
On the Radius{Edge Condition in the Control Volume MethodGary L. Miller�, Dafna Talmor� , Shang-Hua Tengy AND Noel WalkingtonzAbstract. In this paper we show that the control volume algorithm for the solution of Poisson'sequation in three dimensions will converge when the mesh contains very 
at tetrahedra (slivers).These tetrahedra are characterized by the fact that they have modest ratios of diameter to shortestedge, but large circum to inscribed sphere radius ratios, so may have poor interpolation properties.Elimination of slivers is a notoriously di�cult problem for automatic mesh generation algorithms. Wealso show that a discrete Poincar�e inequality will continue to hold in the presence of slivers.1. Introduction. We consider covolume approximations of Poisson's equation on a three di-mensional domain. It is shown that the control volume algorithm will converge on meshes that contain\slivers"; that is, 
at tetrahedra whose vertices are approximately equi{spaced around a circle (seeFigure 1). This result is was rather unexpected, since the classical �nite element algorithm may failto converge when such elements are present.Classical �nite element theory shows that the �nite element solution is the best approximation of thesolution in the H10 (
) norm1, so clearly the control volume algorithm can't converge in this normif the �nite element solution doesn't. Instead we show that the control volume scheme convergesin a discrete H10 (
) norm (k:kW below), and like the �nite element algorithm, the control volumealgorithm gives the best projection with respect to this norm. Numerical experiments indicate thatthe �nite element method fails to converge in either norm. We note that in two dimensions the twonorms coincide, so this dichotomy is truly a three dimensional phenomena. Since the discrete normused with the control volume algorithm changes with the mesh, it is natural to ask if convergencecan be established in any of the standard norms. We answer this in the a�rmative by establishing adiscrete Poincar�e inequality which will imply convergence of the control volume method in L2(
).These results evolved from our work on mesh generation algorithms [7, 7] and an attempt to resolvethe problems slivers present in approximation theory. The mesh generation algorithms we developedproduce tetrahedra having bounded ratios of circum radius to minimum edge length (radius edgeratio), while traditional interpolation theory requires each tetrahedra to have the classical aspectratio of circum to inscribed sphere radii bounded. Slivers, which have a radius edge ratio near unityand arbitrarily small volume, show that a bounded radius edge aspect ratio is a weaker condition thanthe classical aspect ratio in three dimensions. (Of course they're equivalent in two dimensions.) Whilea bound on the classical aspect ratio is su�cient for optimal interpolation, it is not necessary. Babu�skaand Aziz [1] showed that right triangles in two dimensions, and their analogues in three dimensions,will exhibit optimal interpolation even if they have arbitrarily small volume. In two dimensions thisleads to a the very simple geometric requirement that \the maximum angle within any triangle bebounded away from �"; however, no simple geometric restriction is known for tetrahedra. Upondiscovering that the covolume scheme converges in the presence of slivers, it is natural to ask if� School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Sup-ported in part by NSF Grant CCR-9505472.y Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455. Sup-ported in part by an NSF CAREER award (CCR-9502540) and an Alfred P. Sloan Research Fellowship.z Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Sup-ported in part by National Science Foundation Grant No. DMS{9203406. This work was also sup-ported by the Army Research O�ce and NSF through the Center for Nonlinear Analysis.1 kuk2H10 (
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Fig. 1. Sliver and circum sphere.they too exhibit optimal interpolation properties. Folk lore indicates that they do not, and this issubstantiated by the numerical example in Section 3.In order to put the geometric assumptions in context, Section 2 reviews the essential features of themesh generation algorithm developed in [7]. As indicated above, this algorithm does guarantees abound on the radius edge aspect ratio. The proof of convergence for Poisson's equation under thebounded radius edge ratio assumption is presented Section 3 along with an example which highlightsthe di�erences between the covolume and �nite element schemes. In Section 4 a discrete Poincar�einequality is established which provides one method of passing from mesh dependent norms to theL2(
) norm.2. Sphere Packings and Mesh Generation. Mesh generation has a long history; however,rigorous analysis of the algorithms and the meshes they produce is a recent development. Bern Epsteinand Gilbert [2] were the �rst to establish optimality of the the quad{tree algorithm for the generationof two dimensional meshes. By optimal we mean that bounds on the aspect ratio of each triangle canbe established a{priori and that the number of triangles produced is within a constant of the minimumpossible. Unfortunately the constant for the quad{tree algorithm appears to be rather large, so thatthis, and it's three dimensional counterpart [8], is not a particularly practical approach. An optimaltwo dimensional algorithm that appears to work very well in practice was given by Ruppert [9]. Thisalgorithm extended an idea of Chew [3], and uses the Voronoi/Delaunay constructions. Ruppert'salgorithm doesn't extend immediately to three dimensions since it may produce \slivers", that is, very
at tetrahedra whose edge lengths are comparable with the circum sphere radius (see Figure 1). These
at tetrahedra are di�cult to eliminate, and plague all three dimensional mesh generation algorithms.In Section 3 we establish the rather unexpected result that these slivers do not degrade control volumeapproximations of Poisson's equation, and in this situation extensions of Ruppert's algorithm can beused to produce meshes that are \provable good for control volume approximations". The remainderof this section introduces the basic geometric properties needed for the analysis in Sections 3 and 4.Below we consider meshes generated as the Delaunay diagrams of a set of points X = fxig � �
 � <d(we are particularly interested in three dimensions where d = 3). Recall that the Voronoi diagram isthe collection of polytopes fVig where Vi is the subset of points in 
 closer to xi than to any otherpoint in the set X. The Delaunay triangulation is then constructed by joining points in X that sharea common Voronoi face. This construction is well known in computational geometry [4], and thereare e�cient algorithms for implementing it in any number of dimensions, and will generate a gradedmesh according to the distribution of the points in X.2



The meshes we consider below assume that the triangulation satis�es the following weakened aspectratio condition:Definition 1 (Bounded radius-edge ratio). The radius-edge ratio of a triangulation in threedimensions is the maximum ratio of circumscribed sphere radius to smallest edge length of any tetra-hedra.We brie
y sketch one technique for generating a vertex sets whose Delaunay triangulations havebounded radius{edge ratios. We assume that we're given a function � : 
 ! <+ which locallyspeci�es the desired density of mesh points in 
.Definition 2. A collection of points X = fx1; x2; : : : ; xNg � 
 is a �{packing if xi, xj 2 X implies[�(xi) + �(xj)]=2 � jxi � xjj where j:j denotes Euclidean distance.A simple algorithm for the construction of a maximal �{packing is to initialize X to be the empty setand to randomly select a point from x 2 
 and add it to X if the sphere of radius �(x) centered at xdoesn't meet the analogous spheres of any point already in X. Upon termination, X will be a maximal�{packing. The following lemma concerning the Voronoi/Delaunay diagram for X is elementary.Lemma 2.1. Let � : 
! <+ be Lipschitz2 with j�jLip < 2 and letX be a maximal �{packing. If v is thecenter of a Delaunay ball (i.e. the circumsphere of a tetrahedra) of radius r in the Voronoi/Delaunaytriangulation of X then �(v) � (1� j�jLip=2)r.This lemma and the following corollary are proved in [6, 7], and provide a wealth of geometric infor-mation about such meshes.Corollary 2.2. Let � = j�jLip < 2=3, then� If v and r are as in the lemma and x 2 Br(v), the ball or radius r centered at v, then�(x) � (1� 3�=2)r.� The radius{edge ratio of the Delaunay triangulation of X is bounded by 1=(1� 3�=2).� If V is a Voronoi polytope centered at x 2 X, the ratio of circum radius of V to inscribedradius of V (with center x) is bounded by (2 + �)=(1� 3�=2).� If x, y 2 X and p 2 xy (an edge in the Delaunay diagram) then�(p) � 1� 3�=22 + � �(x):� For any Voronoi region V maxV �minV � � (2 + �)(2 + 3�=2)(1� 3�=2)2 :The development of ideas sketched in this section began with a spacing function � and lead to a meshwith a bounded radius{edge ratio. It is also possible to do the converse. Theorem 4.2 in Section 4shows that a Delaunay mesh having bounded radius edge ratio determines a Lipschitz spacing function� satisfying the properties stated in the corollary.3. Co{Volume Approximations.3.1. Notation. Let 
 � <3 be a bounded open set, and consider the problem of �nding u :
! < such that ��u = f; in 
; uj@
 = g:To approximate u, 
 is �rst triangulated; the triangulation being the Delaunay triangulation of a setof points fxig. We denote the length of the Delaunay edge joining vertex xi to xj by hij , and denote2 Recall that � is Lipschitz with constant j�jLip � � if j�(x)� �(y)j � �jx� yj for all x and y.3



by Vi the Voronoi region associated with node xi. To minimize technical details we assume that themesh accommodates the boundary in a fashion guaranteeing that the Voronoi Vi corresponding to aninterior vertex xi lies entirely within 
. Each edge xixj of the Delaunay mesh can be associated witha face common to Vi and Vj which we denote by Aij .Following MacNeal [5] discrete approximations of u are constructed by integrating the equation for uover each Voronoi corresponding to an interior vertex:ZVi f = ZVi ��u = Z@Vi �@u@n= Xj2Ni ZAij � @u@n ' Xj2Ni jAijjui � ujhijIn the above, Ni is the index set of the nodes connected to xi by an edge, ui is an approximation ofu(xi), and jAijj denotes the surface area of the Voronoi face Aij. Letting fi denote the average valueof f over Vi this scheme becomesXj2Ni jAijjui � ujhij = jVijfi; 8 xi interior;and ui = g(xi) for the boundary vertices.3.2. Orthogonality and Convergence. Nicolaides introduced the following elegant analysisof the above scheme. First, note that the exact solution u of the equation satis�esZVi f = ZVi ��u = Z@Vi @u@n = Xj2Ni ZAij � @u@njVijfi = Xj2Ni jAijjU (2)ijWhere U (2)ij is the average value of the 
ux �@u=@n on the face Aij. Upon subtracting this from theequation satis�ed by the discrete solution we obtain0 = Xj2Ni jAijj(Uij � U (2)ij )where Uij = (ui � uj)=hij is the discrete 
ux.The second step is to consider an arbitrary set of nodal values fvig that vanish on the boundary.Multiplying the above equation by vi and summing over all of the interior nodes gives0 = Xi Xj2Ni jAijj(Uij � U (2)ij )vi= Xxixj jAijj(Uij � U (2)ij )(vi � vj)= Xxixj jAijjhij (Uij � U (2)ij )Vijwhere Pxixj indicates summation over the non{boundary edges, and Vij = (vi � vj)=hij . De�ningthe inner product [:; :]W on quantities de�ned upon the non{boundary edges by[U;V ]W =Xxixj jAijjhij UijVij4



we may write [U � U (2); V ]W = 0 where it is understood that U is the discrete 
ux given by theco{volume scheme and the discrete 
ux V must be the discrete gradient of a piecewise linear functionv vanishing on the boundary, i.e. Vij = (vi � vj)=hij .An error estimate can now follows by recognizing that the above orthogonality relationship states thatthe co{volume approximation is the best projection of the 
ux U (2) onto the space of 
uxes generatedby discrete functions vanishing on the boundary. In particular, if we let U (1)ij = (u(xi) � u(xj))=hijbe the 
ux determined by the interpolant of the exact solution we obtainkU � U (1)kW � kU (2) � U (1)kW :The following theorem characterizes the size of the approximation error on the right hand side of thisexpression.Theorem 3.1. Let3 u 2 H2(
) and U (1)ij = (u(xi) � u(xj))=hij be the approximation of the 
uxU (2)ij = (�1=Aij)RAij @u=@n, thenkU (2) � U (1)kW � 12 maxxixj �1 + 4(rij=hij)2hij� kD2ukL2(
);where rij is maximum radius of a control volume having Aij as a face. In particular, if the mesh hasa bounded radius{edge ratio the error in the co{volume scheme is given bounded bykU � U (1)kW � 12(1 + 4B2)kD2ukL2(
)h;where h = maxxixj hij.Proof. Let us write kU (2) � U (1)k2W =Xxixj jAijjhij �ij(u)2where �ij(u) = �1Aij ZAij @u@n � u(xi)� u(xj)hijWe explicitly compute the term �ij(u) for a generic edge hij . It is convenient to put the origin at themiddle of hij and let hij lie in the z{axis so that Aij lies in the plane z = 0, and for de�niteness lethij point from xi to xj up the z{axis. Next, let K+ij be the cone with vertex xj and base Aij and K�ijbe the cone with vertex xi and base Aij, and note that cones corresponding to di�erent Voronoi facesAij are disjoint, and the union of all such cones is the union of the Voronoi regions Vi correspondingto internal vertices xi (see Figure 3.2).For the calculations below we drop the subscript ij, so that h = hij, A = Aij etc. The cone K+ maybe parameterized byx = (1� 2�=h)�1; y = (1� 2�=h)�2; z = �;(�1; �2) 2 A, 0 � � � h=2. Note thatZK+ u = ZA Z h=20 u(�1; �2; �) (1� 2�=h)2 d� d�3 H2(
) is the set of functions in L2(
) having all second derivatives in L2(
)5
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Fig. 2. Cones constructed in Theorem 3.1.where d� = d�1 d�2. Also @u@� = �2�1h @u@x � 2�2h @u@y + @u@z@2u@�2 = (�2�1=h;�2�2=h; 1)[D2xu](�2�1=h;�2�2=h; 1)T ; ����@2u@�2 ���� � �1 + 4(�21 + �22)=h2� jD2uj:We now computeZK+ 11� 2(�=h) @2u@�2 = ZA Z h=20 @2u@�2 (1� 2�=h) d� d�= ZA�@u@� (1� 2�=h)jh=20 + 2h Z h=20 @u@� d�� d�= ZA��@u@� (�1; �2; 0+) + 2h (u(xj)� u(�1; �2; 0+))� d�= ZA��@u@� (�1; �2; 0+)� 2u(�1; �2; 0+)=h� d� + 2jAju(xj)=h:Repeat this computation for the bottom cone using the parameterizationx = (1 + 2�=h)�1; y = (1 + 2�=h)�2; z = �;(�1; �2) 2 A, �h=2 � � � 0, to obtainZK� 11 + 2(�=h) @2u@�2 = ZA�@u@� (�1; �2; 0�) � 2u(�1; �2; 0�)=h� d� + 2jAju(xi)=h:Continuity of u guarantees that u(:; 0+) = u(:;0�) so thatZK+ 11 + 2(�=h) @2u@�2 � ZK� 11� 2(�=h) @2u@�2= � ZA�@u@� (�1; �2; 0�) + @u@� (�1; �2; 0+))� d� � 2jAju(xi)� u(xj)h :6



Note that @u=@� = 2(�1=h)@u=@x + 2(�2=h)@u=@y + @u=@z, in K� so thatZK+ 11 + 2�=h @2u@�2 � ZK� 11� 2�=h @2u@�2 = 2ZA �@u@z jz=0 � 2jAju(xi)� u(xj)h= 2jAj�(u):It remains to bound the terms involving the second derivatives.����ZK+ 11� 2(�=h) @2u@�2 ���� � ����ZK+ 1 + 4(�21 + �22)=h21� 2(�=h) jD2uj����� k1 + 4(�21 + �22)=h21� 2(�=h) kL2(K+)kD2ukL2(K+)� (1=2)pjAjh �1 + 4(r=h)2� kD2ukL2(K+);where r2 = max(�1 ;�2)2A(�21 + �22). A similar computation for the lower cone gives�(u) � 12r hjAj �1 + 4(r=h)2� kD2ukL2(K+[K�):Putting it all together:kU � U (1)kW � kU (2) � U (1)kW =0@Xxixj jAijjhij �ij(u)21A1=2� (1=2)maxxixj �(1 + 4(rij=hij)2)hij�0@Xxixj kD2uk2L2(K+ij[K�ij)1A1=2� (1=2)maxxixj �(1 + 4(rij=hij)2)hij� kD2ukL2(
):3.3. Numerical Example. We illustrate the implications of our theorem with a numericalexample. Meshes are constructed by dividing the unit cube into a uniform rectangular mesh, andthen randomly perturbing the points by an amount �h. The Delaunay triangulation of such pointswill have multitudes of slivers on all of the vertical and horizontal planes where the points are almostco-circular. While the radius{edge ratio of these slivers will be near unity and their classical aspectratio of diameter to inscribed sphere radius (d=r) will be very large when � is small. Figure 3 tabulatesthe errors for the solution u(x; y; z) = e�x cos(�y=p2) sin(�z=p2)of ��u = 0 computed using the �nite element and co{volume algorithms. It is clear that for h �xedthe �nite element errors increase as �! 0 and the the co{volume error is independent of �. Also, for� �xed, the �rst order rate of convergence for the �nite element solution in the H10 (
) norm is readilyobservable (the error decreases in proportion with h). The co{volume scheme achieves a higher rateof convergence (almost two) for this example since the mesh is almost uniform. On a uniform meshthe co{volume scheme is, in fact, second order accurate (this can readily be observed in the proof ofTheorem 3.1). 7



FEM Co-Volumeh � d=r ju� uhjH1 kIhu� uhkW kIhu� uhkW1/4 0.01 1126 30.22479 7.696399 0.24254380.001 11125 92.97309 8.692323 0.24115160.0001 111296 291.6406 8.917005 0.24107181/8 0.01 26230 12.98964 4.344101 0.076164300.001 166051 35.13775 6.865007 0.075315200.0001 1621745 108.1435 7.525118 0.075388031/16 0.01 14194 6.023042 2.262189 0.021550740.001 105551 15.48025 4.457009 0.020058260.0001 1030956 45.91799 6.140328 0.02007369Fig. 3. Errors for control volume and �nite element methods.4. Poincar�e Inequality. The Poincar�e inequality states that for a bounded domain 
 � <dthere is a constant C > 0 such that kukL2(
) � CkrukL2(
) for all su�ciently smooth functionsu : 
 ! < vanishing on the boundary @
. MacNeal [5] has shown that in two dimensions the Wnorm (de�ned in Section 2.?) is equal to the H1(
) norm, in the sense that the piecewise linearextension, ~u, of u de�ned on the vertices of a triangulation satis�es kuk2W = R
 jr~uj2. The Poincar�einequality, R
 u2 � C R
 jruj2 then implies that convergence of a discrete solution in the W normimplies convergence in L2(
). In three dimensions the W norm is no longer equivalent to the H1(
)norm, so convergence in L2(
) doesn't follow directly from the Poincar�e inequality. Below we establisha discrete Poincar�e inequality for the W norm which establishes convergence in L2(
) of the piecewiseconstant functions.Definition 3. Given a real valued function u on the mesh vertices, the piecewise constant extensionû : 
! < is de�ned to be the function equal to ui over the Voronoi cell Vi.The discrete L2(
) norm of u is then interpreted to mean kûk2L2(
) = �i RVi u2i .Theorem 4.1 (Discrete Poincar�e Inequality). Let u be a function de�ned on the vertices of atriangulation of the bounded domain 
 � <d that vanishes on the boundary vertices. Then there existsC > 0 depending only upon 
 and the radius edge ratio of the mesh such that kukL2(
) � CkukW .The theorem statement can be rewritten explicitly as:Xi jViju2i � CXxixj jAijjhij (ui � uj)2(1)for all mesh functions vanishing on the boundary.The meshes we consider are Delaunay diagrams, described by a set of vertices X = fxi � � �xng, a setof tetrahedra whose 1{skeleton is the edge set E and a set of Voronoi cells V . We de�ne the followingweighted graph associated with the mesh:Definition 4. 1) Let G = G(X;E; V ) denote the graph constructed from the Delaunay diagramD = (X;E; V ) as follows:X: the vertex set of the graph is identi�ed with the vertex set of the Delaunay diagram.E: edges (i; j) in the graph correspond to interior Delaunay edges and have weight kij =jAijj=hij. Recall hij is the length of the Delaunay edge between two vertices, Aij is thearea of the Voronoi face shared by Vi and Vj.V : we assign a cell to each graph vertex. 8



2) The mass matrix M is a diagonal matrix containing the (truncated) Voronoi volumes on the di-agonal. (Recall that Voronoi regions on the boundary may be in�nite, so we only consider the partin 
. We treat the areas used for computing the edge weights in a similar fashion. These terms areinconsequential since we only consider functions vanishing on the boundary.)3) The Laplacian of the graph G, denoted by K, is the matrix having o� diagonal entries Kij =�jAijj=hij = �kij if (i; j) is an edge in G and zero otherwise and the diagonals are given by Kii =Pj 6=i kij.The discrete Poincar�e inequality then states that the eigenvalues (on the space of vectors having zeroboundary components) of the generalized eigenvalue problem Ku = �Mu are bounded below by aconstant c > 0, or alternatively that there is a constant c > 0 such that K � cM � 0 (positivesemi{de�nite).4.1. Geometric Properties. The meshes we consider are Delaunay diagrams D = (X;E; V )where X � �
 � <d. We assume the mesh tetrahedra are of bounded radius-edge ratio.Delaunay diagrams of bounded radius-edge ratio have several important geometric properties. Belowwe recall some of these properties which were established in [6]. Recall that we denote the edge joiningtwo vertices xi and xj by xixj and the length of such an edge by hij, and that the set of verticesconnected to vertex xi by an edge is is denoted by Ni. Also, we adopt the notation that C and care positive constants which may di�er from occurrence to occurrence. In general, c will be a lowerbound and C an upper bound, and these constants only depend upon the mesh through the Lipschitzconstant of the for the spacing function, �, appearing in the following theorem.Theorem 4.2. Let D = (X;E; V ) be a bounded radius-edge ratio Delaunay diagram. The followingis true:A1) There is a function � : 
 ! <+ with Lipschitz constant bounded by one and constants c,C > 0 such that for each internal vertex xi 2 Xchij � �(x) � Chij ; 8j 2 Ni; x 2 Viand for all edges xixj chij � �(x) � Chij; 8 x 2 xixj :A2) There is a constant � > 0 such that each region Vi \ 
, where Vi 2 V , contains a ball ofradius ��(xi) centered at xi, and is contained in a concentric ball of radius �(xi)=�.A3) There is a constant C > 0 such that each vertex xi 2 X has at most C neighbors in thediagram, i.e. the associated graph has bounded degree.A4) The area of the Voronoi face shared by vertices xi; xj 2 X is bounded from above by Chd�1ij .The function � is referred to as the spacing function of the mesh, as it describes the typical distancebetween vertices. This function plays an important role in the proofs below as it captures many ofthe mesh properties.Our arguments below are graph theoretic and don't use the fact that we're dealing with a Voronoi/Delaunaytriangulation. Any decomposition of 
 into volumes Vi and edges connecting them that satisfy thegeometric properties listed in Theorem 4.2 would su�ce. We therefore generalize the notion of thebounded radius-edge ratio Delaunay diagram as follows:Definition 5 (Well-shaped diagram). A diagram G = (X;E; V ) is a set of vertices X, and a setof cells V such that vertex xi 2 Vi, and the edge set E corresponds to the neighborhood structure ofthe cells. The diagram is well-shaped if properties A1-A4 hold.9



Notation: Since the edges of a well shaped diagram don't necessarily correspond to line segments in<d we will denote an edge connecting xi, xj 2 X by (i; j), and use the notation xixj to suggest a linesegment in <d.4.2. Comparison. Our proof of the discrete Poincar�e inequality will parallel the proof of itscontinuous counterpart. The continuous proof considers a large cube Q containing 
, and since allfunctions de�ned on 
 vanishing on the boundary can be extended by zero to all of Q, a Poincar�einequality on Q will imply a Poincar�e inequality on 
. We too will embed 
 into a large cube,and in this section we show that any two meshes on 
 and Q satisfying the geometric properties ofTheorem 4.2 with the same spacing function � can be suitably compared. The next section will thenshow that for each spacing function there exists a canonical mesh on the cube for which the Poincar�einequality holds.Definition 6 (Path embedding). (1) The graph G1 = (X(1); E(1); V (1)) is path embedded inG2 = (X(2); E(2); V (2)) if there exists a function � from X(1) to X(2) and a mapping p from the edgesof G1 into paths in G2, such that for each edge (m;n) in G1, p(m; n) is a path in G2 from �(m) to�(n).(2) The embedding has bounded dilation if there is a constant Ck > 0 such that for every edge(m;n) 2 E(1), X(i;j)2p(m;n) 1=k(2)ij � Ck=k(1)mnwhere k(1)mn and k(2)ij are the edge weights of G1 and G2 respectively (i.e. the conductivity of the path iscomparable to the conductivity of the edge).(3) The embedding has bounded congestion if there is a constant Cp > 0 such that for each edge (i; j)in G2 cij = Xp(m;n)3(i;j) 1 � CpLemma 4.3. Let (�;p) be a path embedding of G1 into G2 with bounded dilation and congestion, andlet u be a real valued function on the vertices of G2 and u � � be the induced function on the verticesof G1. Then there is constant C > 0 such that(u � �)TK(1)(u � �) � CuTK(2)uProof. (u � �)TK(1)(u � �) = X(m;n) k(1)mn(u�(m) � u�(n))2= X(m;n) k(1)mn0@ X(i;j)2p(m;n)(ui � uj)1A2� X(m;n) k(1)mn0@ X(i;j)2p(m;n) 1=k(2)ij 1A X(i;j)2p(m;n) k(2)ij (ui � uj)2� Ck X(m;n) X(i;j)2p(m;n) k(2)ij (ui � uj)2� CkCpX(i;j) k(2)ij (ui � uj)2:10



Property A4 allows the edge weights Aij=hij to be arbitrarily small. In particular, a sliver in aDelaunay diagram corresponds to a small weight. All the paths containing the \light" edge will havesmall conductivity. The following lemma states that this situation is not generic, and that each edgecan be replaced by a path of high conductivity, which will be used for the construction of suitablepath embeddings.We plan to embed a cube Q into 
 and need a way of extending functions on 
 that vanish on theboundary to all of Q. A convenient way of doing this is to add a \super" node x0 to the vertex setX of a well shaped diagram G = (X;E; V ) of 
, and to augment the edge set E by connecting everyboundary vertex to the super node, and to assign large (say in�nite) weights to these edges so thatthey never lower the conductivity of a path. Also, we may put multiple (say in�nite) edges betweena boundary node and the super node to guarantee that these edges never increase the congestion. Itis convenient to associate the region V0 = Q n 
 to the super node x0.Notation Given a well{shaped diagram G = (X;E; V ) of 
, the augmented diagram is the diagramformed by adjoining a super node to X and the associated edges and volume to E and V .Lemma 4.4. Let G = (X;E; V ) be an augmented well-shaped diagram of 
 � <d. Then there exists apath embedding (�; p) of G into itself of bounded congestion such that the conductivity of each path inthe image is bounded below by a multiple of hd�2ij , i.e. for each edge (i; j) 2 EX(m;n)2p(i;j) 1=kmn � C=hd�2ij :Proof. Let us consider a typical edge xixj of length hij and de�ne U to be the neighborhood of xixjconsisting of points whose distance from xixj is no more than min(c=2; �c)hij where c and � are theconstants guaranteed by properties A1 and A2 of Theorem 4.2. We �rst consider the case when Ulies entirely within 
. The Lipschitz hypotheses on � guarantee that chij � �(x) � (C + c=2)hij forall x 2 U .Step 1: The number of cells from V that intersect U is bounded by a constant � � 0.We use a volume argument. If x 2 Vk \ U , property A1 shows that c=C � �(xk)=�(x) � C=c. Since�(x) is bounded above and below by multiples of hij, property A2 implies that Vk contains a ballhaving volume bounded below by ĉhdij and the diameter of Vk is bounded by Ĉhij. If ~U is the setof points having distance no more than Ĉhij from xixj, then ~U contains all of the cells intersectingU and has volume bounded by a multiple of hdij . It follows that the number of cells meeting U isbounded by j ~U j=ĉhdij .Step 2: There exists a line segment from Vi to Vj in U , parallel to xixj, that meets Voronoi faceshaving areas bounded below by a multiple of hd�1ijWe use an area argument similar in spirit to the previous volume argument. Consider the collectionof line segments in U that start in Vi and end in Vj , and are parallel to xixj. By construction, thecross-sectional area of this collection is bounded below by a multiple of hd�1ij , say ĉhd�1ij . Letting �be the maximal degree of any vertex guaranteed by property A3, the total number of faces that meetU is bounded by ��. It follows that some path must encounter faces having areas bounded belowby (ĉ=��)hd�1ij (otherwise every face would be small and their totality wouldn't exhaust the crosssection).We now observe that these conclusions don't change if a 
 is not convex and a portion of U is exteriorto 
. Since the volume of U \
 is trivially smaller than that of U , the number of cells meeting U onlyreduces in this case. Similar reasoning holds for the area argument. Note that all of the line segments11
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Fig. 4. Path constructed in Theorem 4.5.do begin and end in 
 and that we consider all faces on the boundary to have large (in�nite) area.To establish the theorem we let p(i; j) be the path in E formed by connecting the Voronoi centersin the order encountered by a segment in U which only intersects \large" Voronoi faces. This pathhas length at most �, and since � is bounded above and below by a constant times hij so too are thelengths of all of edges in p(i; j), which implies a bound the conductivity of the path. Finally, notethat an edge in E will only be on a path p(i; j) for vertices xi and xj that can be reached along nomore than � edges. Since the degree of each vertex is bounded by the constant �, the congestion ofany edge is less than ��.Theorem 4.5. Let G1 = (X(1); E(1); V (1)) be a well{shaped diagram for a cube Q containing 
 andG2 = (X(2); E(2); V (2)) be the augmentation of a well-shaped diagram of 
, each having the samespacing function �. Then the following construction path embeds G1 into G2 with bounded congestionand dilation:1. �(m) = i where V (2)i 2 V (2) is a cell intersecting the cell V (1)m 2 V (1). (Note that i is notuniquely speci�ed as V (1)m can intersect several cells of V (2))2. For each edge (m;n) 2 G1 consider the three piecewise linear paths: S1 = (x(2)�(m); x̂0; x(1)m ),S2 = (x(1)m ; x(1)n ) and S3 = (x(1)n ; x̂1; x(2)�(n)) where x̂0 2 V (1)m \ V (2)�(m) and x̂1 2 V (1)n \ V (2)�(n)(see Figure 2). Let `1 = �(m); `2; : : : ; `k�1; `k = �(n) index the cells of V (2) encounteredalong the three segments S1, S2, S3 in that order. Then p(m;n) is the path in G2 formed bythe union of the heavily weighted paths from x(2)`i to x(2)`i+1 constructed in lemma 4.4.Note that this construction is well de�ned since the super node has the region Q associated with it, sothat every cell Vm 2 V (1) meets some cell of V (2), and paths that leave 
 all go to the super node andcan reenter anywhere from the super node.Proof. Observe that every cell along the path p(m;n) in V (2) intersects either V (1)m , V (1)n or the edgejoining them. Property A1 shows that chmn � �(x) � Chmn for every x 2 V (1)m [ V (1)n , which implies(c=C2)hmn � �(x) � C2=c)hmn for x 2 V (2)`i , i = 1; 2; : : : ; k.An application of the volume argument used in the �rst step of Lemma 4.4 gives a bound on the lengthof the path p(m; n). Brie
y, the distance from any point in one of the cells fV (2)`i gki=1 to S2 is boundedby a multiple of hmn. This neighborhood of S2 will have volume bounded by Ĉhdmn, and since eachof the cells V (2)`i contains a ball having volume bounded below by a multiple of hdmn, say ĉhmn, itfollows that there are no more than Ĉ=ĉ such cells. Since the heavily weighted paths constructed inLemma 4.4 are all of bounded length, the length of p(m;n) is bounded by at most a multiple of Ĉ=ĉ.12



This immediately leads to bound on the congestion and dilation. Property A3 bounds the degree ofany vertex by a constant �, so the congestion is bounded by the L�max, where Lmax is the maximallength of any path. Similarly, the conductivity on each edge is bounded below by a constant of theform ĉhd�1mn and putting Lmax edges in series doesn't decrease this by more than a factor of 1=Lmax.Corollary 4.6. Let G1 = (X(1); E(1); V (1)) and G2 = (X(1); E(2); V (2)) be as in the theorem, andsuppose that Q is su�ciently large to guarantee that no boundary cell of V (1) meets a boundary cellof V (2). If G1 satis�es the Poincar�e inequality, then so too does G2Proof. Let u be a real valued function on X(2) that vanishes on the boundary (and, in particularon the super node x0). When constructing the path embedding of G1 into G2 given by the theorem,select �(m) in step 1 to correspond to the vertex having maximal absolute value of u of the availablechoices. It follows that jV (2)i ju2i �Xm jV (1)m \ V (2)i ju2�(m);and summing over i givesuTM (2)u =Xi jV (2)i ju2i �Xm jV (1)m ju2�(m) = (u � �)TM (1)(u � �):Since all boundary vertices of X(1) are mapped by � to the super node x(2)0 it follows that u � � :X(1) ! < vanishes on the boundary vertices, and since G1 satis�es a Poincar�e inequality we haveuTM (2)u � (u � �)TM (1)(u � �) � C(u � �)TK(1)(u � �)and the result follows upon application of Lemma 4.3.4.3. Construction of a Graph Satisfying a Poincar�e Inequality. In order to apply theresults of the previous section to establish a Poincar�e inequality for bounded well-shaped diagramsit is necessary to exhibit an instance of a canonical mesh satisfying a Poincar�e inequality. We let� : Q ! <+ be a speci�ed Lipschitz spacing function, �xed during this discussion, and Q a cube in<d.Figure 5 exhibits the oct{tree construction for a cononical mesh, and the balanceing step is illustratedin Figure 4.3. This oct{tree construction is well known, and we sumarize the relevant properties inthe next lemma.Lemma 4.7. The oct-tree diagram generated by the algorithm of Figure 5 is a well-shaped diagram.Proof. Properties A3 and A4 follow immediatly from the oct-tree construction. For properties A1 andA2, we only have to show the existance of constants c, C > 0 such that each cube Q in the balancedoct-tree generated by the algorithm of Figure 5 satis�esc`(Q) � �(x) � C`(Q); x 2 Q:Let Qc be a leaf cube at the end of step 1(b), and let Q be its parent cube. Since Q was divided thereis some point x 2 Q such that �(x) � `(Q), and since Qc was not divided, `(Qc) = `(Q)=2 < �(y) forall y 2 Qc. The distance between x and y is bounded by jx� yj � pd`(Q), and since � is �-Lipschitz,�(y) � �(x) + �pd`(Q). In summary, by the end of step 1(b),`(Qc) � �(y) � 2(�pd+ 1)`(Qc) y 2 Qc13



Algorithm: Canonical Mesh ConstructionInput: �, a spacing function.Output: A diargram G = (X;E; V ).Method:1. Construct a balanced oct-tree:(a) Let Q be a cube containing 
.(b) If `Q denotes the edge length of a cube Q, while `Q > minQ � for anycube, Q, sub-divide Q into 2d cubes.(c) While there is a cube Q with a neighbour Q̂ having `Q > 2`Q̂,sub-divide Q.2. Assignment of the diagram G = (X;E; V ).(a) The vertices, X, of G will be idexed by the cubes of the partition,and the cells, V , are the associated cubes.(b) G has an edge between two verticies xi and xj if and onlyif their associated cubes share a d� 1 face, and in this instance theedge weight is kij = min(`d�2i ; `d�2j ), where `i is the edge length of thecube Qi.(c) The ``mass'' Mi associated with a particular cell is the volume ofthe associated cube.Fig. 5. Constructing the canonical mesh.We now show there are constants c and C such that after the balancing step 1(c) of the algorithm:c`(Q) � �(y) � C`(Q), for y 2 Q. Since subdividing a cube doesn't e�ect the lower bound on �, weset c = 1. To establish the upper bound we use an induction argument. Our induction hypothesisis that prior to any balancing split, all cubes, Q, satisfy �(y) � C`(Q) for all y 2 Q (C is explicitlycomputed below).We have shown that step 1(b) produces cubes satisfying the inductive assumption provided C �2(�pd + 1), establishing the initial inductive step. Let Q be a cube split during the balancing step,Qc be one of its children, and Q̂ be a neighbor causing the split. It follows that `(Q̂) < `(Q)=2, andif x 2 Q̂ the induction hypothesis guarantees that �(x) � C`(Q̂). The distance between x 2 Q̂ andany y 2 Q is bounded by jx� yj � pd �`(Q̂�+ `(Q)) � (3pd=2)`(Q):Since � is Lipschitz with constant �,�(y) � �(x) + �(3pd=2)`(Q)� (C=2)`(Q) + �(3pd=2)`(Q)� �C=4 + �3pd=4� `(Qc)Selecting C such that C=4 + �3pd=4 � C completes the inductive step.The construction below mimics the proof of the Poincar�e inequality for the continuous case whichproceeds by integrating along a path from the boundary to each point in the domain. In the discretecase these paths must lie in the edge set of our graph and no one path can be used to excess (i.e. thecongestion must be controlled, see De�nition ?). The following is a generalization of path embedding14



Fig. 6. Balancing a quad tree.of the previous section, where the edges we embed are from each internal vertex to the boundaryvertices.Definition 7 (Boundary Embedding). Let G = (X;E; V ) be a graph with edge weights denoted bykij. A boundary embedding is a collection of graphs fGigxi2X each having the same vertex and edgestructure of G and having edge weights w(i)mn � 0.� The congestion of the boundary embedding is the maximum over all of the edges (m;n) 2 Eof the sumPi w(i)mn.� For xi 2 X the e�ective conductivity of Gi is the largest constant c = c(i) such thatcu2i � X(m;n)w(i)mnkmn(um � un)2for arbitrary nodal values fumg vanishing on the boundary.The role of these de�nitions becomes apparent from the following lemma.Lemma 4.8. Let G = (X;E; V ) be a well-shaped diagram of Q with mass matrix M and Laplacian K.Let fGig be a boundary embedding having congestion bounded by C and suppose that for each Gi theweighted conductivity is bounded below by Mi. Then the Poincar�e inequality uTMu � CuTKu holdsfor all u : X ! < vanishing on the boundary.Proof. The bound on the conductivities guarantees thatuTMu = Xi Miu2i� Xi X(m;n)w(i)mnkmn(um � un)2� X(m;n) Xi w(i)mn! kmn(um � un)2� CuTKuWe next construct the subgraphs Gi alluded to in Lemma 4.8. In the balanced oct-tree we de�ne cubeQi to be above cube Qj if their projections onto the plane xd = 0 have non{zero (d � 1) area. Thehorizontal faces of a cube are the two faces having xd constant. The key geometric fact used belowis that if the intersection of the projections of two cubes have non{zero area, then the projection of the15



smaller cube must lie entirely within the projection of the larger cube (and the projections coincide ifthe cubes have the same edge lengths).Consider a vertex xi in G and de�ne Gi to have the same vertex and edge sets as G and assign weightsto the edges of Gi as follows: An edge (m;n) has non{zero weight if and only if it is associated witha horizontal d� 1 face and if Qi is above Qm and above Qn. Without loss of generality we order thevertices so that `(Qm) � `(Qn), and assign the edge weights byw(i)mn = ( `(Qi) if `(Qi) > `(Qm)( `(Qi)`(Qm) )d�1`(Qi) otherwiseTheorem 4.9. The graph given by the above construction oct{tree construction satis�es a Poincar�einequality.Proof. We show that the graphs fGig constructed above satisfy the hypotheses of Lemma 4.8.Step 1: The congestion is bounded by 2L where L is the diameter edge length Q.A �xed (vertical) edge (xm; xn) in G, it has a non{zero weight w(i)mn if and only if the cube Qi liesabove the cells Vm and Vn. Without loss of generality, assume `(Qm) � `(Qn). Let I index all thecells Qi above Qm and Qn. The congestion is then given bycmn = Xi2I w(i)mn= Xi2I;`(Qi)�`(Qm)w(i)mn + Xi2I;`(Qi)<`(Qm)w(i)mn= Xi2I;`(Qi)�`(Qm) `(Qi) + Xi2I;`(Qi)<`(Qm) `(Qi)d=`(Qm)d�1The �rst summand is bounded by L since the larger cells must be stacked one on top of the other.The second summand is also less than L since the sum gives the volume of the smaller cells above Qmdivided by the cross sectional area of Qm.Step 2: Let L be edge length of Q, then the e�ective conductivity of Gi is bounded below by Mi = jVij.Let ` be the minimum edge length of the cubes below Qi (which may be `(Qi)), and think of the areaof the projection of the cube Qi onto xd = 0 to be divided into squares of length ` (see Figure ?). Theoct-tree construction guarantees that the projection of a cube Q below Qi will be the union of suchsquares. If Q is below Qi and `(Q) � `(Qi), the oct-tree construction guarantees that the intersectionof the projections of Qi and Q is equal to the projection of Qi.For each square S in the projection, consider the path from the boundary to Qi formed by connectingthe cubes below Qi that meet the cylinder S �<. For convenience label the vertices m0;m1; : : : ; mIso that Qm0 is a boundary cube and Qi = QmI . ThenjSju2i = jSj IXn=1(umn � umn�1 )!2� IXn=1 hmnmn�1 IXn=1(jSj=hmnmn�1 )(umn � umn�1 )2� L IXn=1(jSj=hmnmn�1 )(umn � umn�1 )2where L is the edge length of Q. Multiplying by `(Qi) and summing this inequality over all squares16
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