Dynamic Parallel Complexity of Computational Circuitg*

Gary L.Miller

Department of Computer Science
University of Southern California
Los Angeles, California 90089

Abstract

The dynamic parallel complexity of general computational cir-
cuits (defined in introduction) is discussed. We exhibit some
relationships between parallel circuit evaluation and some uni-
form closure properties of a certain class of unary functions and
present a systematic method for the design of processor efficient
parallel algorithms for circuit evaluation. Using this method:
(1) we improve the algorithm for parallel Boolean circuit evalu-
ation;(2) we give a nontrivial upper bound for parallel min-max-
plus circuit evaluation; {3) we partially answer the first open
question raised in [MiRK85] by showing that all circuits over
finite noncommutative semi-ring and circuits over infinite non-
commutative semi-ring which has finite dimension over a com-
mutative semi-ring can be evaluated in polylogarithmic time in
its size and degree using M(n) processors. Moreover, we develop
a theory for determining closure properties of certain classes of
unary functions.

1 Introduction

The problems of parallel arithmetic circuit (polynomial,
straight-line program) evaluation was intensively studied.
Valiant, Skyum, Berkowitz, Rackoff [VSBRS3| proved that
if a polynomial over {+,—,x} can be evaluated in C
time sequentially, then with preprocessing (off-line), it
can be evaluated in O((logd)(log C + log dn)) times using
only C°™ processors in parallel. Miller, Ramachandran,
Kaltofen [MiRK85] improved this result and showed that

*This work is supported by National Science Foundation
grant DCR-8514961

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 ACM 0-89791-221-7/87/0006-0254 75¢

254

Shang-Hua Teng

any arithmetic circuit with size n over a commutative semj.
ring can evaluated in O((log n)(log nd)) times with M(n)
processors’ on-line. However, there is no theory for Daralle]
circuit evaluation when the circuit iz not over = commuta.
tive semi-ring. Moreover, the previous results did not give
a tight bound for parallel Boolean circuit evaluation,

A general CE-circuit is a 4 — tuple {P,0P, 7, ey,
where C is a labeled directed acyclic simple graph whoge
leaf nodes (the nodes with zero in-degree) are labeled with
values from certain domain D, whose internal nodes are Ja-
beled with operators from a set of operators O P and whose
edges are labeled with unary functions from 7. The opera-
tors in O P are partitioned into cheap operators and ezpen-
sive operators. The degree of a circuit is defined by mapping
cheap operators to addition and mapping ezpensive opera-
tors to multiplication and then compute the formal degree
[MIiRK85] of the corresponding arithmetic circuit. The val-
ues of the nodes in a circuit are defined in the usual way.
Our task is to compute the values of all nodes,

In this paper, we present a systematic method via the
uniform closure properties of certain classes of unary func-
tions for the design of processor efficient parallel algorithms
for circuit evaluation in polylogarithmic time in its size and
degree. We also develop a theory for proving closure prop-
erties of certain classes of unary functions. (see reduction
lemma, section 6). The ideas in this paper can be uged
for systematic tree based parallel algorithm development
[MiTe85]. Here are some major results we shall present in
this paper.

¢ Parallel Boolean Circuit Evaluation: A
Boolean circuit over a Boolean algebra B = {D, v, A}
with unary function class # = {(a Az) Vb |
a,b € D} can be evaluated in time no more than
O((log n)(log(min(dav,dva))) using M(n) proces-
gors. Moreover there are Boolean circuits with ex-
ponential doy and dy, which can be evaluated in
polylogarithmic time using M(n) processors, with-
out knowing the structure of the circuit beforehand.
Where dav (dva) is the degree of the Boolean cir-

!M(n) is the number of processors required for multiplying
n X n matrices over the semi-ring in O(logn) time.

Bobos a5

cuit when we view V (A) as addition in the semi-ring
formed by B.

Parallel Min-Meax-Plug Circuit Evaluation:
Any min-max-plus circuit C with n nodes, m
max nodes and degree d can be evaluated in
0((log n)(logdn))) time using O(m - M(n)) proces-
gOTS.

Parallel Noncommutative Ring Circuit Eval-
uation: We show our methods can be applied to
certain circuit value problems over noncommutative
semi-rings. We show that all circuits over a finite
noncommutative gemi-ring can be evaluated in poly-
Jogarithmic time in its size and degree using M(n)
processors. We also give a more processor efficient
method to handle matrix rings over a commutative
base ring. The naive approach would be to expand
$he matrix products and additions into operations
over the bage ring.

2 The Roles of Unary Func-
tjons in Parallel Circuit Eval-
uation

For easier understanding, we make three restrictions to the
computational circuit in this detailed abstract. The the-
ory about general computational circuit is given in the full
paper. The first restriction is that there is only one cheap
operator which is associative, and commutative, and the
expensive operations distribute over it. The next two re-
strictions will be removed in the case of Boolean circuits.
We can also drop these restrictions by using the method
presented in section 5. The second restriction is that each
ezpensive node has in-degree two. The third restriction
is that there iz no edge from ezpensive nodes to ezpensive
nodes. Using these restrictions we define the value of a
circuit:

Definition 2.1 (Value of nodes in circuit) The value
of @ node in o circuit (denoted by value(v)) is defined in-
ductively:

o If v is a leaf, then value(v) is the value associated with
v.

e If v is a cheap node, and labeled by @, then value(v)
= o(f1(value(v1));---> fr(value(vi)))
where v1,...,v are the children of v. fi,..,fr are
the unary functions with edges (v1,v),.. oy (vk,2).

e If v is an ezpensive node, and labeled by ®, then:

value(v) = f1(v1) ® fa(v2)
where v1,vs are the children of v. f1, f2 are unary
functions with edges (v1,v), (v2,9)-

255

2.1 Closure Properties

Definition 2.2 (Composition Closure Property)

A class of unary functions ¥ i3 closed under composition
if for all functions fi(z), f2(z) € ¥, f2(fi(z)) € 7. We
denote f2(f1(z)) by fao fr().

Definition 2.8 (Combination Closure Property) A
class of unary funciions ¥ over domain D 1s closed under
combination over a binary, associative, commutative oper-
ator ® if for all f,g € ¥, f(z) ® g(z) € F. (denoted by
feq).

Definition 2.4 (Projection Closure Property)

A class of unary functions ¥ over domain D is closed un-
der projection over a sei of binary operators OP if for all
feEF,0€0P,0€D f(z@a)ETF and fla®z) € F.

Deflnition 2.5 (Linear Property®) Let @ be a binary
operator which is associative and commutative. A class of
unary functions ¥ over domain D is linear® over @ if for all
fe# z,yeD, flz@y) = f(z)® f(y). Sometimes we say
F distributes over @.

Claim 2.1 If @ is the cheap operation and ¥ is a set of
unary functions which distributes over & then the closure of
F under composition, combination over @, and projection
over the ezpensive operations will still distribute over ©.

Definition 2.6 A class of unary functions ¥ is closed over
the pair of operation sets (OP1,0P2) if ¥ s closed under
composition, combination over all operators in O Py, linear
over O P, projection over O Pa.

Claim 2.2 {F,®,0} forms a semi-ring.

In later section, we use M(n) denotes the number of
processors required for multiplying n X n matrices over
semi-ring {¥,®,0} in O(log n) time.

2.2 Operations and Algorithm

We now define some notations which will make the speci-
fication of our parallel computational circuit concise.

- fi; if vi and vj are cheap
uc,c); = { 0" otherwise 4

e S fij if v; is cheap
U(X,C)i = { 0 othe’rwise

s R fi; if vi or v; is not cheap
U, X} = { 0 ’ otherwise’

Where f;; denotes the unary function labeled on the
edge (vi, ;).

2] inear property is a special case of doubling closure prop-
erty defined in the full paper. There we show that doubling
closure property is more general for supporting Compress oper-
ation defined for parallel abstracted circuit contraction.

Computational circuit parallel evaluation can be done
by repeated applications of the following three operations.

Evalr:

For all nodes v in the circuit whose children wy,.. vy W
are leaves, do

value(v) — © (Usu,u(value(w,)),.. oy Uy o (value(wy)))
Uw;o «— 0.

Evalg:
for all pairs of nodes v,u where v is an expensive node
with children w;,w, in which one of them is a leaf and u
is a parent of v. (w stands for the nonleaf child)
find hyo,u € F such that:
hw,e () = Usu (Uuio(z) ® Uwﬂ(m-ﬁ(wﬂ)))
if wy is leaf
B via(2) = Usu(Usy o (value(ws)) ® U, (2))
if w is leaf.
Uyu <0
for all pairs w, u.
gw,u + By (hw,v,u); The sum is over defined T—
Upu — Uy & Juw,u-

I\JMG:
U« U(X,C)oU(C,C) @ U(X, X)

Where A@ B and Ao B are matrices addition and
multiplication over ring {7, ®, o}.

Claim 2.8 The application of operations Evaly, Evalg and
MMc preserve the values of all nodes in the circust.

[PROOF] This claim straightforwardly follows the defini-
tions of those three operations and the closure properties
defined in previous subsection and can be proved by induec-
tion easily. O

ALGORITHM Parallel Circuit Eval
input circuit C;
output The value of the output nodes;
repeat
MMg; Evalr; Evaly; Evalg;
until all nodes are leaf nodes;

Claim 2.4 At the end of the algorithm, every node gets its
value.

Theorem 2.1 (Generic Theorem) Let C be a circust
over domain D, operator set OP, unary function class 7.
If there is a unary function class 7' contains 7, 7' is closed
over the pair of operation seis (cheap operation, ezpensive
operation), and the time, processors required to compute
composition, combination, projection are bounded by T(n)
and P(n) respectively, then C can be evaluated in O(T(n) -

256

(log?(n) + (log n) - (logd))) time, using O(P(n)-M(n)) pro.
cessors. Where n is the node size of C, d is the degree of

C.

This theorem demonstrates the relationships between
parallel circuit evaluation and all the parameters of circuit,
The constraints that all the computations of composition,
combination, projection during the evaluation of the circuijt
must be bounded by small T(n) and P(n) show that the
class unary functions need not only to be closed, but algg
to be uniform. In another word, we can find a reasonabhle
data structure for the representing, manipulating of thoge
functions efficiently in parallel. These will be discussed in
later sections.

[PROOF| Note that if we replace all cheap nodes with
addition nodes and all expensive nodes with multiplication
nodes, then the circuit is converted into an arithmetic cir.
cuit of same size and degree. The theorem is proven by
using the similarity between our algorithm and the algo-
rithm for arithmetic circuit presented in [MiRK85] and the
proof of Theorem 6.3 in [MiRK85]. u]

3 Reduction Lemma

Lemma 3.1 (Reduction Lemma) If ¥ = {L(z)} is a
class of monotonically increasing unary functions over a do-
main D C R and it 1s closed under composition and pro-
jection over OP,, then Fpin = {min(L.(z), ..., Li(z)) |
i € N,Lj(z) € 7} ds closed over the pair of opera-
tions ({min},0P1). Fmes = {maz(Li(z),..., L:(z)) |
i € N,L;j(z) € #1} fs closed under the pair of operations
({maz}!oplj'

[PROOF] Let j(z) = min(Li(z),..., Li(z)),
9(z) = min(L}(z), ..., Li(z)),
Ly(2), oy Li(2)), Li(3), ..., Li(z)) € F.

e Since all functions in # are monotonicly, increasing,
then:
go f(z) = min(Li(f(2)),..., L;(f(2)))
= min(L}(Li(2)),..., L} (Li(2)), ..., L3(Li(z)))
Since 71 is closed composition, hence, Fnin is closed
under composition.

® Fmin is closed under combination over {min} since:
min(f,g) = min(Li(z),..., Li(z), L}(z), ..., L(z))

¢ Fmin i8 closed under distributing over {min} since
all functions in 7, are monotonicly increasing.

® Fmin i8 closed under projection over OP,, since 7
is closed under projection under 0P, and Fn;, is
closed under composition.

By duality, the second part of the lemma is proved.]
Using the Reduction Lemma, we have the following
results.

o Since Fmaz,4) = {maz(z,a) +b | a,b € R} are
closed under composition, projection over {maz, +},
and all functions in it are monotonicly increasing,
hence F(minmaz,+) = {min(Li(z),..,Li(2)) | ¢ €
N,L1,..; Li € Fmea,+)} i8 closed under the pair of
operation sets ({min}, {maz,+}).

® ;(min,muz‘xj = {miﬂ(L1(£),..., L‘(z}) | i €
N,Li,oLi € Fimas,x)} 18 closed under the
pair of operation sets ({min},{maz,x}). Where
jr(m-n:,X) = {mam(ax,b) | G,b € R+}'

® ;(min.mnz&,x) = {min(Ll (.'5), . L.‘) ! i €
NyLiyeey Li € Flmaz4,x)} i8 closed under the
pair of operations ({min},{maz,+,x}). Where
Fimaz4,x) = {maz(a,b-z)+c|a,bc€E R*}.

4 Min-max-plus Circuits

We know of no previous results on the parallel evaluation
of circuits with three or more operators. In this section,
we will present some systematic methods for the design
of parallel evaluation algorithms for thoses problems. We
use as our example the min-max-plus circuit. (i.e. we
consider computational circuits over domain R, the set
of real numbers, and operator set {min,maz,+}.) Min-
max-plus circuits (and/or min-max-plus trees) are impor-
tant for computational Al especial in game theory. More-
over, it seems that a lot of dynamic programming prob-
lems can be reduced to min-max-plus circuit problems).
Any pair of operators is easy to evaluate in parallel since
{R,min,maz} forms an boolean algebra, and { R, min,+}
and {R,maz,+} form commutative rings. We consider the
complexity of evaluating min-max-plus circuit in parallel.

4.1 TUnary Functions

It is natural to view {min, max} as the cheap operators
and {+} as the expensive operators. However, if NC # P,
then there is no class of unary functions which is uniformly
closed under the pair of operations ({min, maz}, {+}). By
this observation, we take min (or max) as the cheap oper-
ator.

The class of unary functions ¥ for min-max-plus is
defined as follows:

Definition 4.1 (Unary function of min-max-plus)
Let Lo denote the linear form maz(a + 2,b) = a +z A
b and, for all ¢ € N, let Loy, V -+ V La, s, denote
min(La, by (2); s Lag 3, (2)). The class of unary funciions
of min-maz-plus is defined as:

+eco
F = LJ{L‘“J,1 VooV Lg s, |G;,...,a;,51,...,b.‘€R}
=1

We call this the linear form representation of f. The
gize of the representation is the number of linear forms

257

presented in the representation. The minimum represen-
tation of f is a linear form representations containing the
minimum number of formas.

We state as a claim the fact that F is the class of
functions we will need for parallel evaluation of the min-
max-plus circuits:

Claim 4.1 ¥ i3 closed over the pair of operator sets
({min}, {maz,+}).

These unary functions allow us to partially evaluate
parts of the circuit. They allow us to replace pieces of the
circuit with a single edge that has an unary function on it.
The circuits we obtain are defined below:

Definition 4.2 A restricted CE-circuit in one free
variable z is a CE-circuit C such that:

1. There ezist an unique leaf node whose value is the
variable z.

2. Every ezpensive node has at most two children one of
which is a leaf.

We say that C computes the unary funciion f al the node
v if the value of the circuit C at the node v as a funciion of
z is f(z). Thus C' computes a function for each node. If C
has a distinguished output node we will simply say that f s
the funclion computed by C, denoting [by fo.

The main question we will consider in this and the
next section is the size (to be defined in the next subsec-
tion) of f as a function of the size of original circuit. This
size will effect the time and number of processors we need
to use to evaluate the circuit.

Lemma 4.1 Any unary funciion f produced during the
evaluation of a CE-circuit C by repeated application proce-
dure Parallel-Circuii-Eval is computable by a resiricted CE-
circuit obiain from C by deletion, partial evaluation, and
shunting. Thus f is computable by a resiricted circuit of
size al most |C|.

[Proof] The proof is by induction on the number a applica-
tions of Parallel-Circuit-Eval. For no application the pro-
cedure the Lemma is clearly true. When we apply Evalg
or Evalg we are simply either deleting part of the circuit
or doing a partial evaluation. When we apply Compressc
we are combining two subcircuits under composition to get
each unary function, shunting. (]

4.2 TUniformity of 7

Definition 4.8 (Size of functions in F) The size func-
tion f € F is the number of forms in its minimum linear
form represeniation, denoted by size(f).

During the evaluation of the circuit we shall need to
take an arbitrary representation and reduce it to a mini-
mum representation.

Lemma 4.2 A linear form represeniation of size n can be
reduced to minimum one in O(log n) ifme using n processors.

[PROOF] Let Lay 3, V-V Lg, 5, be an arbitrary linear
form representation. We first sort the forms on their a
values. Since sorting can be performed in O(logn) time
using n processors [AjKS83,ReVa87| we may assume that
the the a; are already sorted and distinct. For the ith
linear form see assign it the value v; = b; — a;. It follows
that a linear form L., p, is in the minimum representation
if w; is strictly greater than v; for 1 < 5 < 4. Thus using
all prefix sums we can compute the values v; that will be
in the minimum representation, and therefore the forms in
the minimum representation. O

Given a sorted minimum representation for a function
f is follows that we can compute the value of f at z in
constant time using n processors or in O(logn) time using
one procesgor. We show that the minimum representation
of the unary function is not too large. The breakpoints
of a linear form function f is the set of ¢’s in the minimum
representation of f.

Definition 4.4 The breakpoints of a restricted CE-
circuil C for the operations ({min}, {max, +}) is the union
over breakpoints of all functions computed by C.

Lemma 4.3 The number of breakpoints of a resiricted CE-
circust over {min}, {max, +}) is bounded by the sum of num-
ber of max nodes and the total number of breakpoints of the
edge functions of C.

[PROOF] We shall only prove the case when the func-
tions on the edge are all the identity. The general case
is not much harder. The proof is by induction on the
size of the restricted CE-circuit. A single node iz a re-
stricted CE-circuit and the only function it computes is a
constant. Thus it has no breakpoints which is as claimed
in the Lemma.

Suppose the Lemma is true for all circuits of size n
or less. We must prove the Lemma for circuits of gize
n -+ 1. Let C be such a circuit of size n + 1 and v one of
its output nodes. If we remove v from C and all the edges
associated with it we have a circuit C' of size n, possibly a
disconnected circuit. Thus by induction the Lemma holds
for C'. To prove the Lemma for C we consider three case
depending on whether v is a min ,max, or plus node. Let
v1,..., Y be the children of v.

First suppose that v is a min node. In this case the
value computed at v is just the min of the values com-
puted at v3,...,vx. Thus the breakpoints of v is at most
the union of the breakpointe of vi,...,v;. Thus, no new
breakpoint have been introduced by v.

Second, suppose that v is 2 max node. In this case v
has at most two children vy, vz where v, is a leaf with value
a and vp computes the value f(z). It follows that the max
of the constant function e with f will introduce at most

258

one new breakpoint, the point where the curve a intersects
the monotone increasing curve f. If they intersect in a line
then no breakpoints are introduced. Since C has one more
max node than C' this case also follows.

Third, suppose that v is a plus node. Here, the value
of v is the sum of a constant ¢ and a function f. But the
breakpoints of f are unchanged by translation of f by an
additive constant. Thus, the breakpoints of the function
computed by v are just the breakpoints of f. Therefore
the breakpoint of C are the same as the breakpoints of C".
)

Lemma 4.4 If C be ¢ min-max-plus circuil with m maz
nodes and e edges and all unary functions on the edges of
C have size less than constant ¢ then the size of an unary
Junction used by Parallel-Circuil-Eval during the evaluation
of C will have aize at most c-e+m. In the case when the edge
functlions are trivial the size of the function are all bounded
by m.

[PROOF| By Lemma 4.1 every unary function is com-
puted by a subcircuit of C. Further by Lemma 4.3 the
number of breakpoints in any restricted CE-subecircuit is
bounded by the number of breakpoints contributed by the
edge function, which is at most ¢ - e, plus the number of
max nodes, m. [m]

In order to finish the description of the algorithm and
the proof that it works efficiently we must show how to per-
form matrix multiplication of matrices whose entries are
unary functions given in minimum linear form representa-
tion. The product is over the semiring {min, composition}.
We assume the matrices are of size n and total number of
breakpoint of all the function including those in the prod-
uct i8 bounded by n. Thus we must show how to (1) per-
form composition in O(logn) time and n processors (2)
computed the min of n functions in the same time and
processor count.

Lemma 4.5 If f and g are two functions of size at most n
then thesr composition and minimum representation can be
computed in O(logn) time and n processors. In general the
composition of any two monotone piecewise linear funclions
each with n breakpoints can be computed in O(logn) and n
processors.

[PROOF] See paper [MiTe87]. O

Lemma 4.6 The minimum of a set of n funclions each of
size at most n can be compuled in O(logn) time using n?
processors.

[PROOF]| This Lemma follows by simply concatenating
the representations of the n functions together and then
appling Lemma 4.2 we get a minimum representation for
the answer. O

Theorem 4.1 Any Min-max-plas circust C with m
maz nodes, n nodes, and degree d can be evaluated in
O((log n)(logdn))) time using O(n - M(n)) processors.

Remark @.1. In section 5, we show that Fmin,maz,x)
is closed over {min, maz, x}. Using the similar uniformity
proof in this section, we can prove that Fmin,maz,x) i8 uni-
formly closed. Therefore, we have the following theorem.

Theorem 4.2 Any Min-max-times circuit C over BT
with m maz nodes, n nodes, and degree d, can be evaluated
in O((log n)(logdn))) time using O(n - M(n)) processors.

Remark 6.2. In full paper, we show that there is a class
of unary functions #; which is closed over the pair of op-
erations ({min}, {maz, plus}) as well as the pair of opera-
tions ({maz}, {min,plus}). Moreover, it is uniform closed.
Therefore, we can have algorithm similar to the parallel
Boolean circuit evaluation algorithm which has dynamic
adaptivity for evaluate min-max-plus circuits.

5 Boolean Circuits and Their
Parallel Evaluation

We will present an uniform algorithm to evaluate Boolean
circuits with unary functions ¥ = {(a Az) Vb | a,b € D}
without any preprocessing using the methods developed in
last section. The time complexity T¢ of this algorithm
always satisfies T¢ < O((log n)(log n(min(dav,dva))).
Moreover, we show that there are Boolean circuits with
exponential d,y and dy, which can be evaluated in poly-
logarithmic time using M(n) processors processors without
knowing the structure of the circuit beforehand.

Definition 5.1 (Boolean Circuit) A Boolean circuit
over Boolean algebra B = {D,V,A} is a computational cir-
cuit {D,0P,7,C}, where OP = {V,A}, F={{aAz) V|
a,b € D}.

Boolean Algebra B = {D,V, A} itself forms a commu-
tative semi-ring and therefore as a consequence of results
in [MiRKS85], the simple Boolean circuit can be evaluated
in O((log n)(log nd)) times with M (n) processors. But this
is not a tight bound for the following reason.

e It is not clear about the definition of degree of
Boolean circuit since we can view V or A as addi-
tion in B. The corresponding degree is denoted by
dav and dya respectively. One straightforward way
to apply the algorithm in [MiRK85] to Boolean cir-
cuit is to compute dav and dva first and choose the
operator with bigger degree as addition in ring. An-
other way is to make two copys of the circuit and
evaluate one circuit using V as addition and another
using A as addition. However, both of those meth-
ods are not uniform in the sense that in the first one

259

we have to introduce computation over + and it is
not easier to compute the degree that evaluate the
circuit. In second we have to coordinate two evalu-
ation processes. Moreover, if dyv and dya are both
exponential, we can not deduce a polylogarithmic al-
gorithm. Moreover, in order to use previous results,
V-node or A-node must has in-degree two.

5.1 Closure Properties

Lemma 5.1 (Duality Lemma) For all a,b € D in a
Boolean algebra {D,V, A}, there is c € D, such that:

(anz)vb=(bvz)Ac

Lemma 5.2 (Boolean circuit lemma) 7 = {(a Az)V
b | a,b € D} is closed over the pair of operalion sets
({V},{A}) as well as the pair of operation sets ({A}, {v}).

[PROOF] Is is suffice to prove that 7 is closed over the
pair of operations sets ({V}, {A}) due to duality lemma.
[PROOF] For all f,4)(z) =(aAz) Vb

(1) F is8 closed under composition since
f(az»bzl(f(uhb;)(z)) = f(a1Aaz,a3Abvb,) € F

(2) 7 is closed under combination over {+} since Farp) vV
faz.b2) = Flayvas bives) € F

(3) ¥ is linear over {V}, since fan)(zVY) = flap(z)V
Jtap)(9)-

(4) 7 is closed under projection over {A} since forall ¢ € D,
fe) (€ AZ) = flane,py(z) and ‘A” is commutative. |

5.2 The Algorithm

Because of duality lemma, there is no reason to view one
of {V,A} as cheap operator and another as expensive op-
erator. And since the general Boolean circuit evaluation
problem is P-Complete [Ladn75], one of them must be ex-
pensive. However, Boolean circuit lemma tells us that we
can do Evalg and MM on V nodes as well as on A node
(we denote by Evaly, Evaly, MMy, MM respectively).
This provides an outline for Boolean circuit parallel eval-
uation: Define two parallel evaluation phases, one takes Vv
as expensive operation, another takes A as expensive op-
eration. We denote those two phases by Phase(A, V) and
Phase(V, A) respectively, The algorithm is defined as the
repeated applications of Phase(A,V) and Phase(V, A) al-
ternatively. In order to make this work, we have to solve
the following three problems: (1) Unbounded fan-in of ex-
pensive nodes. (2) The problem caused by edges from ex-
pensive node to expensive node. (3) The problem caused
by alternation.

We now define an operation to deal with unbounded
fan-in of expensive nodes.
Trimming:
For all nodes v in the circuit whose children Wiyeas, Wi
are all leaves, do

g
LE

| 1|

|

Tl

L1 &,

Wy [T

"l!r‘

value(v) «— © (Uwyo(value(wi)),...,Uu,o(value(wy)))
Uw;v «— 0. Where ®@ is the operation of v.
For all nodes v with label ® and children wy,...,w;,
w.lo.g let wy,..., w, be leaf nodes, where t < k, do

¢ — O(Uw, v (value(wr)), ..., Un,o (value(w:)))
Uwip1u(2) = a © Uuyyyu(2); Ungos ooy Unyw — 0

Graphically, the Trimming operation simply discon-
nect all leaves from their parents. This operation can be
done in O(logn) time, using n? processors. It is easy to
show that after the application of Trimming, the value of
each node is not changed.

Trimming will in general introduce many nodes with
fan-in 1 and these nodes of fan-in 1 form a forest as a
subgraph in the circuit. (see Figure 1).

— o I‘L- i
LS
‘ Y-
i/ ‘V:."i L.
Iy "'/
Y, "'1./\!5 ’f ’/VS ‘

Figure 2: Forest Removal for the example in Figure 1

We will remove the forest and replace it by equiva-
lent unary functions. The equivalent unary functions of all
nodes in the forest are the composition of the unary func-
tions from the child of ite root to itself (see Figure 2). By
using the parallel tree contraction technique developed in
[MiRe85], we can find the equivalent unary functions for all
nodes in the forest in O(logn) time, using only n proces-
gors, We name this function by Forest-Removal which
defined as following:

Forest-Removal:

for all v in the forest, Find the equivalent unary function
fo in the forest using tree contraction technique. Let r
denote the root of v and ¢(r), ¢c(v) be the childs of r and v

260

in the circuit respectively.

Uc(u)u +— 05 Uc(r)o = fv;

for all pairs of nodes w, v such that w is child of some
nodes which are root in the forest and u is of operation
© and some of whose children v;,...,vr are nodes in the
forest rooted by some parent of w do

Ju — @?:1(Uu.-u o fu,-); Uc(r]n — Us(r)u © Gu; Uv.‘u +— 0.

Claim 5.1 After the application of Forest-Removal,
there i3 no node which is not an ouiput node and which
has fan-in 1. And the value of each node is preserved by
Forest-Removal operation. Moreover, Forest-Removal
takes O(logn) time, using n? processors.

Now, we are ready to specify the two important phases
and the algorithm for boolean circuit parallel evaluation.
Phase(V, A)

Trimming; Trimming; Trimming;
Forest-Removal; MM.;

Phase(A, V)
Trimming; Trimming; Trimming;
Forest-Removal; MMa;

ALGORITHM Paral
Forest-Removal;
repeat

Phase(V, A); Phase(A, V);
until all nodes are output nodes;

oolean it BEva

Lemma 5.3 After the application of Phase(V,A) (or
Phase(A,V)), All the non-output nodes have fan-in af least
two.

[PROOF| Clearly, after the application of Forest-
Removal, all non-output nodes have fan-in at least two.
For all non-output nodes v, MMy either makes no change
on v or connect all the children of some of its children to
it. Hence, in any case, after the application of MMy, v has
at least two children. O

Definition 5.2 The AV-height of a node v denoted by
hav(v) in circuit is defined inductively:

o If v is a leaf, then hav(v) = 1.

e If v is an V-node then: b, (v) =3

o If v is a A-node, then: h,,(v) =
maz(maz.eoo vk, (¢) +
1/2,mezuepc(v)(hay(v))) where C(v), CC(v) and
EC(v) are the set of children, A-children and V-
children or leaf children of v. respectively.

wEC(v) ﬁ}\v(“}'

The AV-height of a circuit is the mazimum height over its
nodes. A child w of a A-node v is dominant if either: w
i3 an vee-node and hav (w)=hav(v) or w 18 8 A-node and
hav(w)+1/2=hnv(v). The VA-height (denoted by hyn (v))
is defined in the similar way.

Claim 5.2 The AV-height (or VA-height) of a circuit is
less than e - dav + dav (e - dya +dua).

[PROOF] Proven in Theorem 4.2 from [MiRK85]. O
From now on, let C denotes a Boolean circuit in which
all non-output nodes in it has fan-in at least two.

Claim 5.3 Let C' be the circuit after the application of
Phase(V,A) on C and v' be the image of v. If v’ is a leaf
and there exist at least one A-node u' such that (v', ') is an
edge in C', then v has VA-height at leasi {wo.

[PROOF] Suppose the VA-height of v is less than two,
there are two cases: If its height is one, then v is either
a leaf or all its children are leaves. Hence, after the first
Trimming operation, v becomes a leaf. If its height of v is
3/2, then v is must be a v node whose children are either
leaves or V-nodes with all leaf children. So the second
Trimming makes v a leaf. Therefore, in each case, the
application of the third Trimming disconnects v’ and ',
Contradiction. o

Lemma 5.4 Let C' be the circuit after the application of
Phase(V,A) on C and v' be the image of v. Then b ,(v') <

kya(v)/2.

[PROOF] The proof is done by induction on the length of
the longest path from a leaf : the level of the node.
Suppose that all the children of v' are leaves:

o If v' is a A-node, then by definition, the height
hva(v')=k, where k is the in-degree of node v'. By
Claim 5.3, hVA(U)Z 2k,

e If v is a V-node then by definition, hy,(v')=1. Sup-
pose hva(v)<3/2, then after the second Trimming
operation, v become a leaf, contradiction.

Suppose that all the children of v' are either leaf nodes or
internal nodes in C' satisfy the lemma:

e If v is a A-node then the lemma follows by Claim 5.3
and the assumption.

o If v is a V-node, then let u' be a dominant child of
v'. If u is a A-node, then it is straightforward. Now
suppose u is a V-node. Since v and v are all V-nodes,
there must be other nodes in between one of the
paths from u to v, otherwise, ' will not be a child
of v' after the application of the MM, operation.
Moreover, all nodes has fan-in at least two. Thus by
the definition of height, hva(u)+1<hya(v). Hence:
hva(v)= 2-hwx(t?'). O

Lemma 5.5 For all nodes v in Boolean circuit C, the appli-
cation of Phase(V,A) (Phase(A,V)) will not increase hny (v)
(bva(v)).

[PROOF] It is proven by simple induction on the level of
nodes. See the full paper. O

Theorem 5.1 A Boolean circuit over a Boolean alge-
bra B = {D,V,A} can be evaluated in time no more
than O((log n)(log n(min(dav,dva))) using M(n) proces-
sors. Moreover there are Boolean circuits with ezponential
dav and dya which can be evaluated in polylogarithmic time
using M(n) processors without knowing the structure of the
circuit beforehand.

[PROOF] The first part of the theorem is a consequence
of lemma 5.4, 5.5. The second part follows the fact that for
all node v in a Boolean circuits C,if at least one of d,w{v]
and dva(v) is no more than 0(20°5™"), then v will get its
value in polylogarithmic time. And it is easy to construct
Boolean circuits of exponential day and dva, but all nodes
v in it have one of dav(v) and dya(v) is no more than
O(20es™™), m]

The beauty of this parallel Boolean circuit evaluation
lies in its dynamic adaptability to the structure of the cir-
cuit. This power comes from the symmetrical structure
of the unary function class. However, It is still unknown
about the tight bound on the running time of this paral
lel Boolean circuit evaluation algorithm and some stronger
characterizations of the circuits which can be evaluated in
polylogarithmic time. However, we can use this algorithm
define the dynamic degree of a Boolean circuit.

Definition 5.8 (Dynamic Degree) If Boolean circuit C
can be evaluated by using the above algorithm in T¢ times,

then dynamic degree of C (denoted by d¢) is defined as do =
2TC /{logn]-—logn.

6 Parallel Algorithms for Cir-
cuits over Noncommutative
Semi-Ring

In this section, we develop a theory for parallel noncommu-
tative semi-ring circuits evaluation via the uniform closure
properties of unary function classes and show all circuits
over finite noncommutative semi-ring and circuits over infi-
nite noncommutative semi-ring which has finite dimension
over a commutative semi-ring can be evaluated in poly-
logarithmic time in ite size and degree using M{(n) proces-
sors. This provides a partial answer to the open problem in
[MiRK85|. Moreover, this demonstrates evidence that the
parallel circuit evaluation using uniform closure properties
is more general than when simply using the commutative
ring condition even in the case of two operators.

6.1 General Case

Let NR = {D,®,0} be a noncommutative semi-ring.
Definition 6.1 (Unary Function Class) Let:
.?. = {Ef:ial' @z @b. | k € M:ahbi [D}

261

B g
il
owy,
Wow,

We call each a;® £ © b; be item. We define the size of a
funclion in ¥ be the minimum number of items define i,

Theorem 6.1 ¥ is closed over the pair of operation sets

({e}, {e}).

[PROOF] The proof is straightforward and given in full
paper. 0O

Let JNR = {D,®,®} noncommutative semi-ring
with infinite domain D, we say J N R is noncombinable
if for all a,b,c,d € D, there exist s, € D such that
(cozob)@(cO20d)=s@z0tifa=>borc=d.
In the full paper, we will give a constructive proof that for
all noncombinable infinite noncommutative semi-ring. Let
INR={D,®,®}, ¥ is not uniformly closed over the pair
of operation sets ({&©}, {®}), i.e. there exist a restricted
CE-circuit C over I N R, generate a function in ¥ whose size
is exponential in the size of the circuit. However, we will
show there are infinite noncommutative semi-rings, such
that all circuits over it can be evaluated in logarithmic
time in its degree and size in next subsection.

6.2 Finite Case

Theorem 6.2 For all finite noncommutative semi-ring
FNR = {D,®,0}, for all computational circuit C over
FNR with size n and degree d, C can be evaluated in
O((log n)(log dn)) time using M(n) processors on CRCW
PRAMs.

[PROOF]| Let the unary function class for C be:
F={T10:020b | k<|D|?a;b; € D}

It is suffice to prove ¥ is closed over the pair of operation
sets ({@}, {®}). Clearly, 7 is linear over @ and ¥ is closed
under projection over @. Let f(z) = Ef;la,- ®z®b; and
9(z) =B2,c;020d.. fOg=(5¢,0:0200)0(S2 0
z2®d;). If ki+ke <| D |?, then clearly f@g € F. Otherwise,
since D is finite and there are at most | D |? different items,
there must exist a ¢ <| D |2, wi,...,us,91,...,0 € D
such that f® g = Ef;lu.- ®z ®v;. So, ¥ is closed under
combination. Similarly, we can prove that ¥ is closed under
composition. O

6.3 Examples of Finite Noncommuta-
tive Ring

Let G ={V,Z,P,5)} be a context-free grammar in Chom-
sky normal form. We define the domain Dg = 2(V—%),
and operator set OP¢e = {U, <}, where U is the conven-
tional union operator in set theory and < is a binary op-
erator such that For all §,T € D, «(5,T) = {C |34 €
8,B € T,C « A,B}. The circuits we consider are de-
fined over domain D¢ and operator set O Pg, we call them
CFL — Circuit.

262

It is clearly that {Dg,U} forms group. {Dg, <} forms
a semi-group. Moreover, < is distributive over U. So,
{Dg,U, <} forme a semi-ring. Moreover, it is finite. But
< is not commutative.

Corollary 6.1 (CFL-Circuit) CFL — Circuit can be
evaluated in O((logn) - (log(n - d))) time using M(n) pro-
cessors. Where n is the node size of the CFL — Circuit.

Since CFLs recognition problem can be reduced to
a CFL — Circuit evaluation problem in polylogarithmic
time and the corresponding CF L — Circuit has polynomial
size and degree to the length of input string in full paper.
Therefore:

Corollary 6.2 CFLs’ recognition problem lies in NC2.

Note that Ruzzo [Ruzz81], [Ruzz80] first showed that
there are Boolean circuits that simultaneously have polyno-
mial size and polylogarithmic depth which recognize con-
text free languages. Valiant et al [VSBR82| showed that
the Boolean circuits defined by Cocke-Kasami-Younger al-
gorithm has linear degree and therefore CFLs recognition
lies in NC. The difference between our solution and their
gsolutions is that they break the operation of CFLs recog-
nition down to Boolean operations, while we implement
CFLes recognition using higher level, structured operations.
We shall show the advantage of thie approach in later pa-
per.

We can also reduce the logical query programs
[UlGeg5] to a circnit whose size is a polynomial of the size
of the program. And it is easy to prove if the basic logic
program has polynomial fringe, then the degree of the cir-
cuit is a polynomial of the size of the program. So, we
have:

Corollary 6.5 A basic logic program with the polynomial
fringe property is in NC2.

6.4 Semi-Ring Over Matrices

Let ICR be any commutative semi-ring and NR =
{P,®,®} be a noncommutative semi-ring. Where:

D={A"*| A; € ICR,1 < 4,5 <k}

Clearly, MR is a noncommutative semi-ring with infinite
domain is JCR is infinite.

Theorem 6.3 For all circuits C over N R with n nodes and
degree d, C can be evaluated in O((log n)(log nd)) time, us-
ing M(n) processors.

[PROOF] (sketch) For all A¥*X* € D, AFXEXkXE 354
Xkxk gkxk are linear transformation of (z1.1,..., Zk.k) in
space ICR*". Let Dy = {C¥"**" | C;; € ICR,1 < 4,5 <
k2}. Therefore, There exist B* X' Xk ¢ p guch
that:

21,1 Ii2 . gl,k Z1,1
2,1 . . 2,k 1,
k2 x k3 : i 2w k2
BY XE 5 : — gk xk
Tk, T2 - Tkk Tk,k
1,1 ZTi,2 . Zik
Z2,1 ¥ . T2,k
= AkXE $: 5 :
Zk,a1 Zk2 . IR
il,l 1,2 .« Zik Zi
2,1 . . Z2.k 2
k2 xk? i : E? xk?
C * @ : i C xk
Tk,1 Tk,2 - ITEE Zkk
Ti,1 Zi1,2 - Z1k
I2,1 . . T2,k exk
. . . *
= A
Tka ZTk2 - ZThk

Hence, we define the following unary function class:

F={C¥* o X| 6" ¢ b))

Lemma 6.1 7 is closed over the pair of operation sets

({e},

{0}).

[PROOF] In the full paper. O

7

Open Problems

It is interesting and important to have a general the-
ory for unary function class construction when a op-
erator set is given and have theory for proving closure
properties of certain classes of unary functions.

The dynamic complexity of min-max-plus-times cir-
cuit over R¥ is unknown even though we con-
struct a class of unary functions which is closed over
({min}, {maz,+, x}) by means of reduction lemma
in section 6. E.g the uniformity of Fmin,maz,+,x) I8
still open.

Is there a operator set whose cheap operation has
more than one operators?

What is the tight bound on the running time of the
parallel Boolean circuit evaluation algorithm?

What is the dynamic complexity of circuit over a
ring with division?

References

[AjKS83]

[Ladn7s]

M.Ajtai, J.Komlos, E.SZEMEREDI. Sorting
in clogn Parallel Steps. Combinatorica 3(1)
ppl-19, 1983.

R.E.Ladner. The Circuit Value Problem is log
Space Complete for P. SIGACT News, 7,1,
ppl8-20, 1975

263

[MiRe8S5|

[MiRKsS5]

[MiTe87]

[ReVa87]

[Ruzz80]
[Ruzz81]

[U1Ge85|

[VSBR83]

G.L.Miller, J.H. Reif. Parallel Tree Coniraction
and its Application. In FOCS 85, 1985.

G.L.Miller, V.Ramachandran, E.Kaltofen. Ef-
ficient Parallel Evaluation of Straighi-line Code
and Arithmetic Circuits. Tech. Rept., Univ. of
Southern Calif. 1985

G.L.Miller, S-H.Teng. Systematic Methods for
Tree Based Parallel Algorithm Development, In
The Second International Conference on Su-
percomputing, 1987.

J.H.Reif, L.G.Valiant. Logarithmic Timing
Sort for Linear Size Network. JACM pp66-76,
Jan.,1987.

W.L.Ruzzo. Tree-Size Bounded Alternation.
JCSS pp218-235, Oct, 1980

W.L.Ruzzo. On Uniform Circuit Complexity.
JCSS pp365-383, June, 1980

J.D.Ullman, A.V.Gelder. Parallel Complezity
of Logical Query Programs. TR, Stanford Uni-
versity 1985

L.G.Valiant S.Skyum S.Berkowitz C.Rackoff.
Fast Parallel Computation of Polynomials Us-
ing Few Processors, In SIAM J.Compuiing,
pp641-644, voli2, No4, Nov. 1983

i L]

il]

