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Abstract
We present two graph quantities Ψ(G,S) and Ψ2(G) which give constant factor estimates to the
Dirichlet and Neumann eigenvalues, λ(G,S) and λ2(G), respectively. Our techniques make use of a
discrete Hardy-type inequality due to Muckenhoupt.
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1 Introduction

Possibly one of the most important constants of a graph is λ2, the fundamental eigenvalue of
its graph Laplacian. In computer science, this quantity is used to analyze the mixing time
of random walks [14], Markov chains [16], the convergence of Laplacian solvers [11, 18, 20],
the performance of spectral clustering [22] and more. The quantity λ2 is also important in
other domains: in quantum mechanics it is related to the uncertainty principles [13], and in
numerical analysis arises in the analysis of partial differential equations [2]. As such, it is
often necessary to give analytic estimates of this quantity.

In this paper we reexamine an inequality originating with the work of Hardy [9] and
show its connection to the eigenvalues of the graph Laplacian. Using this tool, we provide an
alternative to Cheeger’s inequality and give a 4-approximation of λ2 in a general setting.

Let G = (V,E) be a connected graph and let µ ∈ RV>0 and κ ∈ RE>0 be functions on
the vertices and edges respectively. We will think of our graphs as spring mass systems
where vertex v has mass µv and edge e has spring constant κe. The Laplacian matrix is
defined as L = D−A where D is the weighted diagonal degree matrix and A is the weighted
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8:2 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

adjacency matrix. Let M be the diagonal mass matrix. Then, the generalized eigenvalues
of L with respect to M have a nice interpretation. Specifically, solutions of the generalized
eigenvalue problem

Lx = λMx

correspond to modes of vibration of the associated spring mass system. When the spring
mass system is connected, λ2 is the fundamental mode of vibration1. In this paper we will
refer to λ2 as the Neumann eigenvalue to emphasize the implicit boundary assumptions. For
an introduction to spring mass systems and the Laplacian, see chapter 5 of [21].

Another interpretation of the weighted graph comes from electrical systems. In this
interpretation, we will treat κe as the conductance of edge e and 1

κe
as its resistances. In

this paper we will go back and forth between these two interpretations and will refer to κe
as either a conductance or a spring constant.

The following result, known as Cheeger’s inequality, can be traced back to [1, 4, 5]. Define
the isoperimetric constant2 of G to be

Φ(G) = min
A

{ ∑
e∈E(A,Ā) κe

min(µ(A), µ(Ā))

∣∣∣∣∣A, Ā 6= ∅

}
.

Here, and in the rest of the paper, Ā denotes the complement of A
Then in the case of the normalized Laplacian (i.e, when µv = dv, the degree of v), we

can bound λ2 by

λ2

2 ≤ Φ ≤
√

2λ2, or equivalently, Φ2

2 ≤ λ2 ≤ 2Φ.

It is well known that both sides of the bound are tight up to constants (see [6] for simple
examples). Thus we see that Φ fails to give good control over λ2 when both quantities
are small.

In this paper, we introduce the Neumann content, Ψ2(G), of a graph G (see Section 6 for
a formal definition).

Ψ2(G) ≈ min
A,B

{
κ(A,B)

min(µ(A), µ(B))

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}

where κ(A,B) is the effective resistance between the sets A and B. When B = A, it can
be shown that κ(A,A) =

∑
e∈E(A,A) κe, thus the Neumann content can be thought of as a

relaxation of the isoperimetric constant. We will show that Ψ2(G) gives a constant factor
estimate of λ2 even in a much more general setting.

Along the way, we will consider another eigenvalue problem, which we refer to as the
Dirichlet problem (see Section 2). This is a variant of the Laplacian eigenvalue problem
where we hold a particular boundary set of vertices, S, to zero. In this setting, we will define
the Dirichlet content, Ψ(G,S), which allows us to estimate the Dirichlet eigenvalue.

Specifically, we will prove the following theorems.

1 The quantity λ2 is referred to in the literature under various names: the algebraic connectivity, the
Fiedler value, the fundamental eigenvalue, etc.

2 The quantity Φ is often referred to as the conductance of the graph or the Cheeger constant. In
this paper we will refer to Φ as the isoperimetric constant and reserve the term conductance for the
conductance of an edge.
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I Theorem 1. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S) be
the Dirichlet eigenvalue and let Ψ(G,S) be the Dirichlet content of (G,S). Then

Ψ
4 ≤ λ ≤ Ψ.

I Theorem 2. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let Ψ2(G) be the Neumann content of G. Then,

Ψ2

4 ≤ λ2 ≤ Ψ2.

It can be shown that the constants in both of these theorems are optimal. In particular,
there exist nondegenerate weighted graphs (with and without boundary) for which λ(G,S) =
Ψ(G,S) and λ2(G) = Ψ2(G). This shows that the constant 1 in the upper bound is optimal.
There also exist sequences of nondegenerate weighted graphs (with and without boundary)
for which λ(G,S)

Ψ(G,S) →
1
4 and λ2(G)

Ψ2(G) →
1
4 . This shows that the constant 1

4 in the lower bound is
optimal. See Appendex A for these constructions.
I Remark 3. The proof strategy we apply is general and the theorems can be extended to
the p-Laplacian3 for 1 < p <∞. The proofs for the case of a general p are almost identical
to the proofs for the case of p = 2, which we present in this paper, and thus will be omitted.
More specifically, with the appropriate definitions for the Dirichlet and Neumann p-contents,
both theorem statements above will hold after replacing the 4 in the denominator of the
lower bound with pqp/q, where q is the Hölder dual of p. The constants in this setting are
also optimal.

1.1 Related work
A very recent independent paper [19] introduced a quantity ρ(G) specifically in the case of
the normalized Laplacian, i.e., when µv = dv. In this setting, the Neumann content Ψ2(G)
is equivalent to the definition of ρ(G) up to constant factors: Ψ2

2 ≤ ρ ≤ Ψ2. In [19], it is
proved that

ρ

25600 ≤ λ2 ≤ 2ρ.

This is a special subcase of our Theorem 35 with weaker constants.
The application of the Hardy-Muckenhoupt inequality to estimating the Dirichlet eigen-

value was noted in [15]. In that paper, the authors showed how to bound the Dirichlet
eigenvalue on an infinite path graph by the (infinite path analogue of) Ψ. Specifically,

Ψ
4 ≤ λ ≤ 2Ψ.

This is a special subcase of our Theorem 28 with weaker constants.
In contrast with the above related work, we can show that our constants are optimal (see

Appendix A).
Other methods for estimating λ2 have been proposed. A method for lower bounding

λ2 based on path embeddings is presented in [7, 8, 10]. In this method, a graph with
known eigenstructure is embedded into a host graph. Then the fundamental eigenvalue
of the host graph can be estimated in terms of the eigenstructure of the embedded graph
and the “distortion” of the embedding. For a review of path embedding methods, see the
introduction in [8].

3 We refer the curious reader to [3] for basic background on this topic.
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8:4 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

1.2 Roadmap
In section 2, we set notation and discuss background related to weighted graphs, Laplacians,
the eigenvalue problems, interpreting graphs as electrical networks, and minimum energy
extensions. In section 3, we introduce Muckenhoupt’s weighted Hardy inequality. In section
4, we introduce the Hardy quantity and the Dirichlet content and show how Muckenhoupt’s
result can be used to bound the Dirichlet eigenvalue on a path graph. In section 5, we extend
the bounds on the Dirichlet eigenvalue from path graphs to arbitrary graphs. Finally in
section 6, we introduce the two-sided Hardy quantity and the Neumann content and extend
the bounds on the Dirichlet eigenvalue on a graph to the Neumann eigenvalue on a graph.

2 Preliminaries

2.1 Miscellaneous notation
For A ⊆ V , we denote by A the complement of A in V .

2.2 Vertex and edge weighted graphs
We collect some definitions and notation we will use related to weighted graphs.

I Definition 4. A weighted graph is G = (V,E, µ, κ) where (V,E) forms an undirected graph,
µ ∈ RV≥0 and κ ∈ RE>0. We call µv the mass of vertex v and κe the conductance4 of edge e.

I Definition 5. A weighted graph with boundary is a pair (G,S) where G is a weighted graph
and S ⊆ V is a proper nonempty subset of the vertices.

We will make the following assumptions on our graphs. This will ensure that the
appropriate eigenvalue quantities exist and are nonzero.

I Definition 6. A nondegenerate weighted graph is a weighted graph G = (V,E, µ, κ) where
(V,E) forms a connected graph, |V | ≥ 2, and µ ∈ RV>0.

I Definition 7. A nondegenerate weighted graph with boundary is a weighted graph with
boundary (G,S) where every connected component of G contains some s ∈ S,

∣∣S∣∣ ≥ 1, and
µv > 0 for all v ∈ S.

For notational simplicity, we extend µ to subsets of vertices, µ(A) =
∑
v∈A µv.

2.3 Laplacians
I Definition 8. Let G be a weighted graph. Define dv =

∑
(u,v)∈E κ(u,v) to be the degree of

vertex v. Let D be the diagonal degree matrix Dv,v = dv. Let A ∈ RV×V be the adjacency
matrix of G, i.e. Au,v = κ(u,v) if (u, v) ∈ E and 0 otherwise. Then the Laplacian matrix
corresponding to G is

L = D −A.

4 As we are dealing with spring mass systems, perhaps it would be better to refer to these quantities
as spring constants and compliances. Nonetheless, we have chosen to refer to these quantities as
conductances and resistances as this is the terminology most commonly found in the spectral graph
theory literature.
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Note that the quadratic form associated with L is

x>Lx =
∑

(u,v)∈E

κ(u,v)(xu − xv)2.

I Definition 9. Let G be a weighted graph. The mass matrix corresponding to G is the
diagonal matrix M(G) where Mv,v = µv.

2.4 The generalized Laplacian eigenvalue problem
I Definition 10. Let G be a nondegenerate weighted graph. Let λ1 ≤ λ2 ≤ · · · ≤ λ|V | be the
generalized eigenvalues of L with respect to M . We refer to λ2 as the Neumann eigenvalue
of G, denoted λ2(G) and we refer to an associated eigenvector as a Neumann eigenvector.

Nondegeneracy ensures that λ2(G) exists as |V | ≥ 2 and λ2(G) > 0 by connectivity.
We state a version of the Courant-Fischer min-max theorem. This will allow us to give

variational characterizations of eigenvalues.

I Theorem 11 (Courant-Fischer). Let A,B ∈ Rn×n be symmetric matrices and suppose
B � 0. Let λ1 ≤ · · · ≤ λn be the ordered generalized eigenvalues of A with respect to B. Let
k ∈ [n] and let S denote a subspace of Rn. Then,

λk = min
S

max
x

{
x>Ax

x>Bx

∣∣∣∣dim(S) = k, x ∈ S, x 6= 0
}
.

Furthermore, suppose v1, . . . , vk−1 are orthogonal eigenvectors corresponding to λ1, . . . , λk−1
then

λk = min
x

{
x>Ax

x>Bx

∣∣∣∣ x>Bvi = 0, ∀i ∈ [k − 1]
x 6= 0

}
and x is a generalized eigenvector with eigenvalue λk if and only if x is a minimizer of this
second expression.

Noting that 1, the all ones vector, is a generalized eigenvector of L with respect toM with
eigenvalue 0, we may apply the Courant-Fischer theorem to get a variational characterization
of the Neumann eigenvalue and its eigenvectors.

I Lemma 12. Let G be a nondegenerate weighted graph. Then

λ2(G) = min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x>M1 = 0, x 6= 0
}
.

Furthermore, x is a Neumann eigenvector of G if and only if x is a minimizer in this
optimization problem.

The expression x>Lx
x>Mx

plays a large role in our analysis. This quantity is known as the
Rayleigh quotient.

We will also consider the Laplacian eigenvalue problem on weighted graphs with boundaries.
This corresponds to fixing the value of x at the boundary to zero.

I Definition 13. Let (G,S) be a nondegenerate weighted graph with boundary. Let LS be
the submatrix of L associated with the complement of S and let MS be the corresponding
submatrix of M . Let λ1 ≤ λ2 ≤ · · · ≤ λ|S| be the generalized eigenvalues of

LSx = λMSx.

APPROX/RANDOM 2019



8:6 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

We refer to λ1 as the Dirichlet eigenvalue of (G,S), denoted λ(G,S). Let x ∈ RS be
an associated eigenvector and extend it to RV by zeros. We will refer to x ∈ RV as a
Dirichlet eigenvector.

Nondegeneracy ensures that λ(G,S) exists as
∣∣S∣∣ ≥ 1 and λ(G,S) > 0 by connectivity.

Again by Courant-Fischer, we can give a variational characterization of the Dirichlet
eigenvalue.

I Lemma 14. Let (G,S) be a nondegenerate weighted graph with boundary. Then,

λ(G,S) = min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}
.

Furthermore, x is a Dirichlet eigenvalue if and only if x is a minimizer in this optimization
problem.

Note that the masses of vertices s ∈ S play no role in either characterization. We will often
neglect to assign masses to vertices in the boundary when convenient.

2.5 Graphs as electrical networks
Given a weighted graph G, we can think of its edges as electrical conductors where edge e
has conductance κe. Thinking of x ∈ RV as an assignment of voltages to the vertices of our
electrical network, we have that

x>Lx =
∑

(u,v)∈E

κ(u,v)(xu − xv)2

is the power dissipated in our system. Drawing inspiration from physics, we define the
effective resistance between two sets of vertices in terms of the minimum power required to
maintain a unit voltage drop.

I Definition 15. Let G be a weighted graph and let A,B ⊆ V be disjoint nonempty sets such
that there exists a path between a and b for some a ∈ A and b ∈ B. The effective resistance
between A and B, denoted R(A,B), and the effective conductance between A and B, denoted
κ(A,B), are the quantities such that

1
R(A,B) = κ(A,B) = min

x∈RV

{
x>Lx

∣∣x�A = 0, x�B = 1
}
.

The quantity on the right is well-defined as x>Lx is continuous and without loss of generality,
we may optimize over x ∈ [0, 1]V , a compact set. Then, by the connectivity assumption,
κ(A,B) ∈ (0,∞). Thus, R(A,B) is also well-defined.

If A = {a} is a single element, we will opt to write R(a,B) instead of the more cumbersome
R({a} , B). Similarly we will write R(A, b) or R(a, b) where appropriate.

I Remark 16. When A = {a} and B = {b} are singleton sets, this definition agrees with the
standard definition R(a, b) = χa,bL

+χa,b. In general, we can define R(A,B) in a different
way. Consider contracting all vertices in A to a single vertex vA and all vertices to a single
vertex vB. Then R(A,B) is the effective resistance between vA and vB in the new graph.
This is the definition given in [19].
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2.6 Splitting edges and minimum energy extensions
Let G be a weighted graph. At times, we will split edges using vertices with zero mass. This
can be done without affecting the variational quantities5.

I Lemma 17. Let αi > 0 such that
∑k
i=1 αi = 1. Let κ > 0 and let κi = κ/αi. Let y0, yk ∈ R

be fixed. Then

min
y1,...,yk−1

k∑
i=1

κi(yi − yi−1)2 = κ(yk − y0)2.

Furthermore, the unique optimum is achieved by y∗i = y0 +
(∑i

j=1 αj

)
(yk − y0).

Proof. Note that
∑k
i=1 κi(yi − yi−1)2 is a strictly convex function as y0 and yk are fixed.

Thus if suffices to show that y∗ is a local optimum. Differentiating with respect to yj and
evaluating at y∗,

∂

∂yj

(
k∑
i=1

κi(yi − yi−1)2

)
y=y∗

= 2
(
κj(y∗j − y∗j−1)− κj+1(y∗j+1 − y∗j )

)
= 2

(
κ

αj
αj −

κ

αj+1
αj+1

)
(yk − y0) = 0.

Then y∗ is the unique minimizer achieving objective value
k∑
i=1

κi(y∗i − y∗i−1)2 = κ(yk − y0)2
k∑
i=1

αi = κ(yk − y0)2. J

Let G be a weighted graph and consider an edge (a, b) of conductance κ in G. Given
αi > 0 summing to 1, we can split the edge (a, b) into k edges by inserting k− 1 new vertices,
removing the edge (a, b), and inserting edges (a, c1), (c1, c2), . . . , (ck−1, b) with conductances
according to the lemma. We will assign µ′(v) = 0 for all newly added vertices. Let this new
weighted graph be G′ = (V ′, E′, µ′, κ′).

I Definition 18. Let G be a weighted graph and let G′ be a weighted graph constructed from
G by splitting edges using the procedure described above. Let x ∈ RV . The minimum energy
extension of x to V ′ is the vector y given by

y = arg min
y∈RV ′

{
y>L′y

∣∣ y�V = x
}
.

Then by the above lemma it is immediate that miny∈RV ′
{
y>L′y

∣∣ y�V = x
}

= x>Lx.
Thus, as µ′(v) = 0 for all v ∈ V ′ \ V , we have,

min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y>M1 = 0, y 6= 0
}

= min
x∈RV

{
miny∈RV ′

{
y>L′y

∣∣ y�V = x
}

x>Mx

∣∣∣∣∣x>M1 = 0, x 6= 0
}

= min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x>M1 = 0, x 6= 0
}
.

5 In fact, this can be done without affecting the eigenvalue quantities provided they exist. However,
proving this requires more set up than is given in this paper.

APPROX/RANDOM 2019



8:8 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

Similarly, if S is a proper nonempty subset of V , then

min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, y 6= 0
}

= min
x∈RV

{
miny∈RV ′

{
y>L′y

∣∣ y�V = x
}

x>Mx

∣∣∣∣∣x�S = 0, x 6= 0
}

= min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}
.

I Definition 19. Let G be a nondegenerate weighted graph and let G′ be a weighted graph
constructed from G using the procedure described above. The Neumann eigenvalue of G′ is

λ2(G′) = min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y>M1 = 0, y 6= 0
}
.

A vector y is a Neumann eigenvector of G′ if y is a minimizer of this optimization problem.

I Definition 20. Let (G,S) be a nondegenerate weighted graph with boundary and let G′
be a weighted graph constructed from G using the procedure described above. The Dirichlet
eigenvalue of (G′, S) is

λ(G′, S) = min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, y 6= 0
}

A vector y is a Dirichlet eigenvector of (G′, S) if y is a minimizer of this optimization
problem.

3 Muckenhoupt’s weighted Hardy inequality

The following theorem, due6 to Muckenhoupt [17], relates the L2(R≥0, κ) norm of a function
and the L2(R≥0, µ) norm of the “running integral” of the function.7 In other words, this
theorem characterizes the boundedness of the Hardy operator. In this paper we will refer to
this inequality as Muckenhoupt’s weighted Hardy inequality (see [12] for a more thorough
account of the development and history of the Hardy inequality).

I Theorem 21 (Muckenhoupt 1972). Let µ, κ be measurable functions from R≥0 to R>0. Let
C be the smallest (possibly infinite) constant such that for all f ∈ L1

loc(R≥0),∫ ∞
0

µ(x)
(∫ x

0
f(t) dt

)2
dx ≤ C

∫ ∞
0

κ(x)f(x)2 dx.

Let

B = sup
r>0

(∫ ∞
r

µ(x) dx
)(∫ r

0

1
κ(x) dx

)
.

Then B ≤ C ≤ 4B. In particular, C is finite if and only if B is finite.

6 A similar theorem may have been known previous to Muckenhoupt. Indeed [17] cites the work of
Tomaselli and Artola, however we were unable to obtain copies of these papers.

7 The original theorem deals more generally with Lp norms and Borel measures – see [17].
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We will state and prove a finite, discrete version of the above inequality in the following
section. Our proof will be stated in the language of graph Laplacians but closely follows the
structure of [15, 17] and is only included for completeness.

We first sketch, non-rigorously, why this theorem may be useful. Suppose we have a
differentiable function g satisfying g(0) = 0. Then taking f = d

dxg, and rearranging the
above theorem, we have that

1
C
≤
∫∞

0 κ(x)g′(x)2 dx∫∞
0 µ(x)g(x)2 dx

≈
∑∞
i=1 κi(gi − gi−1)2∑∞

i=1 µig
2
i

.

Note that the right hand side is the Rayleigh quotient of the Laplacian of a weighted infinite
path graph (cf. Lemma 14 above). Then minimizing over g, we have that 1/C corresponds
to a Dirichlet eigenvalue and the bound B ≤ C ≤ 4B allows us to estimate this eigenvalue.

4 The Dirichlet problem on path graphs

Throughout this section, let P = (V,E, µ, κ) be a weighted path graph. Let the vertices
be numbered {v0, v1, . . . , vN} for some N ≥ 1 and let the boundary set be S = {v0}. Let
the edges be E = {(vi, vi−1) | i ∈ [N ]} and let edge (vi, vi−1) have conductance κi > 0. Let
vertex vi have mass µi > 0.

It is immediate that (G,S) is a nondegenerate weighted graph with boundary.

4.1 The Hardy quantity and the Dirichlet content
Let A ⊆ V \ S be a set of vertices disjoint from the boundary. Consider the graph consisting
of two vertices vS , vA. Let vA have mass µ(A) and let the edge (vS , vA) has conductance
κ(S,A). Then the Dirichlet eigenvalue of this two node system with boundary set {vS} is
given by κ(S,A)

µ(A) . We will define the Dirichlet content of G, Ψ(G), to be the minimum such
quantity over choices of A and, for historical reasons, we will define the Hardy quantity to
be H = Ψ−1.

I Definition 22. Let (G,S) be a nondegenerate weighted graph with boundary. The Dirichlet
content of (G,S), denoted Ψ(G,S), is

Ψ(G,S) = min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}
.

I Definition 23. Let (G,S) be a nondegenerate weighted graph with boundary. The Hardy
quantity of (G,S), denoted H(G,S), is H(G,S) = Ψ(G,S)−1, i.e.

H(G,S) = max
A⊆V

{R(S,A)µ(A) |A 6= ∅, A ∩ S = ∅} .

In a path graph, it suffices to optimize over tail sets. This gives us a second characterization
of H (and thus Ψ) on path graphs.

I Lemma 24. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
Ak = {vi | i ≥ k} be the tail set beginning at vk. Then

H(P, v0) = max
1≤k≤N

R(v0, Ak)µ(Ak).

Proof. Let A ⊆ V \ S. Let k = min {i | vi ∈ A} be the minimum element in A. Then
R(S,A) = R(S,Ak) and µ(Ak) ≥ µ(A) thus R(S,Ak)µ(Ak) ≥ R(S,A)µ(A). J

APPROX/RANDOM 2019



8:10 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

For a path graph, we have the following closed form expression for the resistance between v0
and Ak. This is a consequence of Lemma 17.

I Lemma 25. In a weighted path graph, R(v0, Ak) =
∑k
i=1

1
κi
.

4.2 Bounding the Dirichlet eigenvalue

I Theorem 26. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
λ(P, v0) be the Dirichlet eigenvalue and let H(P, v0) be the Hardy quantity of (P, v0). Then,

1
4H ≤ λ ≤

1
H
.

We reiterate that the below proof has been known since [17] and is included only for
completeness.

Proof. We begin by proving the upper bound. Note that if x�A = 1, then x>Mx ≥ µ(A)
for any A ⊆ V \ S. Applying this bound to λ, we note that the numerator of the Rayleigh
quotient becomes an effective conductance term.

λ = min
x

{
x>Lx

x>Mx

∣∣∣∣x0 = 0, x 6= 0
}

≤ min
1≤k≤N

min
x

{
x>Lx

x>Mx

∣∣∣∣x0 = 0, x�Ak
= 1
}

≤ min
1≤k≤N

1
µ(Ak) min

x

{
x>Lx

∣∣x0 = 0, x�Ak
= 1
}

= min
1≤k≤N

κ(S,Ak)
µ(Ak)

= H−1.

We turn to the lower bound. Begin by rewriting xi as a sum of differences in the
denominator. Let αj > 0 to be fixed later. We apply Cauchy-Schwarz,

n∑
i=1

µix
2
i =

n∑
i=1

µi

 i∑
j=1

(xj − xj−1)
(
κj
αj

)1/2(
αj
κj

)1/2
2

≤
n∑
i=1

µi

 i∑
j=1

(xj − xj−1)2 κj
αj

 i∑
j=1

αj
κj

 .

Let yj =
(∑j

i=1
1
κi

)1/2
and y0 = 0. We will pick8 αj = κj(yj − yj−1). Thus, plugging in

this choice of αj , noticing the telescoping sum and reversing the order of summation,

8 This choice ensures that Cauchy-Schwarz is tight when x = y and corresponds to the intuition that the
true eigenvector is “close to” y.
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. . . ≤
n∑
i=1

µi

 i∑
j=1

(xj − xj−1)2 κj
αj

 yi

=
n∑
j=1

κj(xj − xj−1)2 1
αj

n∑
i=j

µiyi

≤

 n∑
j=1

κj(xj − xj−1)2

 max
1≤j≤n

1
αj

n∑
i=j

µiyi

 .

It remains to bound the final term. Note that yj = R(v0, Aj)1/2 ≤ H1/2µ(Ak)−1/2. Then,

n∑
i=j

µiyi ≤ H1/2
n∑
i=j

µi

(
n∑
k=i

µk

)−1/2

.

Note that if A, a ≥ 0, then a(A+a)−1/2 ≤ 2
(
(A+ a)1/2 −A1/2). Indeed, this holds by noting

that (A+ ta)1/2 is concave: a(A+ a)−1/2 = d
dt

(
2(A+ ta)1/2)

t=1 ≤ 2
(
(A+ a)1/2 −A1/2).

Then, taking A =
∑n
k=i+1 µk and a = µi in this inequality, we get

n∑
i=j

µiyi ≤ 2H1/2

n−1∑
i=j

(
µ(Ai)1/2 − µ(Ai+1)1/2

)
+ µ(An)1/2


= 2H1/2µ(Aj)1/2.

We will use the inequality once more. This time, take A =
∑j−1
k=1

1
κk

and a = 1
κj
. Then,

αj = κj(yj − yj−1)

= κj

(
(A+ a)1/2 −A1/2

)
≥ κj

(a
2 (A+ a)−1/2

)
= 1

2R(v0, Aj)−1/2.

Finally,

max
1≤j≤n

1
αj

n∑
i=j

µiyi ≤ 4H1/2 max
1≤j≤n

(µ(Aj)R(v0, Aj))1/2

≤ 4H.

Rearranging completes the proof. J

The following theorem follows as a corollary.

I Theorem 27. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
λ(P, v0) be the Dirichlet eigenvalue and let Ψ(P, v0) be the Dirichlet content of (P, v0). Then,

Ψ
4 ≤ λ ≤ Ψ.
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5 The Dirichlet problem on general graphs

5.1 Bounding the Dirichlet eigenvalue

I Theorem 28. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S)
be the Dirichlet eigenvalue and let H(G,S) be the Hardy quantity of G. Then

1
4H ≤ λ ≤

1
H
.

The proof of the upper bound in the graph case is the same as the proof of the upper bound
in the path case. To prove the lower bound, we split edges by inserting zero mass vertices.
We then treat the new graph as a path graph.

Proof. The upper bound follows immediately.

λ = min
x

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}

≤ min
A⊆V, x

{
x>Lx

x>Mx

∣∣∣∣A 6= ∅, A ∩ S = ∅, x�S = 0, x�Ak
= 1
}

≤ min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}

= H−1.

We turn to the lower bound. We construct a new weighted graph G′ = (V ′, E′, µ′, κ′)
from G as follows. Let x be a Dirichlet eigenvector corresponding to λ(G,S). Without loss
of generality x is nonnegative. Let 0 = l0 < · · · < lN be the distinct values of x. For each
edge (a, b) ∈ E such that xa = li < li+1 < lj = xb, split e into j − i segments such that in
the minimum energy extension of x, the new vertices on e take on all intermediate values
li+1, . . . , lj−1. This is possible by Lemma 17 and the discussion following it. Let y be the
minimum energy extension of x.

Let ṽi = {v ∈ V ′ | yv = li}, let Ãk = {v ∈ V ′ | yv ≥ lk}. Let κ̃i =
∑
u∈ṽi, v∈ṽi−1

κ′(u,v) be
the conductance between ṽi and ṽi−1. Let µ̃i = µ′(ṽi). Note that S ⊆ ṽ0. Then,

λ(G,S) = λ(G′, S)

= min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, x 6= 0
}

= min
z∈RN

{∑N
i=1 κ̃i(zi − zi−1)2∑N

i=1 µ̃iz
2
i

∣∣∣∣∣ z0 = 0, z 6= 0
}
.

Equality in the last line follows by taking zi = li. Then note that the objective function in
the final optimization problem is the Rayleigh quotient of a nondegenerate weighted path
graph with boundary with vertices ṽi, conductances κ̃i, and boundary set ṽ0. Then applying
the lower bound of Theorem 26.
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λ(G,S) ≥ 1
4 min

1≤k≤N

minz∈RN

{∑n
i=1 κ̃i(zi − zi−1)2

∣∣∣ z0 = 0, z�{k,...,N} = 1
}

∑N
i=k µ̃i

≥ 1
4 min

1≤k≤N

miny∈RV ′
{
y>L′y

∣∣ y�S = 0, y�Ãk
= 1
}

µ′
(
Ãk
)

= 1
4 min

1≤k≤N

κ′
(
S, Ãk

)
µ′
(
Ãk
)

≥ 1
4 min
A′⊆V ′

{
κ′(S,A′)
µ′(A′)

∣∣∣∣A′ 6= ∅, A′ ∩ S = ∅
}
.

Note that for any A′ ⊆ V ′, we can take A = A′ ∩ V . For this choice of A, we have
µ(A) = µ′(A′) and κ′(S,A′) ≥ κ(S,A). Thus,

λ(G,S) ≥ 1
4 min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}

= 1
4H . J

The following theorem follows as a corollary.

I Theorem 29. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S)
be the Dirichlet eigenvalue and let Ψ(G,S) be the Dirichlet content of G. Then

Ψ
4 ≤ λ ≤ Ψ.

6 The Neumann problem on general graphs

Throughout this section, let G = (V,E, µ, κ) be a nondegenerate weighted graph.

6.1 The two-sided Hardy quantity and the Neumann content
Let A,B ⊆ V be disjoint nonempty sets. Consider the graph consisting of two vertices
vA, vB where vertex vA has mass µ(A), vertex vB has mass µ(B) and the edge (vA, vB) has
conductance κ(A,B) > 0. Then the Neumann eigenvalue of this two node system is given by

κ(A,B)
(µ(A)−1+µ(B)−1)−1 . We will define the Neumann content of G, Ψ2(G), to be the minimum
such quantity over choices of A and B. For historical reasons, we will define the two-sided
Hardy quantity to be H2 = Ψ−1

2 .

I Definition 30. Let G be a nondegenerate weighted graph. The Neumann content of G,
denoted Ψ2(G), is

Ψ2(G) = min
A,B⊆V

{
κ(A,B)

(µ(A)−1 + µ(B)−1)−1

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}
.

I Definition 31. Let G be a nondegenerate weighted graph. The two-sided Hardy quantity
of G, denoted H2(G), is H2(G) = Ψ2(G)−1, i.e.,

H2 = max
A,B⊆V

{
R(A,B)

µ(A)−1 + µ(B)−1

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}
.
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6.2 Bounding the Neumann eigenvalue
In this section we show how to extend the bounds on the Dirichlet eigenvalue to the Neumann
eigenvalue.

We will bound the Neumann eigenvalue by applying Courant-Fischer to a carefully chosen
two-dimensional subspace. In particular, we will split our graph into two parts sharing a
common boundary. We will then take our two-dimensional subspace to be the linear span of
solutions to the Dirichlet problem on either side of this boundary.

Let f ∈ RV such that f takes both positive and negative values. We will write this
concisely as ±f /∈ RV≥0. We will “pinch” the graph at the zero level set of f to create a new
weighted graph G′ = (V ′, E′, µ′, κ′): for every edge (u, v) ∈ E such that fu < 0 < fv, insert
a new vertex s such that the minimum energy extension of f assigns f(s) = 0. Let µ′(s) = 0.

Abusing notation we will also let f ∈ RV
′ be the minimum energy extension of f to

V ′. Let F0 = {v ∈ V ′ | fv = 0}, let F≥0 = {v ∈ V ′ | fv ≥ 0} and F≤0 = {v ∈ V ′ | fv ≤ 0}.
Similarly define F>0, F<0 and note that G′ has no edges between F>0 and F<0. For A,B ⊆ V ,
let A <f B if fa < fb for all a ∈ A, b ∈ B.

We have the following lemma regarding the optimal “pinch.”

I Lemma 32. Let G be a nondegenerate weighted graph. Let f ∈ RV take both positive and
negative values. Then (G′, F≥0) and (G′, F≤0) are both nondegenerate weighted graphs with
boundary and

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}
.

Proof. Let R denote the quantity on the right hand side.
We begin by showing that λ2(G) ≤ R. Let f ∈ RV take both positive and negative

values. Note that λ2(G) = λ2(G′). It is easy to see that (G′, F≥0) and (G′, F≤0) are both
nondegenerate weighted graphs with boundaries. Let y, z ∈ RV

′ be Dirichlet eigenvectors with
Dirichlet eigenvalues λ(G′, F≥0) and λ(G′, F≤0) respectively. Note that supp(L′y) ⊆ F≤0
and that z�F≤0

= 0, thus z>L′y = 0. Noting that there exists some nonzero x ∈ span(y, z)
such that x>M ′1 = 0,

λ2(G) = λ2(G′)

= min
x∈RV ′

{
x>L′x

x>M ′x

∣∣∣∣x>M ′1 = 0, x 6= 0
}

≤ max
x∈span(y,z)

x>L′x

x>M ′x

= max
(α,β)6=0

α2y>L′y + β2z>L′z

α2y>M ′y + β2z>M ′z

= max (λ(G′, F≥0), λ(G′, F≤0)) .

Next we show that R ≤ λ2(G). We will exhibit a choice of f taking both positive and
negative values such that λ(G′, F≥0), λ(G′, F≤0) ≤ λ2(G). This will additionally imply that
the minimum is achieved.

Let x be a Neumann eigenvector of G. As x 6= 0 and x>M1 = 0, it is clear that x
takes both positive and negative values. We will pick f = x. Abusing notation, also let
x ∈ RV

′ be the minimum energy extension of x to V ′. Note that x�F0 = 0. Let y = min(x, 0)
and z = max(x, 0) where min and max are taken element wise. Note that L′y agrees with
L′x = λ2(G)M ′x on the support of y and that y agrees with x on the support of y. Thus
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y>L′y = λ2(G)y>M ′x = λ2(G)y>M ′y. Then,

λ(G′, F≥0) ≤ y>L′y

y>M ′y

= λ2(G).

Similarly, λ(G′, F≤0) ≤ λ2(G). J

We will need the two following technical lemmas regarding summing resistances.

I Lemma 33. Let G be a nondegenerate weighted graph. Let A,B ⊆ V be disjoint nonempty
subsets. Let f ∈ RV

′ such that A ⊆ F<0 and B ⊆ F>0. Then

R′(A,F≥0) +R′(F≤0, B) ≤ R′(A,B).

Proof. Let

κA = κ′(A,F≥0) = min
y

{
y>L′y

∣∣∣ y�A = 1, y�F≥0
= 0
}

and let y be the minimizer. Similarly define κB and let z be its minimizer. Note that
supp(L′y) ⊆ F≤0 and z�F≤0

= 0, i.e, z>L′y = 0.
Let α = κA

κA+κB
. Note that (1−α)y−αz assigns 1−α to vertices in A and −α to vertices

in B. Thus

1
R′(A,B) ≤ ((1− α)y − αz)>L′((1− α)y − αz)

= (1− α)2κA + α2κB

= κAκB
κA + κB

= 1
R′(A,F≥0) +R′(F≤0, B) .

Rearranging terms completes the proof. J

I Lemma 34. Let G be a nondegenerate weighted graph. Let A,B ⊆ V be disjoint nonempty
subsets. For any α ∈ (0, 1), there exists some f ∈ RV with A ⊆ F<0 and B ⊆ F>0 such that

κ′(A,F≥0) = κ(A,B)
α

and κ′(B,F≤0) = κ(A,B)
1− α .

Proof. Let

κ(A,B) = min
x

{
x>Lx

∣∣x�A = 0, x�B = 1
}

and let x be the minimizer. Define f = x− α1 and take y = min(f, 0), where the minimum
and maximum is element-wise. Note that L′y agrees with Lx on the support of y. By
optimality of x, for v ∈ A \ (A ∪B), we have 0 = ∂

∂xv
(x>Lx) = 2 (Lx)v. Then,

APPROX/RANDOM 2019
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κ′(A,F≥0) ≤ y>L′y

α2

=
∑
v∈supp(y) yv(Lx)v

α2

=
∑
v∈A(−Lx)v

α

= x>Lx

α

= κ(A,B)
α

.

Similarly, κ′(B,F≤0) ≤ κ(A,B)
(1−α) . Then both inequalities must hold with equality by Lemma 33.

J

We are now ready to prove the following theorem.
I Theorem 35. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let H2(G) be the two-sided Hardy quantity of G. Then

1
4H2

≤ λ2 ≤
1
H2

.

Proof. Both the upper and lower bound will follow the same template: we will apply the
pinch point characterization, apply Theorem 28 to each Dirichlet problem, and reorder the
minima.

The upper bound is,

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}

≤ min
f

min
A,B

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A <f 0 <f B, A,B 6= ∅
}

= min
A,B

min
f

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A,B 6= ∅, A <f 0 <f B
}
.

The lower bound is,

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}

≥ 1
4 min

f
min
A,B

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A <f 0 <f B, A,B 6= ∅
}

= 1
4 min
A,B

min
f

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A,B 6= ∅, A <f 0 <f B
}
.

It remains to understand the following quantity for disjoint nonempty A,B ⊆ V .

min
f

{
max

(
κ′(A,F0)
µ(A) ,

κ′(B,F0)
µ(B)

) ∣∣∣∣±f /∈ RV≥0, A <f 0 <f B, A,B 6= ∅
}

(1)

Let α = κ′(A,B)
κ(A,F≥0) . Then by lemma 33, for all f , we have κ′(B,F≤0) ≥ κ(A,B)/(1− α).

On the other hand, by lemma 34, there exists some f for which we get equality. Thus,

(1) = κ(A,B) min
α∈(0,1)

max
(

1
µ(A)α,

1
µ(B)(1− α)

)
= κ(A,B)

(µ(A)−1 + µ(B)−1)−1 .

Taking the minimum over A,B completes the proof. J
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The following theorem follows as a corollary.

I Theorem 36. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let Ψ2(G) be the Neumann content of G. Then,

Ψ2

4 ≤ λ2 ≤ Ψ2.

7 Conclusion and future work

In this paper we introduced the Dirichlet and Neumann contents for nondegenerate weighted
graphs (with and without boundary) and showed that these quantities can be related to the
Dirichlet and Neumann eigenvalues (Theorems 28 and 35). We believe that these quantities
are natural as evidenced by the simplicity of the corresponding proofs. An open question is
whether it is possible to develop approximation algorithms based on these new inequalities
as opposed to Cheeger’s inequality. Such algorithms would be able to exploit the tighter
bounds provided by our theorems under a more general setting of weights. We are hopeful
that this open question will be answered affirmatively.
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A Constants in Theorems 28 and 35 are sharp

In this appendix we give constructions of nondegenerate weighted graphs (with and without
boundary) that show that the constants in our Theorems 28 and 35 are optimal.

We begin with the Dirichlet case. It is clear that the upper bound is achieved by any
nondegenerate weighted graph with boundary (G,S) such that

∣∣S∣∣ = 1. In this case

Ψ(G,S) = κ(S, S)
µ(S)

= λ(G,S).

We turn to the lower bound. Let n ∈ N and let N = nen. Consider the path graph P
with vertices V = {v0, v1, . . . , vN} where vi has mass

µi =
{

1
i(i+1) 1 ≤ i ≤ N − 1
1
N i = N

and the usual path edges. Let κ = 1 for every edge and let v0 be the boundary set. We
compute the Dirichlet content of (P, v0).

Ψ(P, v0) = min
1≤k≤N

κ(v0, vk)∑N
i=k µi

= min
1≤k≤N

1/k
1/k

= 1.

We next show that λ(P, v0) ≤ 1
4 + o(1). Consider the assignment

xi =
{

0 0 ≤ i ≤ n− 1,
√
i−
√
n− 1 n− 1 ≤ i.
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Then

λ(P, v0) ≤ x>Lx

x>Mx
.

We can bound the numerator above by

x>Lx =
N∑
i=1

(xi − xi−1)2

=
N∑
i=n

(
√
i−
√
i− 1)2

≤
N∑
i=n

(
1

2
√
i− 1

)2

= 1
4

N∑
i=n

1
i− 1

= 1
4

(
N∑
i=n

1
i

)
+O(1).

We can bound the denominator below by

x>Mx =
N∑
i=1

µix
2
i

=
N∑
i=n

µi

(√
i−
√
n− 1

)2

=
N−1∑
i=n

1
i(i+ 1)

(
i+ (n− 1)− 2

√
i(n− 1)

)
+ 1
N

(√
N −

√
n− 1

)2

=
N−1∑
i=n

1
i(i+ 1)

(
i+ (n− 1)− 2

√
i(n− 1)

)
+O(1)

=
(

N∑
i=n

1
i

)
+
(
N−1∑
i=n

(n− 1)
i(i+ 1)

)
− 2

(
N−1∑
i=n

√
n− 1√
i(i+ 1)

)
+O(1)

=
(

N∑
i=n

1
i

)
+O(1).

Finally, noting that
∑N
i=n 1/i ≥

∫ N
n
t−1 dt = ln(nen/n) = n diverges to infinity with n, we

have that λ(P, v0) = 1
4 + o(1). We conclude that the constants in Theorem 28 are optimal.

The same construction and a simple symmetry argument shows that the constants in
Theorem 35 are optimal.
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