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Abstract. We propose a class of graphs that would occur naturally in finite-element and finite-
difference problems and we prove a bound on separators for this class of graphs. Graphs in this class
are embedded in d-dimensional space in a certain manner. For d-dimensional graphs our separator
bound is O(n(d−1)/d), which is the best possible bound. We also propose a simple randomized
algorithm to find this separator in O(n) time. This separator algorithm can be used to partition the
mesh among processors of a parallel computer and can also be used for the nested dissection sparse
elimination algorithm.
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1. Domain partitioning. One motivation for this work is numerical solution of
boundary value problems. Let Ω be an open connected region of Rd. Suppose one is
given a real-valued map f on Ω and is interested in finding a map u : Ω → R such that

�u = f on Ω and u = 0 on ∂Ω.

This problem, Poisson’s equation, arises in many physical applications. Two common
techniques for this problem are finite differences and finite elements. These techniques
grow out of different analyses, but the end result is the same. In particular, a discrete
set of nodes is inserted into Ω and a sparse system of linear equations is solved in
which there is one node point and one equation for each node interior to Ω. More-
over, the sparsity pattern of the system reflects interconnections of the nodes. Let
the nodes and their interconnections be represented as an undirected graph G.

Two numerical techniques for solving this system are domain decomposition and
nested dissection. Domain decomposition divides the nodes among processors of a
parallel computer. An iterative method is formulated that allows each processor to
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operate independently; see Bramble, Pasciak, and Schatz [5]. Nested dissection, due
to George [13], George and Liu [14] and Lipton, Rose, and Tarjan [25], is a node
ordering for sparse Gaussian elimination. Although originally a sequential algorithm,
nested dissection also parallelizes well. For instance, Pan and Reif [37] parallelized it
by writing it as sequence of matrix factors. Parallel multifrontal methods (see, e.g.,
[27]) are also often based on nested dissection.

For either technique it is necessary to first partition the region into subdomains.
For the purpose of efficiency in both domain decomposition and nested dissection, it
is important that the number of nodes in each subdomain be roughly equal, and it is
also important that the size of the separator be as small as possible. For a general
graph, such a decomposition may not be possible. Accordingly, it is necessary to
restrict attention to classes of graphs that occur in practice in finite-difference and
finite-element computations. This class is defined in the next section.

The finite-element method can be applied to many boundary value problems other
than Poisson’s equation; see, e.g., Johnson [22]. In most of these settings, the nested
dissection and domain decomposition ideas carry over. The partitioning technique
described in this paper applies to any boundary value problem posed on a spatial
mesh provided the mesh satisfies quality bounds described below, and provided the
pattern of nonzero entries in the discretized operator is in correspondence with the
mesh topology.

First, we review the relationship between this paper and other papers by the same
authors. This paper and its companion paper [31] either extend or explain several
short conference papers [33, 34, 35] and one journal paper [45]. The focus of this
paper is finite-element meshes; the companion paper focuses on problems arising in
computational geometry.

The authors have also jointly written a survey paper [30] that surveys the results
from this paper, the companion, and several additional results by various authors on
efficient center point computation.

The main contributions of this paper (beyond our previous work) are
• an analysis showing that well-behaved finite-element meshes in any dimension

are “overlap” graphs (defined below), and
• a complete proof of our main separator theorem showing that overlap graphs

have a small separator that can be efficiently computed.
Other authors have recently looked at the mesh-partitioning problem. For in-

stance, Pothen, Simon, and Liou [39] have a “spectral-partitioning” method based on
eigenvalues of the “Laplacian” matrix of the graph. This method seems to work well
in practice but does not come with any known guarantees for finite-element meshes.
Hendrickson and Leland [20] have improved the spectral method with a multilevel
heuristic; the improved version is much faster in practice. The Chaco package from
Sandia implements this spectral method and a newer multilevel Kernighan–Lin algo-
rithm. The original Kernighan–Lin partitioning algorithm [23] improves the partition
by moving individual nodes from one subdomain to the other, and the multilevel
Kernighan–Lin is able to move entire connected subgraphs [21].

Another mesh-partitioning algorithm used in practice is a graph-search heuristic
due to George and Liu [14]. Leighton and Rao [24] have a partitioning method guar-
anteed to return a split whose separator size (see below) is within logarithmic factors
of optimal, but the technique, based on flow algorithms, currently appears to be too
expensive for application to large-scale meshes.

The method that we propose, unlike these previous works, assumes that the graph
G comes with an embedding of its nodes in Rd. This is a very reasonable assumption
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FIG. 1. Example of A, B, C in Definition 2.1.

for finite-difference and finite-element meshes. This geometric embedding is used
extensively by our algorithm. Our algorithm is randomized. It always splits the
graph into pieces of roughly equal size, and we show that with high probability the
separator size satisfies an upper bound that is the best possible bound for the class
of graphs we consider.

Throughout the paper we regard the dimension d as a small constant. The inter-
esting cases for applications are commonly d = 2 or d = 3.

The remainder of the paper is organized as follows. In section 2 we introduce the
concept of graph separators and define a class of graphs called overlap graphs. We
also state the main theorem of the paper in section 2: there is an efficient algorithm
for computing good separators of overlap graphs. In section 3 we prove that finite-
element meshes belong to the class of overlap graphs. In section 4 we state our main
algorithm for finding separators. The proof that this algorithm finds small separators
is the focus of sections 5 through 7. In sections 8 and 9 we consider some practical
issues associated with mesh partitioning.

2. Separators and overlap graphs. We now formally define the concept of
separator.

DEFINITION 2.1. A subset C of vertices of an n-vertex graph G is an f(n)-
separator that δ-splits G if |C| ≤ f(n) and the vertices of G − C can be partitioned
into two sets A and B such that there are no edges from A to B and |A|, |B| ≤ δn.
Here, f is a function and 0 < δ < 1.

In this definition and for the rest of the paper, |A| denotes the cardinality of a finite
set A. The type of separator defined here is sometimes called a “vertex separator,”
that is, a subset C of vertices of G whose removal disconnects the graph into two or
more graphs of smaller size; see Fig. 1. A related concept is an “edge separator,” that
is, a set of edges whose removal disconnects the graph. Edge separators are useful for
the problem of partitioning the computational tasks of a traditional iterative algorithm
(such as conjugate gradient) for a finite-element problem among the processors of a
parallel computer.
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Our algorithm can compute an edge separator as effectively and efficiently as it
computes vertex separators. We have decided to state our theoretical bounds in terms
of vertex separators, however, to be consistent with previous literature.

One of the most well known separator results is Lipton and Tarjan’s result [26]
that any planar graph has a

√
8n-separator that 2/3-splits, which improved on Ungar’s

[43] result. Building on this result, Gilbert, Hutchinson, and Tarjan [15] showed that
all graphs with genus bounded by g have an O(√gn)-separator, and Alon, Seymour,
and Thomas [1] proved that all graphs with an excluded minor isomorphic to the
h-clique have an O(h3/2√n)-separator. These results are apparently not applicable
to graphs arising as finite-element meshes when the dimension d is higher than two.

The class of graphs we consider is defined by a neighborhood system.
DEFINITION 2.2. Let P = {p1, . . . ,pn} be points in Rd. A k-ply neighborhood

system for P is a set {B1, . . . , Bn} of closed balls such that (1) Bi centered at pi and
(2) no point p ∈ Rd is interior to more than k of B1, . . . , Bn.

In this paper we will focus exclusively on the case that k = 1, i.e., the interiors of
the balls are disjoint. The case when k > 1 is interesting for a number of geometric
problems and is considered in our other paper [31].

In this definition we used n for the number of points and d for the dimension of
the embedding. We continue to use this notation throughout the paper. We also use
the following notation: if α > 0 and B is a ball of radius r, we define α · B to be a
ball with the same center as B but radius αr.

Given a neighborhood system, it is possible to define the overlap graph associated
with the system.

DEFINITION 2.3. Let α ≥ 1 be given, and let {B1, . . . , Bn} be a 1-ply neighborhood
system. The α-overlap graph for this neighborhood system is the undirected graph with
vertices V = {1, . . . , n} and edges

E = {(i, j) : Bi ∩ (α · Bj) �= ∅ and (α · Bi) ∩ Bj �= ∅}.

The main result that we establish in this paper is as follows.
THEOREM 2.4. Let G be an α-overlap graph, and assume d is fixed. Then G has

an

O(α · n(d−1)/d + q(α, d))

separator that (d+1)/(d+2) splits. A separator of the same size that (d+1+�)/(d+2)-
splits can be computed with high probability by a randomized linear-time algorithm or
randomized constant-time parallel algorithm provided that � > 1/n1/2d.

3. Finite-element and finite-difference meshes. The main result of this sec-
tion is that finite-element meshes that satisfy a “shape” criterion are overlap graphs.
The finite-element method [41] is a collection of techniques for solving boundary value
problems on irregularly shaped domains. The finite-element method subdivides the
domain (a subset of Rd) into a mesh of polyhedral elements. A common choice for
an element is a d-dimensional simplex. These simplices are arranged in a simplicial
complex; that is, they meet only at shared subfaces. Based on the finite-element mesh,
a coefficient matrix called the “assembled stiffness matrix” is defined, with variables
representing unknown quantities in the mesh. Let the finite-element graph refer to
the nonzero structure of this matrix.
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FIG. 2. A mesh produced by a mesh generator that guarantees bounded aspect ratio.

Associated with such a simplicial complex is its 1-skeleton, that is, the set of
nodes accompanied by one-dimensional edges joining them. It is well known that,
in the case of a piecewise-linear finite-element approximation for Poisson’s equation,
the nodes and edges in the finite-element graph defined in the last paragraph are in
one-to-one correspondence with the nonboundary nodes and edges of the 1-skeleton of
the complex. Notice that this 1-skeleton carries geometric information about the po-
sitions of the nodes and edges. In the case of higher-order elements, the finite-element
graph is obtained from the 1-skeleton by introducing additional nodes interior to the
faces of the simplices, and edges are introduced between every pair of nodes that share
an element.

It is usually a requirement for numerical accuracy that the simplices are well
shaped [4, 11, 46]. A common shape criterion used in mesh generation [4, 6, 36, 40] is
an upper bound on the aspect ratio of the simplices. This term has many definitions
that are all roughly equivalent [30]. One definition of aspect ratio of a simplex T is
the radius of the smallest sphere containing T divided by the radius of the largest
sphere that can be inscribed in T . Denote these two radii by R(T ) and r(T ) so
that the aspect ratio is R(T )/r(T ). Figure 2 shows an example of a finite-element
mesh generated by Mitchell’s mesh generator and based on the algorithm in [36].
The algorithm guarantees a fixed upper bound on the aspect ratio of all triangles it
produces, provided that the input polygon has no sharp angles. A three-dimensional
version of that algorithm has recently been implemented by Vavasis [47].

We can show that the interior nodes in a 1-skeleton form an overlap graph. This
result is easily generalized to higher-order elements. First, we prove a preliminary
geometric lemma. This lemma is also used later on. For the lemma and rest of the
paper, let vd be the volume of the d-dimensional unit ball embedded in Rd, and let
sd−1 be the surface area of d − 1-dimensional unit sphere embedded in Rd. These are
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well known to be

vd =
πd/2

(d/2)!

for d even,

vd =
2(d+1)/2π(d−1)/2

1 · 3 · 5 · · · d
for d odd, and

sd−1 = dvd.

LEMMA 3.1. Let B be a ball and S a sphere both embedded in Rd. Let the radius
of B be γ and the radius of S be r such that r ≥ γ. Assume that S and 0.5 · B have
a common point. Then the surface area of S ∩ B is at least

�√
7

4
γ

�d−1

vd−1.

Proof. It suffices to prove the lemma in the special case that γ = 1 (and hence
r ≥ 1) because we can initially scale each coordinate of Rd by 1/γ. Furthermore,
without loss of generality, let B be centered at the origin, and let S be centered at the
point (p, 0, 0, . . . , 0) with p ≥ 0. The assumption that S and 0.5 · B have a common
point means that r−0.5 ≤ p ≤ r+0.5. Let us consider the (d−2)-dimensional sphere
S� that is the intersection of ∂B and S, that is, the solution to the equations

x2
1 + · · · + x2

d = 1,

(x1 − p)2 + x2
2 + · · · + x2

d = r2.

Clearly, these equations have a solution if and only if

x2
1 − 1 = (x1 − p)2 − r2,

which has as its unique solution

x∗
1 =

p2 − r2 + 1
2p

=
p

2
+

1 − r2

2p
.

Now, let us consider the minimum and maximum possible values of x∗
1 over all choices

of r, p satisfying these constraints. First, we consider the maximum possible value.
Note that both terms in the formula for x∗

1 are increasing as p increases (because
1 − r2 ≤ 0). Therefore, to maximize x∗

1 we would pick p maximally to be r + 1/2.
Substituting this in the formula for x∗

1 yields

x∗
1,max =

r

2
+

1
4

+
1 − r2

2r + 1
=

1
2

+
3
4

2r + 1
.

This is maximized for r as small as possible, i.e., r = 1. In this case we have x∗
1,max =

3/4.
Now, let us consider the minimum possible value of x∗

1. In this case, we want to
pick p = r − 1/2, yielding

x∗
1,min =

r

2
− 1

4
+

1 − r2

2r − 1
= −1

2
+

3
4

2r − 1
.
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This is minimized by taking r as large as possible, yielding x∗
1,min = −1/2. Combining

the upper and lower bound, we conclude that |x∗
1| ≤ 3/4.

Now, notice that S ∩ B, a spherical cap, is the solution to the system

(x1 − p)2 + · · · + x2
d = r2,

x1 ≤ x∗
1.

Consider projecting this cap orthogonally onto the plane x1 = x∗
1. The projection B�

of S ∩ B contains (x∗
1, x2, . . . , xd) if and only if

x2
2 + · · · + x2

d ≤ r2 − (x∗
1 − p)2

= 1 − (x∗
1)

2.

Since orthogonal projection reduces area, the area of S ∩ B is at least the area of B�.
We have already proved that |x∗

1| ≤ 3/4, so the radius of B� is at least (1 − 9/16)1/2,
i.e., at least

√
7/4. Thus, the area of S ∩B is at least the area of B�, which is at least

(
√

7/4)d−1vd−1.
We now present the main theorem of this section.
THEOREM 3.2. Let H be a simplicial complex embedded in Rd. Assume that every

simplex has aspect ratio bounded by c1. Let G be the finite-element graph of H, that
is, the 1-skeleton of interior nodes of H. Then G is a subgraph of an α-overlap graph
for an α bounded in terms of c1 and d.

Proof. Let the interior nodes of the complex be {p1, . . . ,pn}. Fix a partic-
ular i and consider pi. Let T1, . . . , Tq be the simplices adjacent to pi. Define
ri = min(r(T1), . . . , r(Tq)). Surround node pi with a ball Bi of radius ri. Carry
out this construction of ri and Bi for each node pi.

Note that ri is at most half the distance to the facet of T opposite pi for any
simplex T containing pi. Since pi is interior to H, the shortest altitude to the facets
of T1, . . . , Tq opposite pi is shorter than the distance from pi to any other node. This
shows that Bi does not intersect any of the other balls Bj for j not equal to i. Thus,
B1, . . . , Bn form a 1-ply system.

Now, we prove that the edges of the 1-skeleton adjacent to pi are covered by α·Bi.
First, we argue that the number of simplices adjacent to any particular node pi is
bounded above in terms of c1. The argument for this bound is as follows. Because
of the aspect ratio bound, there is a lower bound on the solid angle of each simplex
adjacent to pi and therefore an upper bound q∗ on the number of such simplices.

Stating this argument in more detail, let C1, . . . , Cq be the balls of radii
r(T1), . . . , r(Tq) inscribed in T1, . . . , Tq. For a particular j, 1 ≤ j ≤ q, let Sj be
the sphere centered at pi and passing through the center of Cj . By the lemma, the
surface area of Sj ∩ Cj is at least (

√
7r(Tj)/4)d−1vd−1.

Now, consider the sphere S of radius 1 centered at pi. For each j, Sj is also a
sphere centered at pi; hence we can expand or contract its radius to make it coincide
with S. Let ρj be this radius. This dilation also carries Sj ∩ Cj to a subregion Uj of
S. These subregions are disjoint (or perhaps have common boundary points only) for
j = 1, . . . , q because Sj ∩Cj and also its dilation Uj lie inside the convex cone centered
at pi defined by Tj . The surface area of Uj is at least (

√
7r(Tj)/(4ρj))d−1vd−1.

Note that ρj ≤ 2R(Tj) because all of Tj is contained inside the sphere of radius
2R(Tj) centered at pi. Therefore, Sj must have a smaller radius than this sphere.
Thus, the surface area of Uj is at least (

√
7r(Tj)/(8R(Tj)))d−1vd−1, i.e., at least

(
√

7/(8c1))d−1vd−1.
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Thus, we have q disjoint subsets U1, . . . , Uj of S each with surface area
(
√

7/(8c1))d−1vd−1. Since the surface area of S is sd−1, this shows that

q ≤ sd−1(8c1)d−1

7(d−1)/2vd−1
.

Let us call this upper bound q∗.
Let us say that two simplices are neighbors if they share a (d − 1)-facet. By the

assumption that pi is an interior node, we know that all of the simplices adjacent to
pi are “connected” under the transitive closure of the “neighbor” relation. Now, we
claim that if two simplices Tj , Tj� are neighbors, then R(Tj) ≥ r(Tj�). This follows
immediately because r(Tj�) is shorter than half the length of the shortest edge of the
common face, where R(Tj) is greater than half the length of the longest edge. The
inequality R(Tj) ≥ r(Tj�) implies that c1R(Tj) ≥ R(Tj�).

Recall that ri is the minimum r(Tj) for j = 1, . . . , q; say the minimum is achieved
at j = 1. Then the arguments in the last two paragraphs show that R(Tj) for any
j is bounded by cq∗

1 R(T1). Thus, the ball of radius 2cq∗

1 R(T1), i.e., radius 2cq∗+1
1 ri,

contains T1, . . . , Tq. This ball is (2cq∗+1
1 ) · Bi.

This shows that G is indeed a subgraph of an α-overlap graph because all the
nodes connected to pi are vertices of T1, . . . , Tq.

Other shape criteria weaker than an aspect ratio bound have appeared in the
literature; for instance, Babuška and Aziz [2] have shown that the two-dimensional
finite-element approximation converges to the true solution in the case that the largest
angle of the mesh is bounded away from π (this is a weaker condition than bounded
aspect ratio). Miller, Talmor, Teng, and Walkington [29] have shown a similar re-
sult about three-dimensional Delaunay triangulations satisfying a radius-edge ratio
bound. In such a triangulation, the radius of the circumscribing circle of each simplex
divided by its shortest edge is bounded above by a constant, and the triangulation is
a Delaunay triangulation.

In the case of a two-dimensional triangulation with an upper bound on the largest
angle, the 1-skeleton of the triangulation is not necessarily an overlap graph with
bounded α. However, the bounded radius-edge Delaunay triangulation is an α-overlap
graph as argued by [29].

Another type of discretization used in solving PDEs is a finite-difference mesh
with adaptive refinement; see, e.g., Fig. 3 based on a paper by Berger and Bokhari
[3]. In such a mesh, it is a common rule to require that no node has neighbors more
than twice as far away as its closest neighbor (otherwise the extra interpolations lead
to numerical inaccuracy). It is very easy to see that such a graph is an α-overlap
graph with α = 2.

4. The main algorithm and stereographic projection. We now describe
our separator algorithm. Then we describe some of the details of the implementation
and explain its complexity. The correctness proof of the algorithm is the subject of
sections 5 through 7.

We start with two preliminary concepts. We let Π denote the stereographic pro-
jection mapping from Rd to Sd, where Sd is the unit d-sphere embedded in Rd+1.
Geometrically, this map may be defined as follows. Given x ∈ Rd, append “0” as the
final coordinate yielding x� ∈ Rd+1. Then compute the intersection of Sd with the
line in Rd+1 passing through x� and (0, 0, . . . , 0, 1)T . This intersection point is Π(x).
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FIG. 3. An example of finite-difference mesh with refinement.

Algebraically, the mapping is defined as

Π(x) =
�

2x/χ
1 − 2/χ

�
,

where χ = xT x + 1. It is also simple to write down a formula for the inverse of Π.
Let u be a point on Sd. Then

Π−1(u) =
ū

1 − ud+1
,

where ū denotes the first d entries of u and ud+1 is the last entry. The stereographic
mapping, besides being easy to compute, has a number of important properties proved
below.

A second crucial concept for our algorithm is the notion of a center point. Given
a finite subset P ⊂ Rd such that |P | = n, a center point of P is defined to be a point
x ∈ Rd such that if H is any open half-space whose boundary contains x, then

|P ∩ H| ≤ dn/(d + 1).(1)

It can be shown from Helly’s theorem [8] that a center point always exists. Note that
center points are quite different from centroids. A center point is largely insensitive to
“outliers” in P . On the other hand, a single distant outlier can cause the centroid of
P to be displaced by an arbitrarily large distance. In the d = 1 case, a center point is
the same as a median for n odd and is any point between the two medians for n even.

Main Separator Algorithm.
Let P = {p1, . . . ,pn} be the input points in Rd that define the overlap graph.
1. Given p1, . . . ,pn, compute P � = {Π(p1), . . . ,Π(pn)} so that P � ⊂ Sd.
2. Compute a center point z of P �.
3. Compute an orthogonal (d + 1) × (d + 1) matrix Q such that Qz = z�, where

z� =





0
...
0
θ





such that θ is a scalar.
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4. Define P �� = QP � (i.e., apply Q to each point in P �). Note that P �� ⊂ Sd,
and the center point of P �� is z�.

5. Let D be the matrix [(1−θ)/(1+θ)]1/2I, where I is the d×d identity matrix.
Let P ��� = Π(DΠ−1(P ��)). Below we show that the origin is a center point of
P ���.

6. Choose a random great circle S0 on Sd.
7. Transform S0 back to a sphere S ⊂ Rd by reversing all the transformations

above, i.e., S = Π−1(Q−1Π(D−1Π−1(S0))).
8. From S compute a set of vertices of G that split the graph as in Theorem 2.4.

In particular, define C to be vertices embedded “near” S, define A to be
vertices of G − C embedded outside S, and define B to be vertices of G − C
embedded inside S. (This step is described in section 7.)

We can immediately make the following observation: because the origin is a center
point of P ���, and the points are split by choosing a plane through the origin, then we
know that |A| ≤ (d + 1)n/(d + 2) and |B| ≤ (d + 1)n/(d + 2) regardless of the details
of how C is chosen. (Notice that the constant factor is (d + 1)/(d + 2) rather than
d/(d + 1) because the point set P � lies in Rd+1 rather than Rd.) Thus, one of the
claims made in Theorem 2.4 will follow as soon as we have shown that the origin is
indeed a center point of P ��� at the end of this section.

We now provide additional details about the steps of the algorithm and also its
complexity analysis. We have already defined stereographic projection used in step
1. Step 1 requires O(nd) operations.

Computing a true center point in step 2 appears to a very expensive operation
(involving a linear programming problem with nd constraints), but by using random
(geometric) sampling, an approximate center point can be found in random constant
time (independent of n but exponential in d) [44, 19]. An approximate center point
satisfies (1) except with (d + 1 + �)n/(d + 2) on the right-hand side, where � > 0 may
be arbitrarily small. Alternatively, a deterministic linear-time sampling algorithm
can be used in place of random sampling [28, 42], but one must again compute a
center of the sample using linear programming in time exponential in d. See [7] and
[30] for more discussion on center points and efficient algorithms for approximately
computing them; see [16] for practical behavior of these randomized algorithms.

In step 3, the necessary orthogonal matrix may be represented as a single House-
holder reflection; see [17] for an explanation of how to pick an orthogonal matrix to
zero out of all but one entry in a vector. The number of floating point operations
involved is O(d) independent of n.

In step 4 we do not actually need to compute P ��; the set P �� is defined only for
the purpose of analysis. Thus, step 4 does not involve computation. Note that z�

is the center point of P �� after this transformation because when a set of points is
transformed by any orthogonal transformation, a center point moves according to the
same transformation (more generally, center points are similarly moved under any
affine transformation). This is proved below.

In step 6 we choose a random great circle, which requires time O(d). This is
equivalent to choosing a plane through the origin with a randomly selected orientation.
(This step of the algorithm can be made deterministic; see [10].) Step 7 is also seen
to require time O(d).

Finally, there are two possible alternatives for carrying out step 8, which are both
described in section 7 in more detail. One alternative is that we are provided with the
neighborhood system of the points (i.e., a list of n balls in Rd) as part of the input.
In this case step 8 requires O(nd) operations, and the test to determine which points
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belong in A, B, or C is a simple geometric test involving S. Another possibility is
that we are provided with the nodes of the graph and a list of edges. In this case we
determine which nodes belong in A, B, or C based on scanning the adjacency list of
each node, which requires time linear in the size of the graph.

We conclude this section by proving lemmas about stereographic projection and
center points. These lemmas establish the claims made within the statement of the
algorithm; in particular, they establish that the origin in step 5 is indeed a centerpoint
of P ���.

LEMMA 4.1. The mapping Π is conformal.
Proof. Recall that a differentiable mapping F : Rd → Rd�

is said to be conformal
if F �(x)T F �(x) = β(x)2I for all x, where β(x)2 is a positive scalar and I is the d × d
identity matrix, i.e., the columns of F � form an orthonormal basis multiplied by a
scalar. The proof of this lemma is a straightforward computation; observe that

Π�(x) = (2/χ2)
� −2xxT + χI

2xT

�
,

and therefore

Π�(x)T Π�(x) = (4/χ4)(4xxT xxT − 4χxxT + χ2I + 4xxT )
= (4/χ4)(4xxT (xT x − χ + 1) + χ2I)
= (4/χ4)(χ2I).

To obtain the last line we used the equation xT x−χ+1 = 0 by definition of χ.
The following lemma concerns planes in Rd+1; a plane is defined to be the set of

points x satisfying one linear equation aT x = b, where a is a nonzero vector.
LEMMA 4.2. Let V = {y ∈ Rd+1 : aT y = b} be a plane in Rd+1 that intersects

Sd. The function Π−1 maps Sd ∩ V to a sphere in Rd.
Proof. (Degenerate cases of “spheres” in Rd include points and planes.) Let u

be a point in Sd ∩ V . Partition u as (ū, ud+1), where ū ∈ Rd. Partition a in the
same way. Then āT ū = b − ad+1ud+1. Assume that u = Π(x) for some x ∈ Rd;
then we have 2āT x/χ = b − ad+1(1 − 2/χ), i.e., 2āT x = (b − ad+1)χ + 2ad+1, where
χ = xT x+1. If b−ad+1 = 0, then this set defines a plane in Rd. Else assume b−ad+1
is nonzero. Then the above equation may be written as

xT x − 2āT x

b − ad+1
+ 1 +

2ad+1

b − ad+1
= 0.

This is the equation of a sphere in Rd.
LEMMA 4.3. Let ρ be the scalar in step 5, i.e., ρ = [(1 − θ)/(1 + θ)]1/2, and let

D = ρI. (Note that ρ is well defined because −1 < θ < 1. The center point of at
least d + 3 distinct points on the sphere must be interior to the sphere itself.) Planes
passing through z� are mapped by the transformation Π ◦ D ◦ Π−1 to planes passing
through the origin, and similarly for half-spaces.

Remark. This lemma shows that the origin is the center point of P ��. Furthermore,
this lemma also shows that if an approximate center point is used in step 2 instead of
an exact center point, then the transformation of step 5 also preserves approximate
centering.

Proof. Let V be a plane passing through z�; such a plane has the form V = {u :
āT ū = ad+1(θ − ud+1)}, following the notation of the preceding lemma. (We will
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prove the lemma just for the case of planes; to prove the case of half-spaces, we would
instead start with V defined to be {u : āT ū > ad+1(θ − ud+1)} and then carry out
the same analysis.)

If we apply Π−1 to such a plane, as in the last lemma, the image is

V � = {x : 2āT x = ad+1(1 + θ − xT x(1 − θ))}.

Now, we apply D; the image DV � is

V �� = {x : 2āT x/ρ = ad+1(1 + θ − xT x(1 − θ)/ρ2)}.

Finally, we apply Π; if the image point in Sd is (z̄, zd+1), then we know from the
stereographic formulas that the preimage point in Rd is x = z̄/(1 − zd+1) and that
xT x = 2/(1−zd+1)−1. Thus, the points z in the image V ��� = Π◦D◦Π−1(V ) satisfy
the equation

2āT z̄

ρ(1 − zd+1)
= ad+1

�
1 + θ − (2/(1 − zd+1) − 1)(1 − θ)

ρ2

�
.

Multiplying through by 1 − zd+1 yields

2āT z̄

ρ
= ad+1

�
(1 + θ)(1 − zd+1) − (2 − (1 − zd+1))(1 − θ)

ρ2

�
.

This equation is linear in z, showing that V ��� is a plane in Rd+1. To verify that it is
a plane passing through the origin, we substitute z̄ = 0 and zd+1 = 0 to see if we get
an equation:

0 = ad+1

�
(1 + θ) − (1 − θ)

ρ2

�
.

It is now seen that the choice ρ = [(1− θ)/(1+ θ)]1/2 used in step 5 does indeed make
this equation hold.

There are a few things to note about this separator algorithm.
1. For all steps except the last, the only information used about the nodes is

their geometric embedding. We do not need to know their balls Bi’s defining
the 1-ply neighborhood, we do not need to know α, and we do not need to
know explicit edges in the graph. This means that our algorithm can be
applied to graphs that are suspected to be α-overlap graphs without actually
computing α. In some circumstances (such as k-nearest neighbor graphs) we
can construct the k-ply neighborhood system in linear time starting from the
coordinates of the points [31].

2. For all steps except the last, a random sample of P can be used in place of
P . The size of the random sample depends on d; for example, for d = 3 we
have used sample sizes of about 1200. This means that the running time of
most of the algorithm is independent of n; see [30] and [16].

5. Construction of a cost function. In this section we begin the proof of the
main result in Theorem 2.4, which is that |C| is bounded by O(αn(d−1)/d + const)
with high probability. Before starting into the details of the proof, let us provide a
proof sketch.
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• In this section we construct a cost function g(x) that maps Rd to the nonneg-
ative real numbers. This construction is based on the neighborhood system.
The value of g(x) is large if many nodes of the neighborhood system P are
“near” x. The support of g is finite.

• Most of this section is devoted to establishing the result that the integral of
gd over all of Rd is bounded by O(αd/(d−1)n). We call this integral the “total
cost” of g.

• In section 6 we define the cost of a random sphere S in step 6 of the algorithm
by the integral of gd−1 over the image of S back in Rd. We show that the
expected value of the cost is O(αn(d−1)/d). To prove this requires the Hölder
inequality, and one of the factors in the Hölder estimate is the total cost that
will have been analyzed in section 5.

• Finally, in section 7 we explain which nodes should be placed in C based on
the neighborhood system. We then show that every node placed in C (with
the exception of a few nodes whose number is bounded above independently
of n) can be “charged” against the integral defining the cost of S. There is a
constant lower bound on the amount that each node in C charges against the
cost of S. Therefore, the total number of nodes in C (besides the exceptional
set) is bounded above by the cost of S. But we will have already shown in
section 6 that the cost of S is expected to be O(αn(d−1)/d), so this yields the
upper bound on the expected value of |C|.

The intuitive reason that we can “charge” the cost of a node in C against the
integral of gd−1 over S is that gd−1 gets larger wherever S passes near a dense cluster
of nodes. But such a cluster is precisely the place where more nodes will have to be
put in C to separate the graph.

As mentioned above, for the proof of Theorem 2.4 we construct a nonnegative
real-valued cost function g on Rd based on the neighborhood system. As above, let
the nodes be p1, . . . ,pn and let the α-overlap graph be defined by 1-ply neighborhood
system B1, . . . , Bn. Let the radii of B1, . . . , Bn be r1, . . . , rn, and define γi = 2αri for
i = 1, . . . , n.

For each pi we define fi as follows:

fi(x) =
�

1/γi if x ∈ (2α) · Bi, i.e., �x − pi� ≤ γi,

0 otherwise.

Notice that
�

Rd

fd
i dV = vd.

(Recall from section 3 that vd denotes the volume of the d-dimensional unit sphere.)
Here, and for the rest of the paper, integrations over volumes in Rd or d-dimensional
surfaces in Rd+1 are denoted by dV , and integrations over (d−1)-dimensional surfaces
are denoted by dS. Next, define f and g, nonnegative functions on Rd, as follows:

f(x) =

�
n�

i=1

fi(x)d

�1/d

and

g(x) =

�
n�

i=1

fi(x)d−1

�1/(d−1)

.
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We notice immediately that
�

Rd

fd dV = vdn(2)

because this integral is equal to the sum of the integrals of the fd
i .

The rest of this section is devoted to establishing an O(n) upper bound on the
integral of gd. For this we need a series of lemmas. We use these lemmas to establish
that fd and gd are always within a constant factor of each other at every point. Once
this fact is established, we can then easily estimate the integral of gd since (2) is an
exact formula for the integral of fd.

Because the distinction between f and g has to do with a slight shift in the
exponents, we need lemmas that establish some basic properties concerning powers
of sums and sums of powers.

This first lemma is an auxiliary lemma used to prove Lemma 5.2.
LEMMA 5.1. Let a1, . . . , an be nonnegative numbers, and suppose p ≥ 1. Then

�
n�

i=1

ai

�p

≤ p
n�

i=1



ai




n�

j=i

aj




p−1



 .

Proof. Define the function

φ(x1, . . . , xn) =

�
n�

i=1

xi

�p

.

We notice that

∂φ

∂xj
= p

�
n�

i=1

xi

�p−1

for any j. Let a(i) be the vector in Rn given by

a(i) = (0, . . . , 0, ai, ai+1, . . . , an).

Then

φ(a1, . . . , an) = φ(a(1)) − φ(a(n+1))

=
n�

i=1

�
φ(a(i)) − φ(a(i+1))

�

=
n�

i=1

� ai

0

∂φ

∂xi
(0, . . . , 0, t, ai+1, . . . , an) dt

= p
n�

i=1

� ai

0



t +
n�

j=i+1

aj




p−1

dt

≤ p
n�

i=1

ai ·



ai +
n�

j=i+1

aj




p−1

= p
n�

i=1

ai ·




n�

j=i

aj




p−1

.
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The next lemma relates two different sums of powers involving a sequence of
numbers . . . , m−1, m0, m1, m2, . . .. Below we will express fd and gd in terms of sums
of this kind.

LEMMA 5.2. Let . . . , m−1, m0, m1, m2, . . . be a doubly infinite sequence of non-
negative numbers such that each mi is bounded above by θ and such that at most a
finite number of mi’s are nonzero. Let d ≥ 2 be an integer. Then

� ∞�

k=−∞
mk2−k(d−1)

�d/(d−1)

≤ cdθ
1/(d−1)

∞�

k=−∞
mk2−kd,

where cd is a positive number depending on d.
Proof. Since at most a finite number of the mk are nonzero, then we can apply

the preceding lemma because the above sums are actually finite. Applying the lemma,
we see that
� ∞�

k=−∞
mk2−k(d−1)

�d/(d−1)

≤ d

d − 1

∞�

k=−∞
mk2−k(d−1) ·




∞�

j=k

mj2−j(d−1)




1/(d−1)

≤ d

d − 1

∞�

k=−∞
mk2−k(d−1) ·




∞�

j=k

θ · 2−j(d−1)




1/(d−1)

=
d

d − 1

∞�

k=−∞
mk2−k(d−1) ·

�
θ · 2−k(d−1)

1 − 2−(d−1)

�1/(d−1)

= cdθ
1/(d−1)

∞�

k=−∞
mk2−k(d−1) · 2−k

= cdθ
1/(d−1)

∞�

k=−∞
mk2−kd.

The next lemma is used to establish one direction on the relation between fd and
gd.

LEMMA 5.3. Let a1, . . . , an be nonnegative numbers, and d ≥ 2. Then
�

n�

i=1

ad
i

�1/d

≤
�

n�

i=1

ad−1
i

�1/(d−1)

.

Proof. See [12].
We now come to the main result for this section, which uses the preceding lemmas.
THEOREM 5.4. For all x ∈ Rd, the following inequalities hold:

f(x)d ≤ g(x)d ≤ c�
dα

d/(d−1)f(x)d,

where c�
d is a constant depending on d.

Proof. The first inequality follows immediately from the definitions of f and g
and Lemma 5.3.

For the second inequality we focus on a particular point x ∈ Rd. If f(x) = 0,
then g(x) = 0 as well, so the inequality follows. Otherwise, define for all integers k

Mk = {i ∈ {1, . . . , n} : 2−k ≤ fi(x) < 2−k+1}.
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Notice that the Mk’s are pairwise disjoint, and their union is the set of indices i such
that fi(x) �= 0.

Let mk denote the cardinality of Mk. We claim that mk ≤ c��
dαd, where c��

d is a
constant.

To prove this, observe that if i ∈ Mk, then 2−k ≤ 1/γi ≤ 2−k+1, i.e., 2k−1 ≤
γi ≤ 2k. This means that ri ≥ 2k−1/(2α), where ri is the radius of Bi. Also, since
fi(x) > 0, �x − pi� ≤ γi, which implies �x − pi� ≤ 2k. Let B be the ball of radius
(1 + 1/(2α))2k centered at x. Since the ball of radius 2k contains all the pi’s such
that i ∈ Mk, we see that B contains all the Bi’s for i ∈ Mk.

On the other hand, these balls have disjoint interiors because they define a 1-ply
system. Accordingly, there are mk balls of radius at least 2k−2/α lying in a sphere of
radius (1 + 1/(2α))2k, so a straightforward volume-counting argument shows

mk ≤ ((1 + 1/(2α))2k)d

(2k−2/α)d

≤ (2 · 2k)d

(2k−2/α)d

= c��
dαd.

Now, we observe that

g(x)d =

� ∞�

k=−∞

�

i∈Mk

fi(x)d−1

�d/(d−1)

≤
� ∞�

k=−∞
mk(2−k+1)d−1

�d/(d−1)

= 2d

� ∞�

k=−∞
mk(2−k)d−1

�d/(d−1)

with mk bounded by c��
dαd. Now, we can apply Lemma 5.2 with the choice θ = c��

dαd

to deduce that

g(x)d ≤ cd2d(c��
dαd)1/(d−1)

∞�

k=−∞
mk2−kd.

This summation is a lower bound on f(x)d because for each i ∈ Mk, fi(x)d ≥ 2−kd.
This concludes the proof of the theorem.

Therefore, gd is no more than a constant multiple of fd, where the constant is
c�
dα

d/(d−1). By (2) we have a bound of the form
�

Rd

gd dV ≤ cdα
d/(d−1)n,(3)

where cd is a different constant depending on d.

6. Analysis of a random great circle. Let S be a sphere in Rd. We define

cost(S) =
�

S
gd−1 dS.
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The rationale for this definition will be provided in section 7, where we prove that
cost(S) is proportional to the cost of separating the graph with sphere S, i.e., propor-
tional to the number of graph vertices that must be removed to break all connections
in G from the interior of S to the exterior of S in step 8 of our algorithm. In this
section we obtain an upper bound on the expected value of cost(S) if S is chosen (at
random) by step 6 in our algorithm.

Recall that our separator algorithm computes a conformal mapping F : Rd → Sd

given by

F = Π ◦ D ◦ Π−1 ◦ Q ◦ Π.

Recall that the columns of F �(x) for any x form an orthonormal basis multiplied by
a nonzero scalar which we will denote β(x). By continuity, β(x) has the same sign
for all x ∈ Rd, so without loss of generality, let us say that β(x) > 0. Then it can be
checked that for any real-valued integrable function r defined on Rd

�

Rd

r(x) dV =
�

Sd

r(F−1(u)) · β(F−1(u))−d dV

because β(x)d is the determinant of F �(x) when interpreted as a basis for the tangent
space of Sd at F (x). Thus, in particular,

�

Rd

g(x)d dV =
�

Sd

g(F−1(u))dβ(F−1(u))−d dV,(4)

where g is the cost function from the last section. Let h : Sd → R be defined as

h(u) = g(F−1(u))/β(F−1(u)).

Then we can conclude from (3) and (4) that
�

Sd

h(u)d dV ≤ c�
dα

d/(d−1)n.

Next, let us consider a randomly chosen great circle S0 in Sd. The procedure for
defining such a great circle is as follows. First, pick a unit-length vector a uniformly
at random. Let the plane through the origin whose normal vector is a be denoted
as a⊥, i.e., a⊥ = {u : aT u = 0}. Finally, the great circle S0 is a⊥ ∩ Sd. Thus, the
set of all great circles of Sd is itself parameterized by Sd because a ∈ Sd is chosen
uniformly at random.

Next, let us note that if F (S) = S0 as in step 7 of our algorithm, then
�

S
g(u)d−1 dS =

�

S0

g(F−1(u))d−1β(F−1(u))−(d−1) dS

because F restricted to S is still a conformal mapping of one lower dimension. This
shows that

cost(S) =
�

u∈S0

h(u)d−1 dS.

Accordingly, we now analyze the expected value of the integral on the right-hand
side of the preceding equation. This expected value is equal to

E[cost(S)] =
1
sd

�

a∈Sd

�

u∈a⊥∩Sd

h(u)d−1 dS dV.
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We now interchange the order of integration; note that u ∈ a⊥ iff a ∈ u⊥. (To
fully justify the interchange of integrals also requires an argument from differential
geometry, which is in [32], concerning the volume elements in the two integrations.)
We obtain

E[cost(S)] =
1
sd

�

u∈Sd

�

a∈u⊥∩Sd

h(u)d−1 dS dV

=
sd−1

sd

�

u∈Sd

h(u)d−1 dV.(5)

The second line was obtained by noting that the integrand in the first line is indepen-
dent of a and hence integration over a reduces to a constant factor.

Now, we apply the Hölder inequality [12]. The Hölder inequality says that for
nonnegative functions φ and ψ suitably integrable on a measurable set V and for
positive real numbers p, q such that 1/p + 1/q = 1, the following relation holds:

�

V
φψ ≤

��

V
φp

�1/p

·
��

V
ψq

�1/q

.

We apply this inequality to our problem with V = Sd, p = d/(d−1), q = d, φ = hd−1,
and ψ = 1 (constant function) to obtain

�

Sd

hd−1 dV ≤
��

Sd

hd

�(d−1)/d

·
��

Sd

1d

�1/d

=
��

Sd

hd

�(d−1)/d

· s1/d
d

≤ [c�
dα

d/(d−1)n](d−1)/d · s1/d
d

= c�(d−1)/d
d αn(d−1)/d · s1/d

d .(6)

Combining (5) with (6) yields the following result.
THEOREM 6.1. Let S correspond to a randomly chosen great circle in the separator

algorithm. Then

E[cost(S)] ≤ c��
dαn(d−1)/d.

Note that this is a bound on the expected value of cost(S). Since cost(S) is a
nonnegative random variable, we know that with probability 0.5 a random trial will
yield a choice of S1 satisfying cost(S1) ≤ 2E[cost(S)]. Therefore, if we conduct, for
instance, 10 random trials, and keep the best choice for S, then with probability
exceeding 0.999 the cost will be bounded by 2E[cost(S)].

7. Constructing a vertex separator from S. In this section we explain how
to construct a vertex separator of the overlap graph G given the sphere S. In other
words, we will partition the nodes of G into A, B, C to prove Theorem 2.4. For this
section, we assume S is a true sphere, and the degenerate case that S is a plane is not
analyzed. This degenerate case can be easily handled with a variant of the arguments
in this section.

Recall that by the center point property (1) and Lemma 4.2 the number of vertices
of G strictly inside S is bounded by (d + 1)n/(d + 2), as is the number of vertices
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strictly outside. (The weaker bound (d + 1 + �)n/(d + 2) holds if an approximate
center point was computed in step 2 above.) For our construction, A will be a subset
of the vertices lying outside S, B will be a subset of the vertices lying inside S, and
C will be vertices lying “close” to S. Because of this choice, we immediately establish
the bounds on |A|, |B| stated in Theorem 2.4.

In this section we show how to construct C so that the number of vertices in
C, other than a constant-sized exceptional set, is proportional to cost(S). Since we
already have established an upper bound on cost(S), the argument in this section
suffices to establish an upper bound on |C|.

Let us assume that we are given the neighborhood system B1, . . . , Bn and the
value of α. Another possibility is that we are given edges of the graph G instead; we
comment on this other possibility later on.

Recall that the radii of B1, . . . , Bn are denoted r1, . . . , rn. Let r denote the radius
of S.

We define C = C1 ∪ C2, where

C1 = {i : (α · Bi) ∩ S �= ∅ and pi ∈ int(S)}

and

C2 = {i : Bi ∩ S �= ∅ and pi ∈ S ∪ ext(S)}.

LEMMA 7.1. Let A be the set of nodes of G−C outside S, and let B be the nodes
of G − C inside. Then G has no edge between A and B. (Note that nodes exactly on
S are in C2 and hence in C.)

Proof. Let i, j be two nodes of G−C such that pi is inside S and pj is outside S.
Then (α ·Bi)∩S = ∅ (because i /∈ C1); hence α ·Bi is entirely interior to S. Similarly,
Bj is entirely exterior to S. By definition of the overlap graph, there is no (i, j) edge
in G.

We now come to the main theorem of this section, which also establishes Theo-
rem 2.4.

THEOREM 7.2. With this choice of C, |C| ≤ (4α)d + cost(S)/c���
d .

Proof. Partition C1 = C �
1 ∪ C ��

1 and C2 = C �
2 ∪ C ��

2 , where for p = 1, 2 we define

C �
p = {i ∈ Cp : 2αri > r}

and

C ��
p = {i ∈ Cp : 2αri ≤ r}.

We bound |C �
1 ∪ C �

2| and |C ��
1 ∪ C ��

2 | separately.
First, we analyze C �

1 ∪ C �
2, which we write as C �. Note that for every i ∈ C �,

ri > r/(2α). We replace each ball Bi for i ∈ C � with a smaller ball B�
i of radius

exactly r/(2α) such that B�
i ⊂ Bi. For i ∈ C �

1 we simply define B�
i = r/(2αri) · Bi to

obtain this result. For i ∈ C �
2 we shrink the radius of Bi by factor r/(2αri), and also

we displace the center so as to maintain the property that B�
i ∩ S �= ∅.

Let n1 = |C �|. Observe that we have constructed n1 balls of radius exactly r/(2α),
all of whose centers are within distance r + r/(2α) of the center of S. This means
that all of these balls are contained in a ball of radius 2r centered at the center of S.
Note also that these balls B�

i for i ∈ C � are pairwise disjoint because the original Bi’s
have disjoint interiors. Therefore, a volume argument shows that

n1 ≤ (2r)d

(r/(2α))d
= (4α)d.
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Next, we examine C ��
1 ∪C ��

2 , which we write as C ��. Fix a particular i ∈ C ��. Notice
that Bi has radius at most r/(2α). Let B�

i = (2α) ·Bi, so that B�
i has radius γi (recall

that γi was defined in section 5). Observe that, by definition of C1 and C2 above, we
are guaranteed that (0.5 · B�

i) ∩ S (which is the same as (α · Bi) ∩ S) is nonempty.
Furthermore, by construction of C �� we know that γi ≤ r. Therefore, we can apply
Lemma 3.1 to conclude that the area of B�

i ∩S is at least (
√

7γi/4)d−1vd−1. Note that
the value of fi on B�

i is precisely 1/γi. Therefore,
�

S
fd−1

i =
�

B�
i∩S

fd−1
i

=
1

γd−1
i

· area(B�
i ∩ S)

≥ 1
γd−1

i

·
�√

7γi

4

�d−1

vd−1

= c���
d .

Here, c���
d is a positive constant depending only on d.

Therefore,

cost(S) =
�

S
gd−1 dS

=
�

S

n�

i=1

fd−1
i dS

=
n�

i=1

�

S
fd−1

i dS

≥
�

i∈C��

�

S
fd−1

i dS

≥ |C ��| · c���
d .

Combining the upper bounds on |C �| and |C ��| proves the theorem.
We have shown how to carry out step 8 of the main algorithm, namely, deducing

a vertex separator C from the sphere S. We have also established the bound on C.
The construction so far seems to require explicit knowledge of B1, . . . , Bn and of α.
If we are not given these items as part of the input, but instead we have edges of G
represented explicitly, then clearly we can disconnect G into two pieces by removing
all edges connecting the interior of S to the exterior. In this paper we are focusing
on vertex separators, so we must find a set of vertices that disconnects G. If we let
E1 be the set of edges passing through S, then we can find a vertex separator C by
arbitrarily taking one endpoint of every edge in E1. For the special case of overlap
graphs arising from finite-element methods, which have bounded degree, it can be
shown that this simple heuristic does indeed produce a vertex set C with the bound
stated in Theorem 2.4. Alternatively, we can find in polynomial time the minimum
set of vertices C of G that “cover” E1, where “cover” means that at least one endpoint
of every edge in E1 is in C; see [9] or [38] for this algorithm.

It can be shown that αn(d−1)/d is the best possible bound on a separator set for an
n-vertex α-overlap graph. Define graph G, whose nodes are an m×m×· · ·×m array
of nodes arranged in a d-dimensional unit-spaced lattice (so that n = md) and whose



384 G. L. MILLER, S.-H. TENG, W. THURSTON, AND S. A. VAVASIS

edges connect all neighbors within distance α. This is clearly seen to be an overlap
graph, and Vavasis [45] shows that any partitioning of this graph into constant-sized
pieces must involve a separator set of at least const · αn(d−1)/d nodes.

8. Practical issues. Let us call the algorithm defined in section 4 Weak-Split;
it produces a partition in which the ratio of the size of the larger of G1, G2 to the
smaller is at most d+1+o(1). In practice, one often wants a split in which G1 and G2
have no more than half the nodes, i.e., a ratio of 1 + o(1). (Experimental results [16]
suggest that for practical examples, our algorithm produces approximately a 45%–
55% split after 10 trials for the d = 3 case, much better than the worst case 20%–80%
split claimed in Theorem 2.4.) There is a standard technique originally due to [26]
that derives an algorithm Strong-Split using Weak-Split as a subroutine. Strong-Split
yields an even split at the expense of a greater running time (by a constant factor)
and a larger constant factor in the bound on the size of the separator.

Another practical issue is a splitting into more than one subdomain. If the number
of domains desired p is a power of 2, this is accomplished by applying Strong-Split
recursively to get domains of the desired size. The total separator size in this case
is O(p1/dαn(d−1)/d). This approach can be generalized for a number of subdomains p
not a power of 2.

9. Conclusions and open questions. An important question is, given a graph
without an embedding, can its nodes be embedded in Rd to make it a subgraph of an
overlap graph?

Also, fast deterministic algorithms for computing approximate center points would
be very useful. Deterministic linear-time approximate algorithms are known but are
not efficient enough for practical use.

It is also interesting to determine how our algorithm performs in practice com-
pared with other current algorithms, such as the spectral method. This is the subject
of recent work by Gilbert, Miller, and Teng [16], who also propose some additional
heuristics not described here. The results of [16] can be summarized as follows. Typ-
ically, 30 random choices for the sphere separator sufficed. The spectral method used
by [16] came from [20], where heuristic local improvement is used as well as spectral
partitioning. Our geometric separation algorithm usually ran faster than spectral par-
titioning (but in both cases there are many possible heuristics that could speed up ei-
ther one). The quality of the separators (in terms of the balance and the size of the cut)
from the geometric method were about the same as from the spectral method for most
test cases. In some cases spectral did better; in others, geometric did better. Though
the spectral method compares favorably with other heuristics, Guattery and Miller
[18] recently found a class of graphs on which the spectral method performs poorly.
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