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1. Introduction

Motivations of this work are the planar separator theorem of Lipton and Tarjan
[1979], the geometric characterization of planar graphs of Koebe [1936] (see also
Andreev [1970a; 1970b] and Thurston [1988]), and geometric divide and con-
quer.

In 1979, Lipton and Tarjan [1979] gave a linear time algorithm that divides any
n-vertex planar graph into two disconnected subgraphs each has size no more
than (2/3)n by removing at most \V/8n vertices. Their result improved a theorem
of Ungar [1951] who showed it is sufficient to remove O(Vn log n) vertices to
partition a planar graph. A subset of vertices whose removal divides a graph into
two subgraphs of roughly equal size, as given in the results above, is called a
separator of the graph (see Section 3 for the definition).

Separators are most useful for designing efficient divide and conquer graph
algorithms. The planar separator theorem of Lipton and Tarjan has been used in
the solution of planar linear systems [Lipton et al., 1979], in the design of
efficient graph algorithms [Lipton and Tarjan 1979] and in VLSI layout [Leigh-
ton 1983; Leiserson 1983; Valiant 1981].

Building on Lipton and Tarjan’s planar separator theorem, Gilbert et al. [1984]
showed that every graph with genus bounded by g has an O(Vgn)-separator.
Another generalization was obtained by Alon et al. [1990] who showed that
graphs that exclude minor isomorphic to the k-clique have an O(h¥*Vn)-
separator. Plotkin et al. [1994] reduced the dependency on & from 42*? to h, but
in the process, they picked up a factor of Vlogn. Perhaps the oldest separator
result is that every tree has a 1-separator [Jordan 1869].

However, these results are apparently not applicable to geometric graphs such
as nearest neighbor graphs [Preparata and Shamos 1985] when the dimension d
is higher than 2.

In this paper, we give a geometrical condition of graphs embedded in d
dimensions that have a small separator. We also present efficient linear time
sequential algorithms and optimal O(log n) time parallel algorithms for finding
such a small separator. The method and condition that we propose, unlike
previous works, assume that the graph G comes with an embedding of its nodes
in IRY. This is a very natural assumption for nearest neighbor graphs. Our
algorithm is randomized. It always splits the graph into pieces of roughly equal
size, and we show that with high probability, the separator size satisfies an upper
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FiG. 1. A 3-ply system.

bound that is the best possible bound for this class of graphs that we consider. In
conjunction with a result of Koebe [1936] that every triangulated planar graph is
isomorphic to the intersection graph of a disk-packing, our result not only gives a
new geometric proof of the planar separator theorem of Lipton and Tarjan
[1979], but also generalizes it to higher dimensions. The separator algorithm can
be used for point location and geometric divide and conquer in a fixed
dimensional space.

We now review the relationship between this paper and other papers by the
same authors. This paper and its companion paper [Miller et al. 1997] either
extend or explain several short conference papers [Miller and Thurston 1990;
Miller et al. 1991; 1993], a thesis [Teng 1991] and one journal paper [Vavasis
1991]. The focus of this paper is on graphs arising in computational geometry
and the application of our separator theorem to geometric divide and conquer;
the companion paper [Miller et al. 1997] focuses on finite element meshes. The
authors have also jointly written a survey paper [Miller et al. 1993] that surveys
the results from this paper, the companion, and several additional results by
various authors on efficient centerpoint computation.

The remainder of this paper is organized as follows: In Section 2, we introduce
neighborhood systems and prove our main separator theorem. We also give our
randomized separator algorithm. In Section 3, we define the intersection graph
of a neighborhood system and apply our main results to planar graphs and
nearest neighbor graphs. In Section 4, we develop a separator-based divide-and-
conquer paradigm and apply it to solve several problems in computational
geometry. In Section 5, we give several open questions motivated by this
research.

2. Sphere Separators of Neighborhood Systems

Throughout the paper we regard the dimension d as a small constant.

The class of geometric graphs that we consider is defined by the intersection of
a collection of balls in d-dimensional Euclidean space. We will refer such a
collection of balls as a neighborhood system. In this section, we will prove a
geometric separator theorem for neighborhood systems. Its applications to
planar graphs, k-nearest neighbor graphs, and geometric divide-and-conquer will
be given in the subsequent sections.

2.1. NEIGHBORHOOD SYSTEMS

Definition 2.1.1 (k-ply Neighborhood Systems). A k-ply neighborhood system in
d dimensions is a set {B,, ..., B,} of closed balls in IR? such that no point in
IR is strictly interior to more than k of the balls.
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FiG. 2. The dotted circle is S.
The circles with dark color are
the circles in I'p(S) and other
circles are either in I'z(S) or in
r,(S).

For example, the neighborhood system given in Figure 1 is a 3-ply system.

In this definition, we used n for the number of points and d for the dimension
of the embedding. We continue to use this notation throughout the paper. We
also use the following notation: if « > 0 and B is a ball of radius r, we define
a + B to be a ball with the same center as B but radius ar. In this paper, a (d —
1)-sphere is the boundary of a d-dimensional ball.

2.2. A GEOMETRIC-SEPARATOR THEOREM. We now state our main separator
theorem with respect to neighborhood systems. Each (d — 1)-sphere S divides a
neighborhood system I' = {B,, ..., B,} in IR? into three subsets: I'z(S), the
set of all balls of I' in the exterior of S; I',(S), the set of all balls of I' in the
interior of S; and I',(§), the set of all balls of I" that intersect S (see Figure 2).

THEOREM 2.2.1 (SPHERE-SEPARATOR THEOREM). Suppose I' = {B,,..., B,}
is a k-ply system in IR?. Then there is a sphere S such that

ITo(S)| = OkYin'~1) and

(d+ 1n

TS Te(s)] =

Furthermore, for any constant € in the range 0 < € < 1/(d + 2) we can compute
sphere S such that |T)(S)|, |Tg(S)| = ((d + 1)/(d + 2) + €)n, and |T(S)| =
O(k"“n' =Yy with probability at least 1/2.

The running time of this algorithm is bounded by c(e, d) + O(nd), where
c(e, d) is a constant depending only on € and d.

In this theorem and for the rest of the paper, for each finite set A, |4| denotes
the cardinality of 4.

Remark 2.2.2. The randomization in the algorithm is over random numbers
chosen by the algorithm irrespective of the input. Therefore, by rerunning the
algorithm a constant number of times, we can increase the probability of success
from 1/2 to 1 — & for an arbitrary & > 0.

Remark 2.2.3. The running time of the algorithm is linear, but almost all the
work is done on a constant-sized subset (a subset whose size depends only on €
and d). The O(nd) term in the running time arises from a final pass over the
input to determine which of the B,’s goes into each set.

The remainder of Section 2 is devoted to proving Theorem 2.2.1.
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2.3. CENTERPOINTS AND CONFORMAL MAPS. To prove Theorem 2.2.1 we need
two geometric concepts: centerpoints and sphere-preserving (conformal) maps.

2.3.1. Centerpoints. A centerpoint of a given set P of points in d dimensions is
a point ¢ € IR? (not necessarily one of the given points) such that every
hyperplane through ¢ divides the given points approximately evenly (in the ratio
d : 1 or better) [Edelsbrunner, Section 4]. It follows from Helly’s theorem that
every finite point set in IR? has a centerpoint. Various proofs can be found in
Danzer et al. [1963]; Edelsbrunner [1987]; Miller et al. [1993]. It follows directly
from these proofs that such a centerpoint can be found by Linear Programming
on O(n?) linear inequalities of d variables. Unfortunately, no linear-time
algorithm is known for computing centerpoints in higher dimensions. The
following sampling algorithm can efficiently compute an approximate center-
point:'

Algorithm: (Sampling for Approximate Centerpoints)
Input: (a point set P C IRY)

1. Select a subset S of P with size / uniformly at random;

2. Compute a centerpoint ¢y of S, using the Linear Programming algorithm for
centerpoints;

3. Output cg.

It can be shown [Haussler and Welzl 1987; Teng 1991; Vapnik and Chervonen-
kis 1971] that for any constant € < 1, the above algorithm will compute a (d + €)
: 1 centerpoint with high probability provided that / > g(e, d), where g is a
function that does not depend on n. Therefore, we can approximate a center-
point in random constant time. In practice, we use an even simpler centerpoint
approximation algorithm (see Gilbert et al. [1997], Miller et al. [1993], and
Clarkson et al. [1993]).

2.3.2. Conformal Mappings. In our separator algorithm and our proof of
Theorem 2.2.1, we map a neighborhood system from IR? to the unit d-sphere S¢
in IR?*!. An example of such a map is stereographic projection.

We will use notations that are consistent with our companion paper [Miller et
al. 1997]. Let II(x) be the stereographic projection mapping from IRY to S
Geometrically, this map may be defined as follows: Given x € IR?, append ‘0’ as
the final coordinate yielding x’ € IR**!'. Then compute the intersection of S¢
with the line in IR?*! connecting x’ to the north pole of §¢, (0, 0, ..., 0, 1)7.
This intersection point is [I(x). Note that superscript T indicates transpose; thus
the inner product of two vectors x, y is denoted x"y.

Algebraically, the mapping is defined as

2x/
M(x) = ( X ) (1)
X

! See, for example, Clarkson [1983], Haussler and Welzl [1987], Vapnik and Chervonenkis [1971], and
Teng [1991].
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where xy = x”x + 1. It is also simple to write down a formula for the inverse of II.
Let u be a point on S¢. Then

M) = ——,
I =y
where u denotes the first d entries of w and u,, ; is the last entry.

We will prove Theorem 2.2.1 using the fact that stereographic projection is
sphere-preserving, that is, it maps spheres and hyperplanes (degenerate spheres)
of IR to spheres on S?. A direct proof of this fact is given in Miller et al. [1997].
We will now give a somewhat indirect proof that stereographic projection
preserves spheres. The purpose of this indirect proof is to explain some
interesting properties of conformal maps in high dimensions as well as their
connections back to two-dimensional conformal maps.

Define the inverse map from IR? to IR? to be

ROV =
V) =—,
vy
for all v € IR?. We adopt the convention that R(0) = % and R(») = 0, so that
R is defined on IR? U co.

Notice that each point v on the unit sphere §Y~! in IR? is mapped to itself. We
now show that the inverse map R preserves spheres. In this statement, we will
regard a hyperplane as a sphere as well.

Every sphere in IR? can be expressed by a quadratic equation of the following
form:

ax’x + bx'vy+ ¢ =0,

where v, is a constant d-vector. When a = 0, it is a hyperplane and when ¢ = 0
it is a sphere containing the origin, 0 € IR,
Notice that for each v € IRY,

(v/vTv) - (v/vTv) .
VWYY (8T

Therefore, the inverse map is an involution.

R(R(v)) =

PrROPOSITION 2.3.2.1. The inverse map preserves spheres.

PrOOF. Let ay’y + by’v, + ¢ = 0 be a sphere and let

X
y=R(x)=—.
XX

After the substitution, we have
T

b'e X 5 X 0

al| —| | =] +b| =|vo+ ¢ =0,

a + bx"vy + ex"x = 0. O

yielding
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We now express stereographic projection (from IR? to §¢) and its inverse
(from S? to IRY) in term as the inverse map from IR?*! to IR?*!. Because S¢ is
embedded in R?*!, we need to first embed IRY in IR?*!. Let L be the “natural”
map from IR? to the hyperplane x,,, = 0 in IR?"", that is, L sends each point
x € IR? to a point in IR?*! by appending ‘0’ as the final coordinate. Let e =
0,0, ...,0,1) € R*"". Let G be a map from IR?"! to IR?*"! such that for each
we R

G B 2(u —e) B
(u)—(u_e)T(u_e)+e—2R(u—e)+e. (2)

Notice that G is an involution, because G(u) = 2R(u — e) + ¢, R(G(u) — e)
= R(2R(u — e)). From the fact that R(2v) = R(v)/2 for all v € IR?"", we have
R(R(u—e)) (u-—e)

R(G(u) —e) =R(2R(u —e)) = 5 5

b

implying
u=2R(G(u—¢e))+e=G(G(u)).

Notice that for each x € IRY, (L(x) — e)”(L(x) — ¢) = x’x + 1, and thus we
have

II(x) = G(L(x)).

Similarly, for each y € S9,

I~ (y) = L7(G(y)).

Because the inverse map and translations preserve spheres, G preserves
spheres as well, implying stereographic projection II preserves spheres. Thus, II
maps a ball (or a halfspace) of IR? to a cap on S¢, where a cap of S¢ is the
intersection of a closed halfspace in IRY*! with S.

2.3.3. Conformally Mapping Centerpoints. The translation of IR“*! by a vector
v, is a map that sends v to v — v,. The dilation of IR?*! by a factor « is a map
that sends v to av. Clearly, they are all sphere-preserving. Other basic sphere
preserving maps in IR?*! include the rigid rotations of IR’*!, reflections, the
inverse map, stereographic projection and its inverse.

LEMMA 2.3.3.1 (CENTERPOINT). Let P = {p,,..., p,} be a point set in IR
There is a sphere-preserving map ® from IR? to S such that the origin is a
centerpoint of ®(P) = {®(p,), ..., P(p,)}.

PROOF. Let ¢ € IRY*! be a centerpoint of II(P) = {II(p,),..., I(p,)},
where II is stereographic projection. Let U, be a rotation or a (Householder)
reflection such that U.(c) = (0,..., 0, |c[), where |c] = Ve denotes the
standard /, norm of c. Clearly, U(c) is a centerpoint of U, © II(P).

For any positive a, let D, = I1 © (al) © 1!, where I is the d X d identity
matrix, that is, af is a dilation map. Let O = U_ o II(P).
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We now show that if @ = V(1 — [[¢[)/(1 + [i¢]|), then the center of §¢, 0, is a
centerpoint of D ,(Q). Thus, ® = D, 0 U, o II satisfies the lemma.

We first consider the case when d = 2.

Let ¢’ = Uy c) = (0,...,0,|lc]). A circle of S is given by the intersection of
a hyperplane in IR?*! with §¢. Let C,_ be all circles on S? whose hyperplanes
contain ¢'. For each circle H € C,, let D, (H) be the image of H under D,,.
Because D, preserves circles, D (H) is also a circle in S9.

We first consider the circle H, € C. whose hyperplane is normal to axis
X;41 (which connects the north pole with the south pole). Notice that
I~ '(H,) is a sphere in IR? centered at the origin. The radius of I1~'(H,) is
V(1 + [le))/(1 = le[l). By our choice of a, D (H,) is the equator of S¢ and hence
is normal to axis x,,, and contains the origin.

Suppose q, and q, are two points in H, N S?. If the line segment between
them is a diameter of H,, then this line segment contains ¢’. Moreover, the line
segment between D ,(q;) and D ,(q,) is a diameter of D, (H,) and hence it
contains the origin.

We now show for each H € C, that the hyperplane of D (H) contains the
origin as well. By doing this, we can conclude from definition of a centerpoint
that the origin is a centerpoint of D, 0 U, o II(P).

The intersection of the hyperplanes of H and H, is an affine set of dimension
d — 1. Because, we assume d = 2, this set has dimension at least 1 and contains
¢’. Thus, it must contain a diameter of H,. In other words, there exist two points
q; and q, in H, N H such that the line segment between them is a diameter of
H,. D,(q;) and D (q,) are both in D, (H,) N D,(H), and the line segment
between them contains the origin. Therefore, the hyperplane of D (H) also
contains the origin.

When d = 1, we can embed IR in IR% The proof as given above for IR? also
shows that the lemma is true ford = 1. [

2.4. A RANDOMIZED ALGORITHM. We now present our separator algorithm.
The algorithm uses randomization, and it chooses the separating sphere at
random from a distribution that is carefully constructed so that the separator will
satisfy the conclusions of Theorem 2.2.1 with high probability. The distribution is
described in terms of sphere-preserving maps in IR?*!,

Algorithm Sphere Separator
Input: a k-ply system {B,, ..., B,} in IR? with centers P = {p,, ..., p,}.
* Project Up. Compute II(P) = {II(p,), ..., I(p,)?}-
+ Find Centerpoint. Compute a centerpoint z of II(P) in R?*",
+ Conformal Map I: Rotate. Compute an orthogonal (d + 1) X (d + 1) matrix U,
such that U,(z) = z’' where

2’ =(0,...,0, .

Note that z’ is a centerpoint of U, © II(P).

+ Conformal Map II: Dilate. Let D, = I 0 (af) 0 II"", where o = V(1 — [2])/(1 + |lz])).
As shown in Lemma 2.3.3.1, the origin 0 is a centerpoint of D, © U, o II(P).

+ Find Great Circle. Choose a random great circle C on 7.

+ Unmap and Project Down. Transform the great circle C to a sphere S in IR? by
undoing the dilation, rotation, and stereographic projection:

S=I"'oU;'oD,C).
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a b Points Projected ento the Sphere

Wash Points in the Pane

Mash Ponts i the Plane

Bl o6 0 3 1

FiG. 3. (a) The point set of a neighborhood system. (b) Project Up and Find Centerpoint; the
largest dot in the figure is a centerpoint. (c) Conformal Map II and Find Great Circle. (d) Unmap
and Project Down. (Generated by the Matlab Geometric Separator Tool-box developed by Gilbert
and Teng.

* Return S and I',(S), I',(S), and I'2(S).

Figure 3 depicts the basic steps of our separator algorithm. It is generated by
the Matlab Geometric Separator Tool-box of Gilbert and Teng [Gilbert et al.
1997]. The example geometric graph is generated by Eppstein. The neighborhood
system of this point set is not explicitly shown in the figure. Each point defines a
ball which is the largest ball centered at the point whose interior contains no
other points. The ply of this neighborhood system is 6.

Notice that we can use an approximate centerpoint in the algorithm above.

In the next section, we will prove Theorem 2.2.1 by showing that [T (S)| =
O(k"“n' =14y with high probability.

2.5. A HiGH-LEVEL DiscussiON. We now give a high level description of our
approach to prove Theorem 2.2.1.

LetI’ = {B,, ..., B,} be a k-ply neighborhood system in IR?. Let p; be the
center of B;, for 1 =i = n. Let S be the unit sphere in IRY*! whose center is
the origin. In the previous subsection, we have shown that there is a sphere-
preserving map ® from IR? to S? such that the origin is a centerpoint of
{®(py), ..., P(p,)}. Let ®(B,) be the image of B; on §¢; ®(B,;) is a cap on <.

A great circle of S is the intersection of §¢ with a hyperplane that passes
through the center of S?. Clearly, every great circle divides S into two open
half-spheres (hemispheres). Each great circle C of S divides {®(B)), ...,
®(B,,)} into three sets, C;, C_; and C, where C, and C_, respectively contains
those caps that are completely in each of the open hemisphere, and C, contains
those caps that intersect C. Because the center of S? is a centerpoint of
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{®(p,),..., ®(p,)}, we have |C_,|, |C;| = (d + 1)/(d + 2)n. In order to
prove Theorem 2.2.1, it is then sufficient to show that there exists a great circle C
of §¢ such that |C,| = O(k"n'~V4). We will prove this by arguing that the
expected size of C,, is O(k'“n'~1?) when C is chosen uniformly among all great
circles of S?. Since the result of this random choice is always a nonnegative
number, we conclude that the probability of exceeding the expected value by
more than a factor of 2 is at most 0.5.

2.6. A GEOMETRIC TECHNIQUE FOR PROVING SEPARATOR THEOREMS. A much
simplified proof has been obtained, independently, by Agarwal and Pach [1995]
and Spielman and Teng [1996a] since the conference publication of our result.?
We will present our original proof here because its technique might be useful for
other problems. Readers interested in the simpler proof should skip the remain-
der of Section 2 and refer to Pach and Agarwal [1995] and Spielman and Teng
[1996a]. We will also give a high-level explanation of the simpler proof in Section
5.

Our approach is to first design a continuous function and apply a continuous
version of the separator theorem (given in the next subsection) to show that
some “weighted surface area” of § is “small,” from which we then show the
number of balls that intersect S is “small.”

2.6.1. A Continuous Separator Theorem. Suppose f(x) is a real-valued non-
negative function defined on IR? such that f* is integrable for all k = 1, 2,
3, .... Such an f is called a cost function. The total volume of the function f is
defined as

Total-Volume(f) = f (f(v)4(dv)?

veR?

Suppose S is a (d — 1)-sphere in IR?. The surface area of S is then

Area(f, ) = J’ (f()H(dv)*!

VES

Let P = {p,,..., p,} be a point set in IR?. Let ® be a sphere-preserving map
from IRY to §¢ so that the center of S¢ is a centerpoint of ®(P) (see Lemma
2.3.3.1). Recall that our sphere separator algorithm computes such a map and
then uses its inverse to map a random great circle back to a sphere in IR?.

Let S be a sphere in IR?. The weighted surface area of S equal to Area(f, S).
Because ® carries S in IR? to a circle ®(S) in S¢, we define Cost(®(S)) =
Area(f, S). Let Avgq(f) be the average cost of all great circles of S.

The following theorem has been proven in our companion paper [Miller et al.
1997].

THEOREM 2.6.1.1 (CONTINUOUS SEPARATOR). Suppose f is a cost function on
IRY. Let ® be the map from R to S¢ constructed in Lemma 2.3.3.1. Then,

Avgo(f) = O((Total-Volume(f))' 1),

2 See, for example, Miller et al. [1991], Miller and Thurston [1990], and Miller and Vavasis [1991].
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Remark 2.6.1.2. The conformality of the mapping from IR? to §¢ is necessary
in Theorem 2.6.1.1 in order to deal with the volume elements in the high-
dimensional integrations. We refer the reader to our companion paper [Miller et
al. 1997] for a discussion.

2.6.2. Construction of a Cost Function. To prove Theorem 2.2.1, it is suffi-
cient to construct, for each k-ply system I' = {B;, ..., B,}, a continuous
function whose total volume is O(k'“~Yn) such that each sphere S in IRY
intersects at most O (Area(f, S)) balls of I'.

Let r; be the radius of B; and let y; = 2r;, and define

£ 1/ it [x—pill =
i\X) = .
0 otherwise.

Intuitively, f; sets up a cost on each (d — 1)-sphere S such that the closer S is
to B;, the larger B; contributes to the surface area of S. Using a simple geometric
argument (see the companion paper [Miller et al. 1997]), we can show that for
any sphere S in IR?,

|F0(S)| = O(Areaf(S))- (3)

The function f; is called the local function of B;. We define our continuous
function f as

; 1/(d—1)
Jx) =1L (fi(x), ..., fu(x)) = ( > (ﬁ(X))‘“> ,

i=1

where for each positive integer p, /,, denotes the standard pth norm in Euclidean
space, that is, for each a, ..., a
1/p

2.6.3. Bounding the Total Volume of the Cost Function. Now we give an upper
bound on the total volume of f. Let ¥, be the volume of a unit ball in IRY.
Clearly, [ cp( fi(x) (d)" = V.

Consequently, letting

n»

a;

lp(ab LI an) =

n
>
i=1

1/d
g(X) = Ld(fb e 7fn) = ( E (fz(x))d) ’

i=1

we have

Total-Cost(g) = j (g(x)Udx)! = V,n

x € R?

LEMMA 2.6.3.1. Suppose " = {B,, ..., B,}is a k-ply system in R%. Let f,, . . .,
f,, and f be functions defined as above. Then

Total-Cost(f) = O(k"4 Vn),



12 G. L. MILLER ET AL.

ProoF. Because Total-Cost(g) = V n, it is sufficient to show that for all x €
RY,

(f(x) = c k=D (g(x))“.

We focus on a particular point p € IR?. Notice that if g(p) = 0, then, f(p) =
0 as well. The inequality follows. Now, assume g(p) > 0 and define

M, ={ie{l,...,n}:27"'=fi(p) <271},

for all / such that —0 <[ < o,

Because U_.—;—.M;, = {i : f;(p) # 0} and M,’s are pairwise disjoint, each
index i such that f;(p) # 0 occurs in exactly one of M,’s. Let m, = |M,|. We claim
m; = 6%%.

We now prove the claim. For each i € M,, by the definition of M, and f,, 2/~ !
= v, = 2/, where y; = 2r;. Let B be a ball centered at p with radius 2’ + 2/~ 1.
Since |p — p;| = 7v;, it follows B; C B. Because the neighborhood system has ply
k, we have

k-vol(B) = > vol(B)).
JEM;
Let V,(r) be the volume of a ball in IR, of radius r. Because for all j € M,,
vol(B;) = V,(2'"?),
k-Vy(2'+ 211 = [M)|V,(2'),

which implies |M,| = 6k, completing the proof of the claim. Now, we have

l=—x ieM;

. di(d—1)
(f(p))! = ( > 2 fi(p)(d‘”)

- d/(d—1)
S( 2 m[(zHl)dl)

I=—o

. d/(d-1)
<= zd( 2 m](zl)dl) ,
|=—
where m, = 6%.

We now use Inequality (4) below, established in our companion paper [Miller
et al. 1997] to bound the right hand side of the equation above.

Let...,m_,, my, m;, m,, ... be a doubly infinite sequence of nonnegative
numbers such that each m; is bounded above by 6 and such that at most a finite
number of m;’s are nonzero. Let d = 2 be an integer. Then

©

. dj(d-1)
( D mkzk(dl)) =, 0@ D m 2k (4)

k=—» k=—o

where ¢, is a positive number depending on d.
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Fi1G. 4. Why not hyperplane sep-
arators.

Setting # = 6%k and applying Inequality (4), we obtain

f(p)dscdzd(6dk)l/(d—l) E mpR,

|=—o

This summation is a lower bound on g(p)? because for eachi € M,, fi(p)* =
274 This concludes the proof of the lemma. [

Consequently, by Theorem 2.6.1.1, there exists a (d + 1)/(d + 2)-splitting
sphere § of I" with

Areag(S) = O(k"n' 1),

From the definition of centerpoint, we have

(d+ 1n

IT/(S)], [Te(S)] = d+0

By Inequality (3), we have
ITo(S)| = O(Areal(S)) = O(k"n'~ 1),
We thus proved Theorem 2.2.1.

2.7. SPHERES VS HYPERPLANES. The simplest way to split a set of points in
d-space is to use a (d — 1)-dimensional hyperplane. Notice that a (d —
1)-dimensional hyperplane is just a degenerate (d — 1)-sphere. Like a (d —
1)-dimensional sphere, a (d — 1)-dimensional hyperplane h partitions IR? into
three subsets, h™, those that are above h, h™, those below h, and h itself,
respectively. We now show, for some k-ply neighborhood systems, that it is
necessary to use sphere to achieve the bound given in Theorem 2.2.1.

One such an example is given in Figure 4. It is a 2-ply system. Notice that any
hyperplane that divides the neighborhood system into two of a constant ratio
must intersect ()(n) balls of the 2-ply system.

In contrast, the above 2-ply system does have a sphere that intersects
O(n'~ ") balls and divides the rest of the balls into two sets of ratio no worst
than 1 : (d + 1) as illustrated in Figure 5. The ratio of the two partitioned sets
is 1 : 1 in the example above.
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F1G. 5. Why sphere separators.

A Sphere Separator

3. Intersection Graphs

In Section 2, we analyzed separators of an abstract geometric arrangement called
a k-ply neighborhood system. The purpose of this section is to apply this
abstraction to concrete classes of graphs. The most straightforward such applica-
tion is to the intersection graph of k-ply systems. We also show in this section
that the theory applies to planar graphs, sphere packings, and nearest neighbor
graphs. Other classes of graphs not detailed here, such as finite subgraphs of the
regular d-dimension grid-graph, are also covered by the theory developed in this
section.
We will use the following definition of graph separator.

Definition 3.1 (Separators). A subset of vertices C of a graph G with n
vertices is an f(n)-separator that 8-splits if |C| = f(n) and the vertices of G — C
can be partitioned into two sets A and B such that there are no edges from A to
B, and |A|, |B| = &n, where f is a function and 0 < § < 1.

Given a neighborhood system, it is possible to define the intersection graph
associated with the system (see Figure 6).

Definition 3.2 (Intersection Graphs). LetI = {B,, ..., B,} be a neighbor-
hood system. The intersection graph of T" is the undirected graph with vertices
V' =T and edges

It follows directly from Theorem 2.2.1, that the intersection graph of a k-ply
neighborhood system has a small separator.

THEOREM 3.3. Suppose I' = {B,, ..., B,} is a k-ply neighborhood system in
RY. Then the intersection graph of T has an O(k"“n'~"%) separator that (d +
1)/(d + 2)-splits.

The separator bound of Theorem 3.3 is the best possible in both k and n up to
a constant factor. An Q(n'~"“) bound on the intersection graph of a 1-ply
neighborhood system appeared in Vavasis [1991]. Let P be the set of all points of
the m X m X --- X m regular grid in IR?, where n = m<. It has been shown in
Teng [1991], for a sufficiently large n, that the k-nearest neighbor graph of P has
no separator of size o(k"n' =19,

3.1. SPHERE-PACKINGS AND PLANAR GRAPHS. A graph G = (V, E) is planar
if we can “draw” it in the plane in such a way that each vertex is represented by
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FiG. 6. The intersection graph
of a 3-ply system.

a point; each edge is represented by a continuous curve connecting the two
points which represent its end vertices, and no two curves share any points,
except at their ends. We will only consider simple planar graphs which are graphs
that do not have self-loops nor multiple edges between any pair of vertices.

We now show that Theorem 2.2.1 in conjunction with the beautiful Koebe-
embedding result of planar graphs [Koebe 1936; Andreev 1970a; 1970b; Thurston
1988] gives a geometric proof of the Lipton and Tarjan planar separator
theorem.

Let a disk-packing be a set of disks D,, ..., D, that have disjoint interiors.
Notice that every disk-packing is a 1-ply neighborhood system. We call the
intersection graph of a disk-packing a disk-packing graph. It is not hard to see
that every disk-packing graph is a planar graph. Koebe [1936] showed that in fact
every planar graph can be represented as the intersection graph of a disk-
packing. We call such a realization a Koebe-embedding of the planar graph. For a
history of this result, including a comparison of Koebe’s original result versus the
Andreev-Thurston’s proof, see Ziegler [1988].

THEOREM 3.1.1 (KOEBE). Every triangulated planar graph G is isomorphic to a
disk-packing graph.

Because disk-packings are 1-ply systems in two dimensions, it follows from the
existence of Koebe-embedding of planar graphs and our sphere separator
Theorem 2.2.1 that every planar graph has an O(V/n)-separator that 3/4-splits.

We can extend the disk-packing to high dimensions: A sphere-packing is a
neighborhood system I' = {B,,..., B,} in IR? whose balls have disjoint
interiors. Clearly, each sphere packing is a 1-ply neighborhood system. There-
fore, the intersection graph of a sphere packing has an O(n'~'/?) separator that
(d + 1)/(d + 2)-splits.

Remark 3.1.2. Koebe’s result strengthens Fary’s [1948] and Tutte’s [1960;
1963] theorem that every planar graph can be embedded in the plane such that
each edge is mapped to a straight line segment (see Thomassen [1980] and De
Fraysseix et al. [1988].

Remark 3.1.3. Spielman and Teng [1996a] have recently demonstrated that
the application of Theorem 2.2.1 on the Koebe-embedding of a planar graph
finds a 1.84\V/n-separator that 3/4-splits. The two constants 1.84 and 3/4 occur-
ring in Spielman and Teng [1996a] lead to the best known bound for the
constants in planar nested dissection, improving on Lipton et al. [1979] and other
subsequent improved constants.
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Given a Koebe-embedding, our geometric algorithm runs in random linear
time with a constant smaller than that of Lipton-Tarjan’s linear-algorithm
[Lipton and Tarjan 1979]. It is still quite expensive to compute a Koebe
embedding. Mohar [1993] has recently developed a polynomial time algorithm.

3.2. NEAREST NEIGHBOR GRAPHS. The nearest neighbor graph is an important
class of graphs in computational geometry [Preparata and Shamos 1985]. The
nearest neighbor graph arises naturally in practical applications such as image
reconstruction and pattern recognition.

Let P = {p,,..., p,} be a point set in IR?. For each p, € P, let N,(p;) be the
set of k points closest to p; in P (where ties are broken arbitrarily). A k-nearest
neighbor graph [Preparata and Shamos 1985] of P is a graph with vertex set
{p1, ..., p,+ and edge set

E = {(p: pj) p; € Nk(pj) orp; € Ni(pi)}.

In this section, we show that every k-nearest neighbor graph in IRY is a
subgraph of the intersection graph of a O(k)-ply neighborhood system.

For each point p;, let B{) be the largest ball centered at p; that contains at
most k points from P, counting p; itself, in the interior of B{¥). Clearly the radius
of B{¥ is equal to the distance from p; to its kth nearest neighbor in P. We call

N(P) = {B{®, ..., B{®} the k-nearest neighborhood system for P.
Notice that the k-nearest neighbor graph of P is a subgraph of the intersection
graph of {B{®), ..., B} because if p; is one of p;’s k nearest neighbors, then p;

is contained in B{) and hence B{*) must intersect with B](k).

We now show that the ply of N, (P) is at most 7,k, where 7, is the kissing
number in d dimensions, which is the maximum number of nonoverlapping unit
balls in IR that can be arranged so that they all touch a central unit ball [Conway
and Sloane 1988]. It is known that 7, = 2, 7, = 6, 73 = 12, 73 = 240, and 1,4, =
196560. Although there is no explicit formula known for the kissing number 7,
for a general choice of d, it can be bounded from above and below by the
following inequalities.

20-2075.d(1+o(D) < 7 < 0-401d(1+o(1)

The first inequality was given by Kabatiansky and Levenshtein [1978] and the
second one by Wyner [1965].

LEMMA 3.2.1 (PLY LEMMA). Let P = {p,, ..., p,} be a point set in R". Then
the ply of N (P) is bounded by k.

PrOOF. Denote the balls in Ny (P) by {By, ..., B,}. We first prove the
lemma when £ = 1. In this case no ball contains the center of other balls in its
interior.

Let p be the point in IR? with the largest ply. Without loss of generality, let
{B;, ..., B,} be the set of all balls that contain p. Let C; be the ball centered at
p; with radius ||p;, — pll, and hence p is on the boundary of C; for each i in the
range 1 = i = ¢t (see Figure 7). Clearly, C; is contained in B; and C; does not
contains the center of any other balls.
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Fig. 7. The set of balls that
touch a point.

Let 8 = min{|lp — pj| : 0 =i = ¢}. Let S, be the sphere centered at p with
radius 6. Let q; be the intersection of the ray pp; with the sphere §,. We claim
that for each pair i, j, i # j, in the range 1 = i,j = ¢, [|q; — q;f = 6.

Without loss of generality, assume |[p — p;f| = |[p — p;||. Let s be a point on the
ray pp, such that [[p — s| = [p — p,| (see Figure 8). It follows [[p — p;|| = [p — s|
+ s = pil-

By the triangle inequality, we have [|s — p;]| + [ls — p,| = [[p; — pjll-

Because p; & C,, and the radius of C; is [p — p,|, we have [p — p,| = [p; —
|- Thus [p — s = s - pj.

By the similarity of triangles Apq,q; and Apsp;, we have [|g; — q;| = [|p — q,| =
8. Notice that the kissing number 7, is equal to the maximum number of points
that can be arranged on a unit (d — 1)-sphere (the boundary of a unit d-ball),
such that the distance between each pair of points is at least 1. Therefore, t <
T4, completing the proof of the lemma when k = 1.

We now prove the lemma for any & > 1. Without loss of generality, assume

B, ..., B, contain p. Define a subset QO of {p;,..., p,} by the following
procedure. Initially, let P = {py,..., p,} and Q = @.
while P # (@

(1) Let q be the point in P with the largest |q — p|, let O = O U {q};
(2) Let P = P — int(B,), (where B, stands for the closed ball centered at q).

Because no ball contains more than k points from {p;, ..., p,} in its interior,
we have m = [i/k[J where m denotes |Q|.

We now show that for all ¢ € Q, int(B,) N Q = {q}. Suppose O = {q, ...,
q,,+ such that for all i < j, q; is put Q in the above procedure before q;. Notice
that for all j > i, q; & int(B,). Also because |lq; — q;f| = [[q; — pl| = ﬂqj - pl,
we have for alli <j, q; & int(By). So int(B,) N Q = {q}. Thus, m = 7, which
implies ¢t = 7,k. [

Consequently, by Theorem 2.2.1:

THEOREM 3.2.2. Every k-nearest neighbor graph in d dimensions has an
O(k"n' =) separator that (d + 1)/(d + 2)-splits.
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Fi1G. 8. The distance between g;
and gq;.

The following is an interesting consequence of the Ply Lemma 3.2.1:

COROLLARY 3.2.3. The degree of all k-nearest neighbor graphs in d dimensions
is bounded above by (t; + 1)k.

Proor. For each point p; in a given set P, let B; be the largest ball centered
at p; such that the interior of B; contains no more than k points from P. Notice
that if (p;, p;) is an edge in a k-nearest neighbor graph of P, then either p; € B;
or p; € B;. By Lemma 3.2.1, we have the degree of k-nearest neighbor graphs is
bounded above by (7, + 1)k. O

Remark 3.2.4. Toussaint [1988] called the intersection graph of N (P) the
kth sphere-of-influence graph of P and showed that this class of graphs can be
used in image processing. It follows from Lemma 3.2.1 and Theorem 3.3.1 that
the kth sphere-of-influence graph of any set of n points in IR? has an O(k"
an'~ 14y separator that (d + 1)/(d + 2)-splits.

3.3. INDUCTIVITY OF INTERSECTION GRAPHS. In this subsection, we show that
the intersection graph of a k-ply neighborhood system has a linear number of
edges. Because the star graph can be realized as the intersection graph of some
1-ply neighborhood system, the maximum degree of these intersection graphs can
be unbounded.

For any integer 8, a graph is é-inductive if its vertices can be numbered such
that each vertex has at most & edges to higher numbered vertices. Clearly, a
é-inductive graph with n vertices has at most (6 - n) edges. For example, every
tree is 1-inductive and each simple planar graph is 5-inductive. The latter can be
shown by observing that each planar graph has at least one vertex of degree less
than 6 (by Euler’s formula). So a 5-inductive numbering can be obtained by
assigning the smallest number to such a vertex and inductively numbering other
vertices.

THEOREM 3.3.1.  The intersection graph of a k-ply neighborhood system in IR® is
3%k-inductive.

To prove the theorem, it is sufficient to show that each ball in a k-ply
neighborhood system in IR? intersects at most 3%k other balls of larger or equal
radius. Then, we can number the balls by sorting the radius of the balls in the
increasing order. Therefore, Theorem 3.3.1 follows directly from the following
lemma.
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LEMMA 3.3.2 (BALL INTERSECTION). Suppose I' = {B,,..., B,} is a k-ply
system in IRY. Then for each d-dimensional ball B with radius r, |{i : B, N B # @
and r; = r}| = 3%.

Proor. Without loss of generality, let By, ..., B, be the set of all balls in I’
of radius at least r that intersect B. For each i in the range 1 = i =< ¢, if p;, the
center of B, isin 2 - B, let B} be the ball of radius r centered at p;; if p; is not in
2 + B, let p; be the point common of the ray pp; and the boundary of 2 - B, and
let B} be the ball centered at p; and of radius r. In either case, B; C B, and B
intersects B, and if B; is replaced by B, the ply of the resulting neighborhood
system does not increase and thus is bounded above by k. Notice that each ball
Bi(1 =i =1t), is contained in the ball 3 - B. We have

t
> Volume(B)) = kVolume(3 - B),
i=1

which implies ¢ = 3%. [

Remark 3.3.3. Lemma 3.3.2 was given in the conference publication of this
work [Miller et al. 1991] and a proof appeared in Teng’s dissertation [1991]. A
few years later, a variant of it was independently proved by Eppstein and
Erickson [1994].

Notice that any k-inductive graph G is (k + 1)-colorable by the following
greedy algorithm. Suppose the vertex set of G labeled by a k-inductive labeling

{1, ..., n}. Color the vertices n — k,..., n by colors 1,..., &k + 1,
respectively. We color the remainder of the vertex set in the order of n — k —
1, ..., 1. Because each vertex is connected to at most k vertices of higher labels,

we can always assign it a color that is not used by its neighbors with higher labels.
So this greedy algorithm is guaranteed to use £k + 1 colors.

COROLLARY 3.3.4. The intersection graph of a k-ply neighborhood system in IR®
is (3% + 1)-colorable.

4. Geometric Divide and Conquer

In this section, we present a divide-and-conquer paradigm that uses Theorem
2.2.1. We will demonstrate the usefulness of this paradigm in computational
geometry. The new paradigm is compared with a commonly used paradigm for
solving geometry problems, the multi-dimensional divide and conquer of Bentley
[1980]. We will show that this paradigm outperforms multi-dimensional divide
and conquer on various geometry problems. The new paradigm also provides a
good support for designing efficient parallel algorithms for geometry problems in
fixed dimensions (see Frieze et al. [1992]).

4.1. PoINT LocATION. The point location problem for a neighborhood system
can be defined as: given a neighborhood system I' = {B,,..., B, } in d-space,
preprocess the input to organize it into a search structure so that queries of the form
“output all neighborhoods that contain a given point p” can be answered efficiently.

Like other geometry query problems, there are three costs associated with this
point location problem: the preprocessing time T(n, d) required to build the
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search structure, the query time Q(n, d) required to answer a query, and the
space S(n, d) required to represent the search structure in memory.

If I is an arbitrary neighborhood system, then there may exist some point p
that is covered by ((n) balls. In this case, just to print the output would require
Q(n) work. However, if I is restricted to be a k-ply system, then the number of
balls in the output is bounded by k. Using separator based divide and conquer,
we are able to construct a search structure with the following properties:

T(n, d) = random O(n log n),
Q(n, d) = O(k + log n),

S(n,d) =0(n).

By saying an algorithm runs in random #(n) time, we mean that the algorithm
never gives a wrong output but may not terminate in the claimed time bound.
The probability of success, namely, that it produces a correct output in #(n)
steps, is at least 1 — A for any A > 0. To simplify the discussion, in the following
sections, we assume that the ply £ is a constant.

The main idea is to use a sphere separator which intersects an O(k'~ PnP)
number of balls for any constant (8 < 1) to partition the neighborhoods into two
subsets of roughly equal size, and then recursively build search structures for
each subsets.

Given a neighborhood system I'" with ply k£, we will build a binary tree of height
O(log n) to guide the search in answering a query. Associated with each leaf of
the tree is a subset of neighborhoods in I', and the search structure has the
property that for all p € IR?, the set of neighborhoods that covers p can be found
in one of the leaves.

In the following construction, we will use sphere separators that have the
following useful properties

— It can be represented with O(1) space.

— It takes O(1) time to test whether a point is in the interior or the exterior of
the sphere.

The algorithm is very simple. It first finds a sphere S that intersects ¢ - k'~ PnP
balls that &-split I'. In the remainder of this section we assume that 8, 8 and ¢ are
constants with the property that 0 < 8 < 1,0 < 8 < 1 and c is a positive real that
only depends on the dimension d, 8 and 8. To apply Theorem 2.2.1, we can use
B=1-1/d,8=(d + 1)/(d + 2) + e for any constant € in the range 0 < €
< 1/(d + 2), and c is the constant term of the separator size given in Theorem
2.2.1. Because testing whether a sphere intersects more than ¢ - k' ~#nP balls can
be done in linear time, our randomized separator algorithm can guarantee the
quality of its separators.

Let I'y be the subset of balls which intersect either S or the interior of S, and
I, the subset of balls which intersect either S or the exterior of S. Clearly |T',|,
ITy| = én + c-k'"PnP and |T'y| + |T,] = n + c- k' PnP. We store the
information about §, namely its center and radius, in the root of the search tree,
and recursively build binary search trees for I'y and I';, respectively. The roots of
the tree for I'j and I'; are respectively the left and right children of the node
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associated with §. The recursive construction stops when the subset has cardinal-
ity smaller than m, = ak for a constant « that depends on 3, 8, ¢ but not n and
k. The precise requirements for « (and hence m) will be determined below.

To answer a query when given a point p € IR?, we first check p against S, the
sphere separator associated with the root of the search tree. There are three
cases:

Case 1. If p is in the interior of §, then recursively search on the left subtree
of §;

Case 2. 1If p is in the exterior of S, then recursively search the right subtree of
S5

Case 3. If p is on §, then recursively search on the left subtree of S.

When reaching a leaf, we then check p against all balls associated with the leaf
and print all those that cover p.

The correctness of the search structure and the above searching procedure is
obvious and can be proved by induction: if p is in the interior (exterior) of S,
then all balls that cover p must intersect either S or the interior (exterior) of S,
and hence are in the left (right) subtree of S. The time complexity to answer a
query is bounded by O(h,(n) + m), where h;(n) is the worse-case height of
the search tree for n k-ply balls. We can bound #/,(n) from above by the
following recurrence.

1 lf msmo
hy(m) = 5
(m) h(dm + ck' PmP) + 1  if m=m,. %)

The following lemma gives an upper bound on 4, (n). In proof, we will give the
first condition on m, = ak.

LeEMMA 4.1.1. Let h; be a function defined above. Then h;(n) = O(log n) for a
sufficiently large constant o that depends only on d, 6, B, and c.

ProOOF. We will choose m, = ak such that for all m = m,, ck' PmP =<
((1 — 8)/2)m. This condition is true if

2¢ 1/(1-p)
a=|—2 .
1-20

Because /1, (m) is a nondecreasing function in m, we have

1

hy(m) =< i (<1+5
k
2

if m=m,

)m) +1 if m>m0.

Since 8 < 1 and hence 2/(1 + 8) > 1, we can infer h(n) = Hogy 15 n0=
O(logn). O

Consequently,

Q(n,d)=0(ogn +my = O0(logn + k).
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We now analyze the space requirement of the search structure. First, observe
that each internal node requires a constant amount of space and each leaf
requires O(m,) space. To bound the total space, it is sufficient to bound the
total number of leaves in the tree.

Let s,(m) denote the maximum number of leaves in the search tree for m
balls. The sphere separator decomposes the data structure for m balls into two
substructures, one for those balls intersecting the interior of the sphere and one
for those balls intersecting the exterior of the sphere. Our separator results
guarantee that number of balls in each two substructures is no more than ém +
ck' " PmP and the sum of number of balls from both sides is no more than m +
ck'"PmP/2. Hence, there is a §, such that (1) 1 — §, = §, = §; and (2) the
smaller side (either interior or exterior) has no more than (1 — §;)m balls. The
number of balls in the larger side is at most 8,m + ck' PmP. Notice that we
implicitly charge the additional term for the separator (which is bounded by
ck' " PmP in (1 — 8,)m). Thus, s,(m) is given by the following recurrence.

1 lf msmo

se(m) = 6
m) s (8;m + ck' PmP) + 5,((1 — 8§,)m) if m>m,. (©)

The following lemma gives an upper bound on s, (7). In proof, we will give the
second condition on m, = «k.

LEMMA 4.1.2. Let s, be the function defined above. Then s;(n) = O(n/k) for a
sufficiently large constant o that depends only on d, 8, B, and c.

ProOF. For any constant -y such that 8 < y < 1, we use induction to establish
sp(n) = C(n/k — (n/k)") for a sufficiently large constant « that depends only
ond, 8, B, and ¢ and an appropriate choice of the constant C > 1.

Because s, (m) = 1 for m = m, = ak, we need to choose C, and m, such
that C(my/k — (my/k)”) = 1. Because y < 1, this condition holds for a
sufficiently large «, establishing the base for the induction. Now assuming the
lemma is true for all m < n, using the substitution method of Cormen et al.
[1990], we have

sp(n) = s5.(8m + ck' PnPf) + 5, ((1 — §))n)

k k

R ARE AR R R |
=— || +cl-| +Cel-| —cla || | —c|——
ko \k k k ko \k k

C(6n + ck' PnP) . C((l —8)n) C<(81n + ckl‘Bnﬁ))7 C((l — 81)n)y
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as long as we choose C and m, = ak such that for all n = m,,

() cla-af] ~<fi) -] -
C7 +C(1—51)E —CZ —CC; =0. (7)

By a Taylor expansion of (1 — x)” around the point 0, we have

(6)7+ (1 =8)"=(8)"+ 1 — 78,
Because 0 < y < 1land 1 < §; < & < 1, the above inequality (7) holds if

C[(8" — yd)(n/k)” — c(n/k)P] = 0. (8)
Because 0 < B < y < 1, inequality (8) holds for all

C 1/(y=B)
n=zmy=|—-— k.
0¥ — o

Therefore, the lemma is true for sufficiently large constants o and C that only
depend on d, 8, B, and c. [

Because the number of nodes in a proper binary tree is no more than twice the
number of leaves, we have for each sufficiently large constant « satisfying the
conditions given in the proof of Lemma 4.1.2,

_n
s(n) =0 R

Therefore, the total space requirement of the above search structure is bounded
by

S(n,d) = 0O(ksi(n)) = 0(n).

Now let us look at the time required in building such a search structure.

From Theorem 2.2.1, each k-ply system of m balls in IR? has a sphere
separator that intersects O(k'“n'~"4) balls and (d + 1)/(d + 2)-splits the
system. If we could compute such a sphere separator in deterministic O(n) time,
then the worst-case time required in computing such a search structure, 7, (m),
would be given by the following recurrence.

1 it m=m,
Tm) = . (9)
T.(8;m + ck'PmP) + T,((1 — §)m) + O(m) if m>m,,
where 6; =< 6.
The following lemma gives an upper bound on Ty (n). In proof, we will give
the third condition on m, = «k:

LEMMA 4.1.3. Let T, be the function defined above. Then Ti(n) = O(n log n)
for a sufficiently large constant « that depends only on d, 8, 3, and c.

ProOOF. We use induction to establish T, (n) = Cn log n for an appropriate
choice of the constant C > 1.
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Clearly, Ty (m) = 1 = C for m = m,. This is the base of the induction. Now,
assuming the lemma is true for all m < n, we have

T.(n) =T,(8;n + ck' PnP) + T.((1 — 8))n) + con
= C(6n + ck' PnP)log(dn + ck' PnP) + C((1 — 8)n)log((1 — 8,)n) + cn
= Cn log(én + ck' PnP) + Cck' PnP log(d + ck' PnP) + c,n

1+6

=Cn log( n) + Cck' PnP log(én + ck' PnP) + con

2
=Cnlogn — Cn log(1+8> + Cck' PnP log(8 + ck' PnP) + c,n

= Cn logn,

as long as we choose C and m, = «a k such that for all n = m,,
2
Cn log Fary i Cck' PnP log(8 + ck' PnP) —co,n = 0. (10)

Because B < 1 and & < 1, inequality (10) holds for sufficiently large « and C >
¢, which only depend on d, 8, B, and c. [

Consequently,
Ti(n,d) = 0(n logn).

Notice that, however, our algorithm is randomized. As shown in our main
theorem, if 3 = 1 — 1/d + e for some constant € such that 0 < € < 1/d, then
the probability such a randomized algorithm outputs a sphere separator that
intersects O(k'~PnP) balls is at least 1 — (1/n°). Moreover, in linear time, we
can check whether the number of balls a sphere separator intersects is
O(k'~PnP). Frieze et al. [1992] in a parallel extension of this algorithm, shown
that for a sufficiently large constant m, the search structure can be constructed
in random O(n log n) time with a probability of success 1 — 1/n.

4.2. CONSTRUCTING INTERSECTION GRAPHS. The problem of this section is to
construct the intersection graph of a given neighborhood system. There is a
simple solution for this problem: test each pair of balls to decide whether they
intersect. Since there are O(n?*) pairs and the testing of each pair can be
performed in constant time, the whole construction can be performed in O(n?)
time. If we require the algorithm to report all edges of the intersection graph, the
above algorithm is optimal if we are working with general neighborhood systems.
This is because that there could be as much as Q(n?) number of edges in some
intersection graphs. However, every k-intersection graph has at most O(kn)
edges. We present a randomized O(kn + n log n) time construction algorithm.

To illustrate the idea, let us view the graph construction problem as a search
problem: a problem of exploring the structure of an unknown graph with the help
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of some oracles. First, assume that n, the number of vertices, is known in
advance and we have an oracle — the edge oracle — which answers the question of
the form “is there an edge between vertex u and »?” in constant time. It is not
hard to see that even though the number of edges is known in advance, Q(n?)
queries have to be asked in the worst case.

Now suppose that there is more information available: it is known in advance
that the graph has a ck' ~PnP-separator that 8-splits and moreover each subgraph
of m > m, vertices also has a ck' ~PmP-separator that 8-splits, for some constant
¢, a, and 0 < B < 1, where m, = ak. Can the number of queries be reduced? It
is remain to be seen whether this is true.

Now, suppose in addition, we have an oracle — a separator oracle — which, when
presented with a subset of m vertices, delivers three sets, A, B, and C, where C
is an ck'~PmP-separator that 8-splits the subgraph induced by those m vertices
into A and B. Then it is sufficient to consult with the oracle O(n) times to
compute the structure of the unknown graph G, if k is much smaller than n.

The strategy is divide and conquer. We first present the separator oracle with
the whole set of vertices and get back from the oracle three sets A, B, C, where
C is a ck' PnP-separator that §-splits G into A and B. We then recursively
search the structure of subgraphs induced by A U C and B U C until the size of
subproblems is below m . Finally, we use the edge oracle to complete the graph.

The total number of query q,(n) to the separator oracle is clearly given by the
following recurrence.

if n=m,

0
qi(n) 5{

qi(8in + ck' PnP) + q((1 — &6)n) + 1 if n>m,,

where 8, = 6.
By a similar argument as Lemma 4.1.2, it can be shown g,(n) = O(n/k).
Now suppose each query to the separator oracle costs O(m) time, where m is
the size of query. It is not hard to see that the total time T, (n) needed to search
the structure of the graph is given by the following recurrence.

o(1) if n=m,

T,(n) S[ . .
T(8n + ck' Pnf) + T.((1 — 8)n) + O(n) if n>m,.

By Lemma 4.1.3, we have T, (n) = O(n log n).

The divide-and-conquer algorithm for constructing intersection graphs is based
on the following interesting observation: We do not need to have the intersection
graph in order to compute a small separator efficiently —all we need is the
neighborhood system!

To see this, let us recall how we compute a small separator of an intersection
graph. First, we find a sphere separator S of low cost. This step involves
computing an approximate centerpoint and a conformal map. We then compute
a vertex separator from the sphere separator S. The rule of choosing vertices is
very simple: If ball B; has a common point with S, then the vertex corresponding
to B; is placed in the separator. The time complexity of the above step is O(n).

THEOREM 4.2.1. The intersection graph of a k-ply system in IR® can be com-
puted in random O(kn + n log n) time. Moreover, the algorithm uses O(n)-space.
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In contrast, one can only derive an O (kn log? ™! n) time, O(n log? ™' n)-space
algorithm for computing an intersection graph using the multidimensional
divide-and-conquer paradigm.

Remark 4.2.2. Guibas et al. [1994] gave an

2
O(n?* tvaa+azn7e + kn log’n)

time deterministic algorithm for constructing the kth sphere of influence graph
of a point set in d dimensions. Our construction, using randomization, reduces
the time complexity to expected O(kn + n log n).

Remark 4.2.3. Eppstein et al. [1993] gave a deterministic linear time algo-
rithm for finding a small cost sphere separator of a k-ply system. Therefore, in
theory, all results presented in this section can be made deterministic. However,
the randomized construction presented in this section is much faster in practice.
More practical deterministic algorithms are desirable.

Eppstein et al. also showed how to apply this divide-and-conquer method to
approximate the ply k. Hence, we can apply separator based divide and conquer
to neighborhood systems without knowing its ply k£ a-priori.

5. Final Remarks and Open Questions

Recently, using the duality on S¢ suggested in Teng [1991] and Eppstein et al.
[1993], Agarwal and Pach [1995] and Spielman and Teng [1996a], independently,
gave a much simpler geometric proof that bounds the expected number of balls
of a k-ply systems on S¢ that a random great circle intersects (a la Sections 2.6.2
and 2.6.3): LetI' = (B, ..., B,) be a k-ply neighborhood system in R?, and let
@ be the sphere-preserving map used in Lemma 2.3.3.1. let r; be the radius of
®(B;). As shown in Teng [1991], Eppstein et al. [1993], Pach and Agarwal
[1995], and Spielman and Teng [1996a], it follows from the duality between
points and great circles of S that the expected number of caps of ®(I') that a
random great circle of ¢ intersect is equal to

n
Cq Z r,
i=1

for a constant ¢, depends only on d. Because ®(I') is k-ply, the total volume of
{®(B,), ..., P(B,)} is at most kA,, where A, is the surface area of a unit
d-sphere in IR?"!. Therefore, there is a constant ¢, depending only on d such
that

E r;l = Czk.
i=1
By a convexity argument or Lagrange’s method, one can show that

¢ E r, = O(kl/dnlfl/d)‘

i=1
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An important problem is, given a graph without an embedding, can its nodes
be embedded in IR? to make it a subgraph of an intersection graph of a k-ply
system?

Recently, Linial et al. [1995] studied the problem of embedding graphs in the
Euclidean space so that (1) the dimension is kept as small as possible, and (2) the
distances among vertices of the graph are closely matched with the distances
between their geometric images. They showed that such an embedding of a graph
in IR? in conjunction with the partitioning technique of this paper implies that
the graph has a separator of size O(n'~"9).

In contrast to our approach, the results of Linial et al. [1995] can be applied to
any graph, not only graphs arising from neighborhood systems. On the other
hand, their algorithm in general requires the embedding dimension to be as large
as Q(log n), so the bounds they attain ours are weaker than ours. It would be
very interesting if there were an embedding algorithm for general graphs that
would be able to find very low-dimensional embedding in the special case that
the graph admits such an embedding.

It is interesting to point out that Vavasis [1991] has defined a class of
geometric graphs called local graphs and showed that any local graph of n
vertices has a hyperplane based separator of size n'~ . The class of local
graphs is properly contained in the class of overlap graphs defined in our
companion paper [Miller et al. 1996] and is much weaker than k-intersection
graphs. Previously, hyperplanes have been used in the recursive coordinate
bisection heuristic.

Recently, Plotkin et al. [1994] improved the bounded forbidden minor separa-
tor theorem of Alon et al. [1990]. Their work, in conjunction with a structure
lemma of Teng [1994], gives a combinatorial proof of a much weaker version of
the separator theorem for the class of intersection graphs presented in this
paper.

It is also interesting to determine how our algorithm performs in practice
compared to other current algorithms such as the spectral method. This is the
subject of current work by Gilbert et al. [1997]. Very recently, using Koebe-
embedding and sphere-preserving mapping in a similar way to the work of this
paper, Spielman and Teng [1996b] showed that the spectral method can be used
to find edge bisectors of size O(Vn) for k-nearest neighbor graphs and bounded
degree planar graphs.
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