose distance from the boundaries is
at least §f(p). (6 is a small fixed
constant.)

4. Construct a conflict graph with respect
to f: CG(PoUPLUP,).

5. Let S be a maximal independent set of
CG generated by first considering the
points Py, then P;, and finally P».

6. Return
M, = DT(S), the Delaunay triangulation
of S.

Figure 2: One level function based coarsening.

DEFINITION 3.4. Let P be a point set in ¢ domain
Q in R2. Let g be a spacing function over Q. Let
C > 1 be a real number. The C-threshold-coarsening
function is defined as:

tgcp(z)= max(g(x),C;réi‘I};g(y))

The set of coarsening functions we suggest is therefore:
o for general coarsening: {fypy.: p} and 3 is a
constant depending on the aspect ratio (see section

5).

o for quasi—uniform coarsening: {py,: p} and

=2

3.3 Coarsening the meshes: Let My be the initial
mesh, C the factor by which the mesh should be
coarsened. To coarsen the mesh, we first generate the
coarsened spacing function values for each node of the
mesh using C, and then pick a subset of the mesh nodes
which is 3-spaced by this spacing function. One possible
method to pick the coarsened mesh nodes is by using a
conflict graph.

sy
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DEFINITION 3.5. The conflict graph of a point
set P, CG(P), with respect to a B-spacing function f is
a graph CG(P) = (P, E) where

F(pi) + f(pj
E= {(P:',Pf) i = pill < ‘*(Lﬁ&

Our proposed scheme is outlined in Figure 2. This
one-level scheme can be naively extended to a multi-
level scheme by repeatedly applying it with coarser and
coarser spacing functions f;, generated using function
coarsening and constants of the form C* for level i.

However this in general produces a gradient that
is not node-nested, for it generates the mesh at each
level independently of other levels. To construct a
node-nested hierarchical gradient, we need a subtler
approach. At a high level, we first generate My, the
coarsest mesh. We then enforce that nodes in M; will
be chosen in Mi_;. Repeating this enforcement, we
can build a node-nested well-conditioned gradient. The
resulting scheme is outlined in Figure 3.

LEMMA 3.6. Siy1 is also an independent set of
CG;.

Proof: Because C > 1, C*+! > C?. Therefore, for each
point € Q, feir p(z) > foi p(z). By definition 3.5,
CGi41 is a supergraph of CG;. Hence any independent
set of the former must be independent in the later as
well. (]

Therefore, Algorithm MULTI_LEVEL_COARSEN cor-
rectly generates a node-nested multilevel gradient.

The rest of this paper will show the correctness
of this coarsening method, stated in the following two
theorems:

THEOREM 3.7. Let My be a mesh whose smallest
angle is bounded bellow by 8. The hierarchical gradient
(My, ..., My) produced by the algorithm of Figure 8 has
the following properties:

1. aspect ratio: There is a constant 0; depending on

8 only such that for 1 < i < k, the smallest angle

of mesh M; is bounded bellow by 6,.

2. local similarity: There is a constant I depending
on 8 only such that for each 1 < i < k, ely, <
IBIM‘._I.

Therefore, the hierarchical gradient generated is
(61,Z1, | M|)-well-conditioned.

THEOREM 3.8. Let Mj,...,M}, be any (6,Z,b)-well-
conditioned gradient of My, for some positive constants
0,Z. Let My,...,M; be the result of the application of
the algorithm of Figure 3 on My for k iterations, then
there is a constant ¢ such that Vi : |M;| < ¢|M]|. Hence
M,...,My is (61,24, c1b)-well-conditioned gradient.

A simple corollary of the last theorem, is that our
algorithm optimizes the number of levels up to an

Procedure: MULTI_LEVEL_COARSEN(M))

1. Let k be the length of the required
hierarchy.

2. Let My = ONE_LEVEL_COARSEN(Mo, for+1 p).
Let S5p be the point set of M.

3. Fori=k—-1%01

e Let S; be a maximal independent set
of CG; that contains S;.;. Note
that by Lemma 3.6 Sjy; must be an
independent set of CG;.

e Let M; = DT(S,‘).

4. Return (M,..., My).

Figure 3: Multi level nested function based coarseing.

additive constant factor when coarseing the mesh dow:
to a constant sized mesh:

CoroLLArY 3.9. If M{,...M} is (8,Z,1)-well
conditioned gradient, then My,...,My can be complete
to an (01,71, 1)-well-conditioned gradient of depth q
most k + ¢;.

4 Spacing Functions and Mesh
Qualities

Qualities

This section focuses on the intimate connection between
the mesh qualities and its spacing function qualities. In
particular, we show that spacing functions can capture
the two most important mesh properties: its clements’
shape, and its elements’ size and number. This con-
nection is the foundation of our coarsening approach
correctness, which will be discussed in the next section.

4.1 From a mesh to a spacing function. The
spacing function we recover from each mesh is the
Nearest Neighbour function (NN), see Definition 3.2.
This function depends only on the node set of the
mesh. A generalization of this function, the local
feature size function, plays an important role in the
analysis of mesh generation algorithms[16, 3, 14]. These
functions change slowly spatially, in analogy to the
slowly changing element sizes of the well-shaped mesh.
DEFINITION 4.1. A function f is 1-Lipschitz over a
domain Q if for any two points z,y in Q, [f(z)— f(y)| £
llz - yll.
The proofs of the following two lemmas are elementary:
LEMMA 4.2. (RUPPERT [16]) For each point set P
in R?, NNp is 1-Lipschitz.

LEMMA 4.3. NNp is a 2-spacing function of P.
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For a good aspect ratio mesh M, the el function
(see Definition 2.1) is equivalent up to a constant factor
to NN.

THEOREM 4.4. (RUPPERT [16]) Let M be a mesh
with smallest angle bound 6. Let P be the node set of
M. There exist two positive constants C1,Cy depending
on 8 only such that Cyelp(z) < NNp(z) < Caelpy(z).

Since every point set P is 2-spaced according to the
1-Lipschitz function NNp, these notions by themselves
are not powerfull enough to describe good aspect ratio
meshes. Intuitively, spacing functions prevent points
from clustering, but do not prevent the formation of
arbitrarily large gaps. We now formalize the notion of
a gap in terms of the spacing function.

DEFINITION 4.5. Let f be an inlegrable funciion

over ¢ domain Q). The f-area of a sub-domain B of
Q is given by A;(B) = [51/(f(z))%dA.
The following lemma shows triangles of a good aspect
ratio mesh are of constant NMN-area, and relates the
number of elements to the area of the domain. The
proof is omitted from this extended abstract.

LEMMA 4.6. Let M be a mesh with smallest angle
bound 8.

1. For each mesh iriangle T':

sin® 8 1
< —_—
20,7 = ANy () < 2C?sin6

2, Let N be the number of iriangles, then:

sin® 0
i N i )
207 S AN < s

Where C1 and Cy are the constants of Theorem 4.4.
We capture the notion of a gap using empty balls. A ball
B is called an empty ball with respect to a mesh M if B
does not contain any node of M. The following lemma
states an empty ball can intersect at most a constant
number of triangles. The proof is omitted from this
paper.

LEMMA 4.7. Let M be a mesh with smallest angle

bound 8. Any empty ball B iniersects at most C3 =
4 + 3 triangles of M.
Finally, the following theorem states the relationship
between a good aspect ratio mesh and spacing functions.
In particular, a good aspect ratio mesh posseses a 2-
spacing function and has no large gaps in terms of
that spacing function. The next sub-section shows the
inverse statement is true as well. Theorem 4.8 is a
simple corollary of Lemmas 4.6 and 4.7.

THEOREM 4.8. Let M be a mesh with smallest
angle bound 8.

1. LetCy = Cam. The NNpys-area of each emply

ball is at most Cj.
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2. Let L = 2-8%, and let = be any point of &
Any ball containing = whose radius is greater than
L. NNp(z) must contain some node p of the mesh.
The 1-dimensional analogs of the notion of gap$
and their related theorems, are valid for the function
NN on the boundaries of Q (in our case the four edges
of the unit square). They were omitted for the sake of
brevity.

4.2 From a spacing function to a mesh. In this
section we show that a point set spaced according 0
a spacing function, where no large gaps in terms ©
the spacing function occur, is the node set of a good
aspect ratio mesh. In particular, we show the Delaunay
triangulation of that point set is of good aspect ratio.

The following theorem is the inverse of Theorem 4.8.

THEOREM 4.9. Let P be a set of poinis f-spaced
by a 1-Lipschitz function f, such that each empty ball
B is of constant bounded area, Ay(B) < «. Then
the smallest angle 8 of each Delaunay triangle of P 1
bounded by: sinf > ’32:.

The following theorem shows that the function f
p-spacing P is equivalent up to a constant factor to the
function NNp. The connection between f and elDT(p)
then follows by Theorem 4.4.

THEOREM 4.10. Let P be a set of points j3-spaced
by a 1-Lipschitz function f, such that for each empty
ball B A¢(B) < a, then:

NNp(z)/(L? +2L) < f(z) < (28 + 1)NNp(2)

For the sake of brevity, the theorems in this sub-
section ignored the boundary case. For the analogous
results on the boundaries, we further require that the
point set is spaced on the boundaries with no large
gaps in terms of the spacing function restricted to
the boundaries, and that points in the interior of
stay away from the boundary: for some constant b,
the distance of each non boundary point p from the
boundary must be at least § - f(p). The aspect ratio of
the Delaunay triangulation then depends on § as well.

5 Spacing Function Based Coarsening

This section is concerned with the correctness of our
coarsening approach, as stated in Theorems 3.8 3{‘d
3.7. In particular, we show that given an initial
bounded aspect ratio mesh and a coarsening factor C,
our algorithm produces a bounded aspect ratio mesh
which is (up to a constant factor) the smallest mes
whose el function is at most C times larger (point Wise
than the el function of the original mesh.

5.1 Aspect ratio of the coarser meshes. We
first establish that our coarsening functions are all 1-
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Lipschitz. This follows from Definitions 3.3 and 3.4.

LEMMA 5.1. Ifg is 1-Lipschitz, then for any coars-
ening factor C > 0, fyc,p and iy c p are 1-Lipschitz.

The next theorem establishes the main result of this
sub-section: that the mesh generated by our one-level
coarsening algorithm, see Figure 2, is a bounded aspect
ratio mesh.

THEOREM 5.2. Lei P be the point set of a mesh My
with smallest angle bound 8. Let C > 1 be the coarsening
factor. Let M, be the coarser mesh returned by our
one-level coarsening algorithm with spacing parameter
B = 12v/L and coarsening function fNNcp- Further,
assume L > 4, where L is the constant of Theorem 4.8.
There exists a constant 0, depending on § and 6 only
such that the smallest angle of M, is larger than 6,.
Proof: Let P, denote the point set of M. P, is §-
spaced by fyy o p- Theorem 4.9 implies that if the
f-area of any Delaunay ball B is smaller than some
positive constant «, then sin#; > %. Let f stand for
SNN o p- Therefore, we proceed to prove the theorem
by showing that the f-area of any empty ball in M, is
bounded .

We fix some point p € P; and a ball B through p.
Without loss of generality, let f(p) = 1, let p = (0,0),
and let the center of B lie on the y-axis, see Figure
4. We show that if the ball B is large, it cannot be
empty. Let L be the constant of Theorem 4.8. Let B’s
radius be 12L. We show B must contain a point of P,
in its interior. (Note that B all ready contains p on its
boundary).

The center coordinate of B is (0,12L). Let By be
a smaller ball nested in B of radius 3L centered at
(0,24 3L). The proof consists of showing that By must
contain a point of P, and that this point could not be
ruled out by taking a maximal independent set of the
conflict graph of P, and hence must belong to P, as
well.

Since M is a good aspect ratio mesh, Theorem 4.8
implies any ball of radius LNNp(z) through z must
contain a point ¢ € P. Since f > NNp, any ball of
radius Lf(z) through z must contain a point ¢ € P.
Let 2o = (0,2). o lies on the boundary of By, and by
the 1-Lipschitz property of f, f(zo) < f(p) +2 = 3.
Hence, the ball By which is of radius 3L > L f(zo) must
contain a point ¢ € P.

Without loss of generality, let ¢ = (z,y) be on the
boundary of By. (all the bounds we derive hold if ¢ is
internal to By as well). We now show ¢ € P; as well.
We use the following facts about g:

I. By Lemmab5.3, the distance from ¢ to the boundary

of B is larger than y/2.

(o,12L)

1y (@aLe2)
L By

p=(0.0)

Figure 4: The existence of a mesh point of M; in B,

II. By Lemma 5.4, if L > 4 and 8 = 12v/L, then

f(9)/B < y/6.

Let B; be the ball with center ¢ and radius f/3 (see
the dashed ball in Figure 4.) If point ¢ & P;, then there
must be some point w € P; such that ¢ and w share an
edge in the conflict graph used to create P;. If w € B
then B contains a point of P; in its interior, and we
are done, therefore w must be outside B and property
I implies d = ||lw — q|| > y/2.

Because f is 1-Lipschitz, f(w) < d + f(g). ¢ and w
share a conflict graph edge, hence f(q) + f(w) > Bd.
The last two inequalities imply 2f(¢q) +d > Bd. By
property I, 2f(q) > (8 —1)d > (8 — 1)y/2. By property
11, By/3 > 2f(q) > (B —1)y/2. Hence B/3 > (8- 1)/2.
However, the last is a contradiction for 8 > 3, as is the
case for our 8.

This contradiction implies ¢ and w do not share a
conflict graph edge, and ¢ € P;. This in turn implies
that if B’s radius is greater 12L, B can not be empty.
O

The following two lemmas were necessary for the
proof of the theorem:

LEMMA 5.3. If L > 2/3 then the distance from any
point (z,y) on By to the boundary of B is greater than

y/2.
Proof: First notice that y > 0. The distance from (z,y
to the boundary of B is equal to R — \/z? + (y — R)?,
where R = 12L. Because (z,y) is on the boundary
of By, we have z2 + (y — r — 2)? = r?, implying
2 +yt=292+7r)—4—4r=y(4+6L)—4—12L, for
r = 3L. This in turn implies, after some manipulations
we omit, that 2% + (y — r — 2)? < (R — y/2)?. This
last inequality is true when L > 2/3, y > 0, L > 0 and
R = 12L. Because y/2 < R we have, after taking the
square root, R—+/z? + (y — R)? > y/2, completing the
O

proof.

oy
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LEMMA 5.4. If L > 4 and 8 = 12v/L, then

NN c.p(@) < Ltllp—ql il
g B B 6
Proof:

As shown in the proof of Lemma 5.3 ||p— ¢||? =
z?+y® = y(4+6L)—4—12L. Thus, f(q) < 1+||p—q|| <
1+ /y(4+6L)—4—12L. The Lemma states that
1+ y(4+6L)—4—12L < Py/6, or equivalently,
V(@ +6L)—4 - 12L < By/6 — 1

Squaring both side, it suffices to show that y(4 +
6L)—4—12L < B?y?/36+1—By/3. Hence it is enough
to show that §%y2/36—By/3—y(4+6L) > 0. Since y > 2
this is true if #2/18—3/3—(4+6L) > 0. The conditions
L >4 and B = 12,/(L) guarantees this inequality. O

The aspect ratio bound derived in Theorem 5.2
applies to the special case of quasi-uniform meshes as
well. However, we can obtain better bounds, using a
simpler proof, for quasi-uniform meshes. These bounds
are derived for a simpler coarsening spacing function,
the threshold spacing function of Definition 3.4.

THEOREM 5.5. Let P be the point set of a mesh My
with smallest angle bound 6. Let C > 1 be the coarsening
factor. Let M, be the coarser mesh returned by our one-
level coarsening algorithm with spacing parameter 8 = 2

and coarsening function tNN. cp- The smallest angle
01 of M, is bounded bellow by:

1
3+4L

sinfy >

where L is the constant from Theorem 4.8, depending
on & only.

5.2 Local similarity. We now show that neighbour-
ing meshes in the hierarchical coarsening gradient gen-
erated by our method our localy similar, see Defini-
tion 2.4,
The proof of the following lemma is elementary:
LEMMA 5.6. [linearity and monotonicity] For any
C > 1 and for any v > 1. For each point z € O

fo.c,p(2) < faqc,p(2) < 7fg.0.p(z).

THEOREM 5.7. Let My be a mesh whose smallest
angle bound is 0. There exists a constant I depending
on 0 only such that such that for each mesh M;y; of
the hierarchical gradient (M, ..., My) produced by the
Algorithm of Figure 3

31Ma+: <Zely,

Proof: The coarsening function used to create Mgy is
fi+1 = fy,20,p, the one used to create M; is f; = f9.c,p,
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for some value C. By Lemma 5.6,
fir1 £2f;
By Theorem 4.10
NNp,/(L? +2L) < f; < (28 + 1) NNp,

where P; is the set of points of mesh M;. By Theorem
4.4
ClefMj < Nij < CQBIMJ-

Hence
C1/(L® + 2L)elp,,, < fip1 < 2f;
and
2f; < 228 + 1)Caelas,
and we can take Z to be 2C5(28 + 1)(L? + 2L)/C;. O

5.3 Size optimality. We now show, up to a con-
stant, that for any C' > 1 the size of the mesh produced
by our one-level coarsening algorithm is the smallest
possible. The following Lemma shows that f, ¢ p is the
largest 1-Lipschitz function that is smaller than C- g at
the points of the initial mesh My. The proof is elemen-
tary, and is omitted from this paper.

LEMMA 5.8. Let C > 1. Let h be a 1-Lipschitz
function over the domain Q0 such that for all peP
h(p) < C - g(p). Then for all z € Q, h(z) < Jo.c,p().

We now show that tNN,.c,p @nd fNNM,C,P are
equivalent up to a constant factor for a quasi-uniform
mesh M. This connection implies it suffices to show
that meshes spaced by fNNM,c,P are of optimal size.

LEMMA 5.9. Let M be a quasi-uniform mesh, i.e.
there erist ratio constant p such that:

min NNy < NNpy(z) < pmin NNy
Then

FNNy,c.p/(2Lp+2p) StyN, o p < FNN,, c.p-

DEFINITION 5.10. Let M and M' be two well-
shaped meshes over a domain Q. For any positive
C > 1, we say elements of M’ are at most a fac-
tor of C larger than those of M if for all z € Q,
elyi(z) < C-ely(z). In other words, for each point
z € ), the largest triangle of M’ that contains z is no
more than a factor C larger than the largest triangle of
M that contains z.

We now state the main result of this sub-section:

THEOREM 5.11. Let My be mesh with smallest an-
gle bound 8y. For any C > 1, Let M be the mesh ob-
tained by the algorithm of Figure 2 with coarsening fac-
tor C. Let M’ be a mesh with minimal angle bound 6’
whose elements are at most a factor of C larger than
those of My, then there exists a constant D depending
on 0o and 6’ only such that |M| < D|M|.
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Proof: By the assumption elpsr < Celps,. Since the
constant bounds we derived in previous Lemmas depend
on the smallest angle, we will refer to them in this proofs
as a function of the relevant angle. Let Py be the node
set of My and let P be the node set of M. By Theorem
4.4,

NNy C

——~ < elpyr < Celpyy < == NNy,
Colg) = = e M ey

Therefore by Lemma 5.8,

NNy < fNNM ccye!) p

o' Cy(fg

By Lemma 5.6:

C(6")
<
NNM o= CI(BU)fNNM"J’C'Pn

By Theorem 4.10:

(28(60) + 1)C2(¢')
C1(6o)

NNy < NNy

where g is the spacing constants used in the coarsening

algorithm. Now Lemma 4.6 implies the result. O
A simple application of this Lemma to all the levels

of the coarsening gradient proves Theorem 3.8, whereas

Theorem 5.2 can be applied to its multi-level version,
Theorem 3.7.

6 Practical Concerns

6.1 Mesh quality. The proof outlined in previous
sections provided a constant bound on the smallest an-
gle of of the mesh hierarchy. However the bound can
be quite small mathematically. Given the practical im-
portance of the coarsening problem, we implemented
the algorithm presented in this paper. We now pro-
vide some experimental evidence that our coarsening
approach indeed produces coarsening meshes of very
reasonable quality in practice.

We include the numerical data for the “crack plate”
mesh, which was generated by Omar Ghattas and Xi-
aogang Li of Carnegie Mellon University. The physical
problem modeled by the mesh is a plate with a hori-
zontal crack running from the middle of the left edge to
the center of the plate [8]. The following Table 1 lists
the coarsening hierarchy statistics of our method. See
Figure 5 for these meshes.

To offer a comparison, we also implemented a
maximal independent set approach. We applied the MIS
based program on the same initial mesh and observed
a significant and iterative degradation on the smallest
angle as shown in Table 2. This smallest angle occurs

coarsening | num num | min max
factor | nodes | triangles | angle | angle

1] 5120 0984 | 41.256 | 93.88

2.1 | 2242 4374 | 18.43 | 135.01

4] 1035 1982 | 18.23 | 135.06

8 305 564 | 18.43 | 135.01

16 148 272 | 19.44 | 123.69

32 119 220 | 18.01 | 130.23

64 102 189 | 18.01 | 130.23

128 92 170 | 18.01 | 130.23

Table 1: Quality of meshes coarsened using a function
based approach. The first row describes the original
mesh.

coarsening num num min max
iteration | nodes | triangles | angle | angle

1| 1215 2346 | 18.43 | 126.87
2 289 537 | 14.04 | 139.40
3 76 131 | 3.37 | 135.00

Table 2: Quality of meshes coarsened using a maximal
independent set approach.

in the center of the square, so the iterative degradation
can not be attributed to edge effects, or our choice
of boundary coarsening. The crack mesh is extremely
unstructured, and the MIS based program fails to
guarantee a bound on the aspect ratio in part because
it attempts to reduce the number of mesh elements too
much. Note that with our approach, the coarsening
factor is doubled in later iterations but not the number
of nodes.

6.2 Algorithmic efficiency. The algorithm of Fig-
ure 2 has a simple O(n?) time implementation. We
an appropriate choice of data structures, we can reduce
the algorithmic cost. The two computational expensive
steps are the coarsened function construction and the
point set selection according these functions.

The spacing function computation as described in
Figure 2 takes O(n?) time. In practice we can use other
related spacing function, that still yeild a theoretically
correct algorithm. A particulary useful one is the
spacing function based on a balanced quad-tree [3] of
the fine mesh. The balanced quad-tree can be efficiently
coarsened and can be used as an estimation of the
spacing function of the underlying mesh. An important
next step in our work is to develop such an efficient
and practical implementation of our function based
coarsening algorithm.
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