SIAM J. COMPUT. @lmwhwmAwﬁndem
Vol. 24, No. 5, pp. 1002-1017, October 1995 004

FLOW IN PLANAR GRAPHS WITH MULTIPLE SOURCES AND SINKS*
GARY L. MILLER' anp JOSEPH (SEFFI) NAOR?

Abstract. The problem of maximum flow in planar graphs has always been investigated under the assumption
that there is only one source and one sink. Hexeweconsidertheeasewhenmctemmysomandsinks(single
commodity) in a directed planar graph. Annlgoﬁthmforthccasewhenﬂledenmdsofthesommdsinksm
fixed and given in advance is presented. The algorithm can be impiemented efficietitly sequentially and in parallel,
anditsoomplexityisdomimwdbythccomplcxnyofcompmingallshm&stpaﬂmﬂomasinglesominaplamr
graph. lfthedemandsmnotknown,analgoﬁthmforcompuﬁngﬂnmaximmnﬂowisptesemcdfortheeasewhem
the number of faces that contain sources and sinks is bounded by a slowly growing function. Our result places the
problem of computing a perfect matching in a planar bipartite graph in NC and improves a previous parallel algorithm
fortheeaseofasinglesomee,singlesinkinaphnmdincwd(mdmdizeoted)gnph.bothinmmsofpmcessm
bounds and its simple presentation.

Key words. planar graphs, flow, circulation

AMS subject classifications. 68R10, 05C38, 90B10, 90C35, 90C27

1. Introduction. In the common formulation of the maximum flow problem, the maxi-
mum flow from a distinguished vertex in the graph, called the source, to another distinguished
vertex in the graph, called the sink, is computed. Here we assume that the underlying network
is planar; this case was extensively studied and more efficient algorithms were developed for
it (see §2), yet the assumption was always that there is only one source and one sink.

In this paper we investigate the following problem: given a planar network with many
sources and sinks, compute the maximum flow from the sources to the sinks. Ford and
Fulkerson [3] reduced the multiple source, multiple sink problem to the single source, single
sink problem by connecting the sources to a supersource and the sinks to a supersink, and
then computing the maximum flow from the supersource to the supersink. In planar graphs,
this reduction may destroy the planarity of the graph if the sources or sinks belong to different
faces. Nevertheless, we would like to take advantage of the planarity of the graph to design
more efficient algorithms, sequential as well as parallel, in the case of multiple sources and
sinks.

We feel that the reformulation of the problem is more natural within the context of planar
graphs and has motivation in both sequential and parallel computation. The only other attempt
known to us that copes with multiple sources and sinks is by Megiddo [22), [23], whose
algorithm computes (in a general graph) optimal flows, i.e., flows that are “fairly” distributed
among the sources and sinks.

Maximum flow in a general network was shown to be P-complete [10], and hence it is
widely believed not to have an efficient parallel algorithm. On the other hand, maximum flow
can be reduced to maximum matching and this reduction implies an RNC algorithm when the
edge capacities are represented in unary [16], [24]. This emphasizes the importance of solving
the problem in the case of a planar network with arbitrary capacities. In the restricted case

*Received by the editors March 2, 1989; accepted for publication (in revised form) April 7, 1994. An extended
mmmgmmwmmmammmmmsmmmmaﬁm
of Computer Science, 1989, pp. 112-117.

1School of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890.

$Computer Science Department, Technion, Haifa 32000, Israel. This research was supported by the fund for the
promotion of research at the Techmion, Office of Naval Research contract ONR N00014-88-K-0166 and the Computer
Science Department, University of Southern Califomia.LosAngeles,CalifomiaandsuppomdinpmtbyNaﬁonal
Science Foundation grant DCR-8713489. Most of this work was done while the author was at the Computer Science
Department, Stanford University, Stanford, Califoria.

1002

FLOW IN PLANAR GRAPHS 1003

of a single source, single sink, there do exist NC algorithms in both directed and undirected
graphs [6], [14].

The first problem we consider is the case where the amount of flow (demand) at each
source and sink is given as input, and the objective is to compute a feasible flow function. We
present an efficient algorithm for this problem. The sequential complexity of our algorithm is
O (n'5) time; the parallel complexity is O(I (%) log? n) time using O (n'5) processors where
I(n)isthetime of computing the sum of # values. I (n) canbe implementedin O m time inthe
concurrent read concurrent write parallel random access machine (CRCW PRAM) model and
0(logn) time in the exclusive read exclusive write parallel random access machine (EREW
PRAM) model. The main idea in computing the flow function in this case is redirecting the
flow through a spanning tree from the sinks back to the sources. The problem then reduces to
that of computing a circulation in a network with both lower and upper bounds on the capacity
of the edges. Similar ideas for redirecting the flow back from the sink to the source have
appeared in [5}, [6], and [14] for computing the flow in the case of a single source and sink.

Note that planar graphs are different from general graphs, where it was observed that
knowing the value of the maximum flow does not improve the complexity of computing the
fiow function [29]. In contrast to that, all the known algorithms for planar flow do take
advantage of the value of the maximum flow. . :

We consider the special case where the sources and sinks are all on one face and the
demands unknown. We present an efficient algorithm that computes the maximum flow in
this case by employing a nontrivial divide-and-conquer. The sequential running time of the
algorithmis O(n log"* n) time. Inparallel, it can be computed using O (n'%) processors, where
the time complexity is O (I (n) log3 n). (I1(n) is the same function as previously defined.) We
then show how to extend this algorithm to the case where the number of faces that contain
sources and sinks is bounded by a slowly growing function.

Unfortunately, the most general problem, where the sources and sinks belong to an ar-
bitrary number of faces and the demands are unknown, is still open; i.c., the best sequential
algorithm for this problem is obtained by connecting the sources and sinks to a supersource
and supersink; in parallel, there is no NC algorithm known for this problem.

An example where multiple sources and sinks are useful is the case of computing a perfect
matching of a planar bipartite graph. In the standard reduction from matching to flow (see,e.g.,
[21), one part of the graph is connected to a source and the other part to 2 sink. In general, this
reduction will result in a nonplanar graph but can be utilized within our context (the demand
of each source and sink is exactly one unit). This places the problem of computing a perfect
matching in a plasar bipartitc graph in NC.

The situation in computing a perfect matching in planar graphs is very intriguing. Kaste-
leyn [17] had already shown how to count the number of perfect matchings in a planar graph,
a problem that is # P-complete in general graphs, and his methods can be implemented in NC
(see, e.g-, [32]) as well. Yet computing a perfect matching in NC in a planar graph remains an
open problem. This situation is interesting as it contradicts the current view of the computa-
tional difficulty of counting the number of solutions versus finding a solution in combinatorial
problems.

Johnson [14] showed how to compute in parallel the maximum flow for the case of a
single source, single sink in a directed graph. We present an algorithm for this case which
improves on the number of processors and is also very simple in comparison with the fairly
complicated algorithm of [14]. Johnson’s approach [14] was the first to find the minimum cut,
and then compute the flow function. Our approach is different; using parametric methods, we
can find the value of the maximum flow; then the computation of the flow function follows
easily.

H_

i BRI SR S5 0

1004 GARY L. MILLER AND JOSEPH (SEFFI) NAOR

Subsequent to this work, Khuller and Naor [18] considered the problem of computi'ng a
flow function in a planar graph where there are capacity constraints on both edges and vertices.
Efficient algorithms for this problem are presented in [18].

The paper is organized as follows: In §2, we describe previous results in planar flow and
in §3 we provide certain preliminaries. In §4, we show how to compute a circulation when
edge capacities may have nonzero lower bounds. In §5, we present three applications: (i)
computing the flow function when there are many sources and sinks-and their demands are
known; (i) computing a perfect matching in a bipartite planar graph; (iii) improving previous
algorithms for the case of a single source and sink. In §6, we show how to find the maximum
flow in the case where all the sources and sinks are on the same face but the demands are not
known. In §7 we extend these results to the case where the number of faces containing sources
and sinks is bounded.

2. Previous results in planar flow. All the results referred to in this section deal exclu-
sively with the single source, single sink maximum flow problem. Ford and Fulkerson [3] had
already observed that a minimum cut in a planar graph is equivalent to a minimum weight
cycle that separates the source from the sink in the dual graph They gave an O(nlogn)
time algorithm to compute the minimum cut when the source and sink belong to the same
face. Berge and Ghouila-Houri (1] suggested an O(n?) algorithm for computing the flow
function, which is called the “uppermost path algorithm.” This algorithm was implemented in
O(n log n) time by Itai and Shiloach [12]. Hassin [5] gave an elegant algorithm for computing
the flow function and his algorithm can be implemented in O (n,/log n) time using the method
of [4] for computing shortest paths in planar graphs.

Ttai and Shiloach [12] also gave an algorithm to compute the maximum flow in an undi-
rected graph when the source and sink do not necessarily belong to the same face. Its running
time was O(n?logn). This was improved by Reif [30] who gave an O(nlog’n) time al-
gorithm for computing the minimum cut in an undirected planar graph. -Only Hassin and
Johnson [6] completed the picture by giving an O(n log? n) time algorithm for computing
the maximum flow in an undirected graph by gencralizing the ideas of [5] and [30]. (The
running time of their algorithm can be improved to O(nlogn) through the methods of [4] for
computing shortest paths in a planar graph.)

Computing the maximum flow in planar directed graphs is more difficult as it is not clear
how to reduce the problem of computing a minimum weight cycle to that of computing a
minimum weight path. Johnson and Venkatesan {15] gave an O (n'* log n) time algorithm to
compute both a minimam cut asd a maximal flow.

In the course of the evolution of efficient algorithms for planar flow, an interesting phe-
nomenon occurred. The computational difficulty alternated between searching for the mini-
mum cut on the one hand, and computing the fiow function when the minimum cut is known
on the other hand.

It is easy to implement the algorithm of [6] for undirected graphs in parallel, and its
complexity is O(log? n) time using O(n?®) processors. (The details are given in (14]) It
should be mentioned that an alternative algorithm for computing the minimum cut in parallel
in an undirected graph was given in [13].

As for directed planar graphs, an algorithm that first computes the minimum cut, and then
the flow function, was given by Johnson [14]. Its complexity is 0(10g3 n) time using omn*
processors or O (log? n) time using O (n®) processors. The processor bounds of the algorithms
of [6], [14] can be improved through the methods of [26]-[28].

3. Terminology and preliminaries. Throughout the paper let G = (V, E) be an em-
bedded planar graph where V is the vertex set and E is the arc set. An edge consists of two

FLOW IN PLANAR GRAPHS 1005

arcs, an arc and its reflection. Let R(e) be the permutation which takes an arc e to its reflection.
The graphs considered may have multiple edges but every arc will have a distinct reflection.

A graph is said to be embedded in the plane if it is intuitively “drawn” in the plane with
no crossing edges, where an edge and its reflection are drawn on top of each other. This
definition is not very algorithmic, hence we assume that the graph is given by one of the many
combinatorial definitions of planar embedding; see [25], for example. An embedding of a
planar graph can be computed sequentially in linear time [11] and in parallel-in O(log?n)
time using a linear number of processors {19]. An embedding is needed to compute the dual
graph. In all of our algorithms, computing an embedding will never dominate the cost of the
algorithm.

~ An embedded graph G partitions the plane into connected regions called faces. Let
G* = (F, E*) be the dual graph of G, where F is the set of faces of G, and £* is the set of
dual arcs. There is a one-to-one correspondence between E and E* as follows: for each arc
e € E, let e* be the corresponding dual arc connecting the right face bordering e with the left
face bordering onee. ' ‘

We use a left-hand rule: ifﬂnethumbpointsinthedirecﬁonofc,ﬂlcnﬂxeindcxﬁnger
points in the direction of e*. The dual G* is also known as the clockwise dual of G. For'a
vertex v, in(v) (out(v)) denotes the incoming (outgoing) set of arcs into (from) v. For an arc
e, tail(¢) (head(e)) denotes the vertex at the tail (head) of e. ‘

The dual graph is planar too, but may contain self loops and multiple edges. We sometimes
refer to the graph G as the primal graph. '

AcycleCisanorderedsctofarcseo, €1y...5€k such that forevery 0 < i < k,head(e;) =
tail(e;41) (mod k + 1). The cycle C is simple if the vertices between the arcs are distinct.
Thus all cycles are directed.

3.1. Flow in planar graphs. In this section we formally define the planar flow problem.
We generalize the problem in two ways. First, we allow multiple sources and sinks. Second,
we introduce vertices with fixed flow demands. This is the definition we shall use throughout
the rest of this paper.

DEFINITION 3.1. A flow graph with sources, sinks, capacities, and demands is the following
five-tuple (G, S, T, ¢, d) such that

e G = (V, E) is a graph, where V is a set of vertices and E is a set of arcs;

e the sources and sinks with variable demands are S © V and T C V, respectively,
where the sets S and T are disjoint;

e the map c : E — R is the edge capacity (foralle € E: c(e) = —c(R(e)));

e themapd:V —{S, T} —> Ris the demand at nonsource and nonsink vertices, i.e.,
vertices for which the demand is fixed. ’

Observe, that c(e) and d(v) may be negative. Vertices for which d(v) > O are called
sources with fixed demands, and vertices for which d(v) < 0 are called sinks with fixed
demands.

DEFINITION 3.2. A function f : E - R is a flow function if

@) Ve € E : f(e) = —f(R(e));

G) Vv eV — {5, T} : Ty f) = d().

DEFINITION 3.3. The function f is a legal (or feasible) flow function if, in addition,
Ve € E, f(e) < c(e), where c(e) denotes the capacity of edge e.

Given a flow function f, we define forall v € V, f(v) = X uie)=v f(e).

In the maximum flow problem, we are looking for a legal fiow that maximizes the total
amount of flow entering T (or leaving S). The amount of flow entering the sinks is also
called the value of the flow. A circulation graph is a flow graph with no sinks or sources,
ie., S=T = @ and d(v) = O for all vertices. A circulation function is a flow function with

e, A5 SR BN A 435 ¥

1006 GARY L. MILLER AND JOSEPH (SEFFT) NAOR

respect to a circulation graph. A flow graph with fixed demands is a flow graph with no sinks
or sources that have variable demand, ie., S =T = 8.

Flow graphs and flow functions can be added and subtracted as follows: given a flow
graph G, flow functions fi and f, and a real pumber a, the sum f = af; = f2is the flow
where, for every edge e, f(e) = afi(e) £ f2(€). We define the addition of a flow graph and
a flow function to obtain a new flow graph. Let (G, ¢, d) be a flow graph with capacity ¢ and
demands d, and let f be a flow function defined on G- The flow graph G + f will be the
triple (G, c + f,d + f). The demand function d + f is only defined for vertices v for which
d is defined and (d + f)(v) =d @) + f(v). The residual graph with-respect to a given flow
f is formally defined as G — f. Observe that the residual graph with respectto a legal flow
function cannot have negative capacities. :

An augmenting path in a flow graph G is a path that starts at a source, ends at a sink, and
uses only arcs with strictly positive capacity. We do not distinguish between an augmenting
path as a set of arcs or, alternatively, as a flow of one unit on the arcs in the augmenting path.
We say this more formally. A path P is edge disjoint if the arcs in P are distinct and no arc
and its reflection both belong to P. Let P be an edge disjoint path from a source to a sink.
The unit flow on P is defined as follows: ’

1 ifeebP,
Pe)=1 -1 ifee R(P),
[0 otherwise. v

Apotentialgmphisagmphwhcmeacharcisassimdawcightw € R. A potential
function on a potential graph G = (V, E) is any real valued function. p defined on the vertices.
The function p is called consistent if the potential difference over cach edge is not larger than
the edge weight, i.e., Ve'€ E, w(e) > p(head(e)) — plwmil(e)).

If G = (V, E) is an embedded planar flow graphthenitswteutialdualgraphis G* =
(F, E*) such that w(ex) = c(e). Given a consistent potential function p defined on G*, we
obtain a flow function f by setting f(e) = p(headie)) — p(tail(®)). Clearly, f satisfies
condition (i) of Definition 3.2. To see that it also satisfies condition (ii) in the case where all
the demands are zero, we use the following easy yet fundamental proposition proved in {s]
and [14]. . :

PROPOSITION 3.1. LetC = €},.... € be a cycle in the dual graph. Then the flow f
satisfies the following property: f(e) +---+ f(er) = 0.

LctthecycleCinthedualgraphoorrespondtothesetofprimaledges adjacent to a primal
vertex. Then it follows that f satisfies condition (ii) of Definition 3.2. Hence, any potential
function induces a circulation in a planar flow graph. Furthermore, if the potential function is
consistent then the flow function is legal.

The use of a potential function as a mean of computing a flow (and circulation) was first
suggested by Hassin [5] ‘and was later elaborated by [6] and [14], but not stated in terms of

Animportantprocedurcthatwillbcusedinallofom algorithms is computing all shortest
paths from a given vertex in a planar graph which may contain negative edge weights. The
sequential complexity of this procedure is O(n'3) using the generalized nested dissection
method of [20]. To compute in parallel shortest distances, the parallel nested dissection im-
plementation of [26]-{28] requires O(n'-) processors; the time complexity is O(I (n) log? n),
where I (n) is the parallel time of computing the sum of n values. I(n) can be implemented
in O(1) time in the CRCW PRAM model and O(logn) time in the EREW PRAM model.

To implement the method of nested dissection we need to compute small separators in
planar graphs. A small separator can be computed sequentially in linear time; see [25]. In
parallel, Gazit and Miller [7], [8] provided a procedure for computing small separators, where

FLOW IN PLANAR GRAPHS 1007

the complexity is O (n'+€) processors and the running time is dominated by the running time
of a procedure for computing a maximal independent set in a graph (ot necessarily planar).
The current best bound is O(log> #) time using a linear number of processors [91.

4. Computing circulations. In this section we show how to compute a circulation in a
planar graph. It is clear that the difficult case occurs when some of the edges have negative
capacity. Otherwise, we can set the flow on each edge to be zero and obtain a legal circulation.
An edge which has negative capacity may be viewed as having a lower bound on the flow
through it; for example, an edge which has a lower bound of a and an upper bound of b on
the capacity can be replaced by two edges of opposite direction, which have capacities b and
—a. We provide a precise characterization of planar circulation problems that have feasible
solutions. 4 .

As stated in the previous section, the key idea is to compute a consistent potential function
onthefmsoftheplamxgmphanddeﬁnethcﬂow_igeachedgea;thepptenﬁaldiﬁm
of the two faces that border the edge. We show that finding such a potential function reduces
to computing the shortest paths from a single source. Throughout this section, let G denote a
planar circulation graph with capacities c(e) and a dual G* which has weights w(e).

A shortest path numbering for a graph (from some source vertex x) is an assignment of
real values to the vertices such that the value of a vertex y equals the minimum weight path
from x to y. We shall simply call it an SP numbering. It is well known that every strongly
connected graph has an SP numbering if and only if it has no negative weight cycles.

LEMMA 4.1. Let G be a connected, embedded circulation graph. - Then, the following
conditions are equivalent: :)

1. G* has no negative weight-cycles.

2. G* has an SP numbering from every vertex (face in G).

3. G has a legal circulation. -

Proof. By the comment above, if G* does not contain negative weight cycles, then G*
has an SP numbering from every vertex. To see that the existence of an SP numbering also
implies the existence of a circulation, let the potentials assigned to the faces'be equal to their
SP numbering from some arbitrary vertex. Let 'p denote the potential function and €* be a
dual edge directed from face F to face F'. Since p is an SP numbering, it follows that

p(F) — p(F) < w(e®).

Therefore, p is a consistent potential function and G bas a legal circulation by Propo-
sition 3.1. :

To see that if G has a legal circulation, then G* has no negative weight cycles, assume
the contrary: .G* contains a negative weight cycle el,...,e; yet G has a legal circulation
f. Note that a cycle in the dual graph G* scparates the plane into two regions. Hence the
incoming flow into it has to be equal to the outgoing flow, i.e., f(e1) +--- + f(ex) = O, but
fle)+---+ flea) <ce)+--- +c(ex) < 0, resulting in a contradiction. - O

This lemma gives a precise characterization for the existence of a feasibie circulation in
a planar graph: the dual graph cannot coniain negative weight cycles.

To summarize, the potential function is computed as follows: Choose an arbitrary vertex
in the dual graph and compute the shortest path from it to all other vertices. The length of the
shortest path is defined as the potential of the vertex. The flow on each edge is defined as the
potential difference of the:two faces bordering it. : :

The cost of computing a legal circulation is dominated by the cost of computing one Sp
numbering. The sequential and parallel complexity of computing an SP numbering are given
in §3.1. Thus, we have the following theorem.

R st i <7

R DAY it SR

e — g

1008 GARY L. MILLER AND JOSEPH (SEFFI) NAOR

THEOREM 4.1. A legal circulation can be computed in a planar graph.in O(n'®) time
sequentially. In parallel it can be computed using O (n'®) processors;.the time complexity is
O(I (n) log? n), where I (n) is the parallel time of computing the sum of n values. 1(n) can be
implemented in O(1) time in the CRCW PRAM model and O(log n) time in the EREW PRAM
model.)

5. Applications of the circulation algorithm. In this section we present three applica-
tions of the circulation algorithm. In §5.1 we show how to compute a feasible fiow function in
a flow graph without variable sources and sinks, i.e., when all demands are fixed and known in
advance. In§5.2 we show that a perfect matching i a planar bipastite graph cap be computed
in NC. In §5.3 we present a simple algorithm for computing the maximum flow for the case
of a single source and sink with variable demand. e R

% Cbmpuﬁhg ‘the flow function for fixed ‘demands. In tlns

! : , eman: section we assume that
our inputis a planar graph with many sources and sinks, where the démand at cach source and
sink is known in advance. We present an efficient algorithm that determines whether a feasible
solition. i.¢., a solution that satisfies the demands, exists, and if s0 compu esit. Suppose thata

demand function d is defined on the vertices (see §3.1) such that JITCe haveposmvedcmands
and sinks have negative demands. The rest of the vertices have zero demand, We may. assume
that the sumofﬂ:e‘demﬁndsismsincethaeisnofe&’hbsolﬁmm. :
’I’hemainideaofthealgoﬁthmisthatcompuﬁngaﬂowﬁmeﬁdniwidaﬁxeddcmandscan
be reduced to computing a circulation. This reduction is achieved-via a tree T that spans the
sources and sinks. We add new edges to the graph parillel to.the edges of T, resulting in a
newgrath[..' o : R R IR L
Recall that in the algorithms of [6] and [14], a similar reduction is achieved by returning
the flow from the sink to the source via a simple path. This jdéa is-generalized here and the
spanning tree T*isused to redirect the flow from the sinks back to the sources. Any circulation
computedinG’willindueeaﬂowutisfyingﬂxedqnandSiﬂG. ' - -
SKETCH OF ALGORITHM (I). o
Input:. a planar flow graph (G, ¢, d) where the demand function is defined for all vertices
of G.
Outpit: alegal flow function f that satisfies the demanils.
""" 1. Find any flow function f" for G. |
2. Construct the residual flow graph G’ = G — f” where G’ is a circulation graph.
3. Compute a circulation f” in G'. R "
4. Return the flow f = f/ + f".

LN

We now elaborate on the implementation of each step. To do step 1, we first compute a
spanningnecTinG,whaemedgeinToonsists'ofboﬁlmzamanditsmﬂecﬁon. We now
descﬁbehowthespanningu'eeisusedtoreditectﬂneﬂowﬁ'omthesinks'back'to'ﬂ:espmws.

For all arcs that are not in T, we set f'to zero. Anarce €T separates the tree into
two subtrees, called tail and head. Ty is‘the subtree adjacent to the tail of € and Theas is
adjacent to the head of e. Let f’(e) be defined 88 Y ez, 4(v). The last term is also equal to
=Y en, d) since T is a spanning tree and the sum of the demands on all vertices in the
graph is zero. To see that f'(v) = d(v), let E’ be the set of arcs whose head is v. Note that if
an arc e € E’ isnotin T, then f'(e) = 0. ' .

Foy=Y o= Y —dw) =do).

e€E’ weV-—{v}

FLOW IN PLANAR GRAPHS 1009

We need only show that ' + f” is a legal flow which meets the demands, given that f”
is a circulation. The flow f’ 4 f” meets the demand since

'+ W) = f'@) + ') = f'(v) + 0 =d(v).
To see that it is legal,

'+ =rfE@+fE@=fEe+ —jf)_(g) = c@)f"

‘The most expensive part of the algorithm is step 3, where all shortest paths from a vertex
in" the -dual graph’ are computed. 'Ihesequenualandparalleloomplexnyofcompunngall
shorwstpaths&omaglvcn"verwxmagraphmﬂxnegahveedgewexghtsu@cuswdm&l
Thus, we have the following theorem.

THEOREM 5.1. Aﬂowﬁmctwnmthﬁxeddenmdscmbe”’_ maplanargmph
in O(n'5) time sequentially. In parallel, it can be computed | using (n”) processors; the
tzmecomplcxztyst(I(n)log’n),whemI(n)tsthepamllelnmeqf npu ’
values:” 1(n) can be implemented in O(l)nmemtheCRCWPWmoddaudm O(logn)
tmemtleREWPRAMmodel. '

52 Flndingaperfectmatching.lnﬂusswuonweshowhowmmplmapafect
matching in a planar bipartite graph G = (A, B, E),whﬂeAandBmthetwopartsoﬁhe
vertex set. In the standard reduction from matching ta flow (see; ©.8:, [21).. £.is directed from
A to B;-a source s is connected to all the vertices of A, and a-sink ¢ is connected to all the
vertices of -B. Allthcedgumﬂmrcdwedgmphhaveumtcapaﬂty'ﬁesmdedgeﬁm
2 maximum flow constitute a maximum matching in G Obviously, this reduction may, in
general, destroy the planarity of the graph.

Tocompnmeﬂmpafectmmhngeﬂiaeuﬂy,eachveﬁcxmAbmawmuandeach
vertex in B. becomes a.sink.. 'Ihedamndateachsomeeandnﬂ:mqwﬂy»oneumt. The
edges are oriented as before from A to B with unit capacity.

The sequential complexity of our algorithm is O(n‘*’)umeandltmawhesthebestse-
quennalbmmdforoompunngammmnmmmhmgmaplmargmphfﬂj T paraliel, our
result places in NC the problem of computing a perfect matchmg in a planar bxpamte graph

5.3. Planar maximum flow with a single source and sink. Inﬂnssgcﬂmweshowhow
tompmvethealgonﬂxmof[ulmdleeaseofasmglesomce,qm;leﬂnkma'&;gcwdplmar
graph.’ Wepmentasxmplealgonﬂxmforthxspmb}emandw ¢ processor bound
with respéct to [14]. We also handle the case where the capacifies are poss negative and
thecasewhu'esomeofd:evem«:esmayhaveﬁxeddcmandsbyremmin’gm w as in §5.1,
Algorithm (T). o

The approach taken in [14] is firstito find the minimum .cut and then compute the flow
function. We proceed differently; to apply Algorithm (), we need to compute the value of
the minimum cut, denoted by «. This will be done by a parametric search method. Once the
valuc of the minimum cut is known, the flow function can be computed by Algorithm ().

Recall that in Algorithm (I) the flow is returned from the sinks to the sonvees via a spanning
tree. Note that in the case of a single source and sink, the spanning tree is a simple path, denoted
by P, from ¢ to 5. The difficulty is that we do not know how much flow to return from ¢ to s.
We first guess an initial value o, which is greater than or equal to the value of the maximum
flow from s to £; e.g., initially, we set & equal to the sum of the capacities of the edges leaving
the source. Throughout the rest of this section, we let f, denote the flow, which is « for arcs
in P, —« for arcs in R(P), and zero otherwise. LetG' =G — f,.

The characterization of feasible circulations in Lemma 4.1 implies that we should compute
the maximum o (if it exists at all) such that the dual graph of G’ does not contain negative

SRR T T

1010 GARY L. MILLER AND JOSEPH (SEFFI) NAOR

weight cycles. If our initial guess was too large, then in the dual. graph of G, where the
shortest paths are computed, there must be a negative weight cycle. {(Otherwise, a circulation
that would correspond to a flow whose value is a can be computed:). ‘Jtshould be noted that
there may be negative cycles in the dual graph that exist indepeadently of the value we set for
a. Thlscanonlyhappenxftherclsnofeasibleﬂomemafuissettom If this caseé
this is detected we halt, returning with no flow. Wemhenee{gtﬂmssmthatthmexmsa
legalﬂowﬁmcuenforGforsomcposmvevalueefa ‘

Let C be asimple cycle in the dual graph G*. 'Ihenetcmssb:gsofﬂlepaﬂ:Pbymecycle
Clsdeﬁnedasbemgequaltothenumberofﬁmescctossesttomnghttold‘tmmusﬂxe
numbudfuossmgsfmmleﬁmﬂght. (nghtandleﬁaredeﬁnedm;espectwﬂxepamnon
ofthaphhtbyﬁﬁpﬂ:h?) : :

“"We observe the following stmghtforward Fact.

LEMMA 5.1: The niet crossings of P by C ueuherﬁoﬁ-iﬂ

Pmof Assume the“cycle C crosses the path P more than once. We prove that two
consecutive crossings on P alternate between left- -right crossings and right- -left ones. Suppose,
to the contrary, that edgies e, ¢ € C are two consetutive crossing 'ﬂ:htaijeonentedindiesame
dmctxon,whemdnstothenghtofewxﬂnupectwﬂmﬁ The cycle C partitions
the plane into two regions, interior and exteriof, and without loss of generality let the interior
bethereglon’leﬁofmecyclewaﬂlrespﬂbtmnsonemaﬁm. Now, liowever, there are two
points in the plane, onepmnttoﬂlenghtofe(mtheeana')andlhedﬂwnotheileftofe' (in
themtenor),ﬂmtcanbeconnectedmthmtcrosmngﬂ!ecyd_e?,' ‘Hence, ﬂxaembeatmost
one crossing that is not “canceled” and mm_«mmm

Thefollowmgdeﬁmuonsholdforboﬂl sequential : : \
that computes shortestpathsmagraphxscalledoblwmusxfmy&cxsmnonwmchpaths
mthegnphtocompm:smdependentofﬂwwghuufﬁcsedpﬁ ‘In particular, for a
ﬁxed(mwmghwd)gmph,mobkvmsdgorxﬁmwaﬂalmysmemsmcpuhsformy
assignment of ‘weights to the edges: An algorithm thiat compaites shostest paths in a graph is
called additive if, for any nonsimple cycle C, its weight is computed in a time step subsequent
tomenmcswpsmwhlchﬂwwexghtofeachafmcompomﬁltformsxmpkcyclesxs
computed:

We first describe a generic algonﬂlmformdmgmemm&aﬁbleaunda’ﬂ!e
assumption that an (Sequential or parallel) algonthﬂlAﬁxcompuungshomtpathsma
gaphﬂiat‘:sbodlobhvmmdaddmwuavuhble. e

GENBIUCAILX)RIH‘IM.
Input: a planar flow graph (G, c,d)whetemcdemandfuncnomuamableforpremselyonc
mceandonesmi;anobhnousandaddxuveﬂgmﬂxmAforeompuungshmtestpathsmG
Output: themanmnmlegalﬂow
1. Find any flow f’ for G; Set G « G — f’ (Flowf’sausﬁestheﬁmddemandsm
- the graph.)
2. F'mdasmplepathPﬁ'omstotandconsu'uctﬂowf.,forsomlm'geoonsmnta
3. Set Gy« G — fo.
4, Test whether G has negative cycles. RnnAlgomhm.Aonﬂ" :
(a) IA:be&eﬁMﬂcpmwhcbanequékde(mMgm&mA)
andletlbcthewexghtofﬂxemostnegmvecyclcdetectedatSmpt
®) Seto <—a+l restartAlgonthmA,le -goto Step 3.

THEOREM 5.2. Assume that the running time ofAlgonthm Alis O(T) Then, the generic
algorithm terminates after at most O(T?) steps and computes the maximum feasible value

of a.

i

P L

FLOW IN PLANAR GRAPHS 1011

Proof. Let T denote the first step of Algorithm A in which a negative cycle is detected.
We will prove that after updating the value of « and restarting Algorithm .4, a negative cycle
can be detected only in time steps subsequent to z. Hence, the gcnetic algorithm terminates
after at most Y"_, 7 steps, which is at most O(7?) steps. -

LethenotcthesetofcyclesmwhtchAlgonﬂxmAlmsoompuwdthelrwenghtupto
Step . We claim that after updating the value of «, the weight of all cycles in the set C must
be nonnegative. Since Algorithm .A is oblivious, it follows that in agymbseqnent iteration, a
negative cycle cannot be detected before Step.v +1. =~

To prove the claim, supposemdneconmthatmumcswpt i3 ‘t, a negative weight
cycle C € C is discovered in G, ;. (Assume that v’ is the first step in -which.a negative cycle
is detected.) We first prove that C must be a simple cycle. I C is nota simple cycle, then it
can be decomposed into a set of simple cycles. By the additivity. property of Algorithm A,
this set of simple cycles must belong to C. Since the weight of € is the sum of the weights of
the simple cycles in its decomposition, some of the simple cycles must have negative weight.
Again, by the addmvxtypmperty the weight of these. sxmplecychs will be computed in a time
step t”, whetet <7 Thetcfore,wecanassumethatCuaslmplcgycie

Recall that for every negative weight simple cycle in C, the net. number of crossmgs of P
must be 0 or 1. Therefore, the weight of cycle C mG‘g’mnotbeless than I, implying that
all the simple cycles in G?.,, belonging to C canpot be of negative weight. In step 4(b) the
value of @ can only decrease, andhcnceﬂxewelghtofﬂlecyclesm 4wllli'cmamnonncgatxve

, Itremmnsmpmethmmealgonthmcomputesﬂlemaxlmumq. Let aax denote the

final value of & computed by the algorithm and let C be the most negative cycle detected by
thealgmﬁxmmthelaststcpmwhxchaneganvecyclewas" “It;seasytoseethatm
any graph Gy (whm a’ > Omy) the wexght ofcycle (of mustbernegutive 8]

53.1. Implementing the generic algorithm. The most efficient way of mplementmg
megmdgmdlmwoanebyumngmenestnddnueMmeﬂwdof[m]andmm-
plementauonmparallelbmeandRclf[ZG}-[”] chmﬂdeahlghlweldescnpnon
of it

ThebamcldeaunderlymgthcmeﬂmdofncmddeBpmummgﬂwgmphby
a family of separators, where each separator partitions the graph into equal size components
(up to constant factors), Each separator is a cycle, and and wo refer to the two components of
the graph generated by the cycle as being “inside” and “outside” the separator. Henoe we can
thmkoftheseparatotsasformmgabmalymasfollows thgmotofﬂlau'eelstheg:ath,
thedescendantsofeachvertexmthetreeareﬂ:etwocomponentsgenaaﬁedbytheseparawr
'I‘heshortcstd:stancesmﬁ:cgmpharecomputedbomm@mthenee. :

Pan and Reif obtained mmbcstnmcbomdi[%]bysueamﬂnmgthecomyutauon
Inunuvely,ﬂnsmbemoughtofasvacm.ﬂmacamnlevel‘mﬁnbeeofsepamtorsbegm
computing their transitive closure beforethevethccsmﬂxe levels below ﬂlcmhaveﬁmshed

" computing their transitive closure.

For us, ﬂ:empormntfcanncofshomtpaﬂlalgonﬂ:msbasedonneswddxssecuonmmat
they are-oblivious and additive.
THEOREM 5.3. Themaxzmumﬂowmadxmctedplanargmphmdmsmglcsoume, single

" sink can be computed in O(log® n) time using O(n'~) processors in the CRCW model.

. Proof. The proof follows from the discussion. o.

The sequential running time was shown in [15] to be_ O(n” logn)

Another oblivious and additive algorithm for computing shortest paths is via matrix mul-
tiplication and doubling-up. The computation of the shortest paths proceeds in ‘this case by
successive squaring of the adjacency matrix A of G* mml we get A™. Let k be the first iteration
in which aneganveenn'yappearsmthcdmgonalofA and let I be the most negative entry
of the diagonal in that iteration. We update a by /, i.e., setting G' <« G — fq41, and start the

S e o

O N

o A KRB MR P

1012 GARY L. MILLER AND JOSEPH (SEFFT) NAOR

computation of the shortest paths from the beginning. It follows from the proof of Theorem
5.2 that AZ will not have negative entries any more in its diagonal.. Hence, at most logn
computations of the shortest paths algorithm suffice to compute the value of the minimum cut.

6. Maximum fiow on the disk. In this section we describe an algorithm for computing
a maximum flow for the case where all the sources and sinks wigh variable demands lie on the
same face. Without loss of generality, one can assume that the ¢ urces and sinks are on the
outer face and that they alternate, i.c., there are no two consecufive sources or sinks. These
two properties will be maintained during the recursive calls to the algorithm. We discuss two
cases. In the first case we will assume ’ v

, ase qume that G has no negative capatities and no vertices with
nonzero demands, i.g., the zero flow is a legal flow. In the second case, ‘we allow negative

capacities and nonzero demands and we show how to reduce this case to the first case.
6.1. Maximum flow on the disk with positive ipacities and zero demands. Let'G

be a flow graph and f be a maximum flow on G. Among-all mininvaiit cuts separating the
somces‘fromd:esinks,wcueinmwdindxe“ﬁ!sf’ﬂfnimumcnnébﬁﬂ"ufollm:’w
W be the'set of vertices that are reachable from the sourceés in G — f-The Ford-Fulkerson
cut with respect to f"is the set of edges between W and V= W. Suppose the sources and
sinksofmewwtfaeemsepuaedimotwoconsecGﬁWMLmﬂR%ﬁmimﬂEﬂowf
fmmLtoRiSdeﬁnedasﬂwﬂowmﬂmaxiﬁlimdle'ﬂoW'Mthesmwt‘ithdwsinks
in R. Inparﬁcnlnr,Wecansetthedemandofeach‘sink’inLiandeachsonweinR’t’oze’m.
The main idea of the algorithm is the following: Divide the vertices of the outerface into
two (aforementioned) sets and compute the maximum flow from L to R: The Ford—Fulkerson
cut associated with this flow decomposes the disk into regions and in each région the maximum
flow is computed recursively. In the last step of the algorithm; the maximum flow is computed
from Rto L. Wepmvethaxwhenﬂ:calgoﬁmmmm,theﬂowmndtbeangmcnmd.
Assume‘thatafwtﬂleﬂawiscompmdﬁomeR,‘dleed‘gés-nfﬂwFo:d-—Fulkusmcut
th",dcnétethesomcesandsinksbelongingtoasgtofverﬁws V. Let C denote the set
of connected components of G — f aﬁutheedgesofﬂxem—mmwtmdeleted
We are now ready to present an outline of the algorithm for computing the maximum

SKETCH OF ALGORITHM (II). :
Input: a planar flow graph (G, §, T, c,d) whmﬂledemandﬁmcﬁonisutoforallverﬁws
of G, the capacities are all positive, and the sources and sinks are on the outer face.

Output: the maximum flow function f in G.

If G has at most one source or oxie sink then return the zero flow.

Else: . S

1. Dividedxesouroesandsinksintotwoeonsecuﬁvesets,-L and R, such that {L,]| = |R|
anchontainsatleast—asmanymsas;R. : , .

2. Compute a maximum flow fir from L to R. Compute the residual graph G’ =
G - fir. : ‘

3. Delete the edges of the Ford—Fulkerson cut from G’ and compute C, the connected
components of G’; recursively, compute the maximum flow. for each component
¢ € C. The bottom of the recursion is when a component ¢ contains a unique source
and no sinks, or vice versa. Let frar be the sum of the flows computed for each

component.
4. Compute the residual graph G” = G — frr — frar. Compute the maximum flow
fay from Rto Lin G”.

5. Return the flow fiz + Jrar + JreL.

FLOW IN PLANAR GRAPHS 1013

We now elaborate on the steps of the algorithm. In step 2 connect all the sources in L to
a new vertex, a supersource, and all the sinks in R to a new vertex, a supersink. This can be
done without destroying the invariant that all the sources and sinks of G lie on the outer face,
since we have set the demand of the sinks in L and the sources in R to zero. The problem
then reduces to computing a maximum flow in an {s, t} planar graph, a graph in which both
the source and the sink are on the same face [3], [12], [S]. Observe that all recursive calls are
for graphs with nonnegative capacities and zero demands. . s

In step 3 the maximum flow in each ¢ € Cis recursively computed. The capacities of the
edges,incargﬂ)eresidnalcapaéiﬁeswithrespecttbﬂ;eﬂchQtﬁpﬁtedihstcPZ. We now
recursively compute the maximum flow inside c. If a connected component contains vertices
from both L, and R,, then there can be only two cases:) sinks from Z -with sources and

sinks from R; (ii) sources from R with sinks and sources froni' L. In the recursive call, in
the first case wgconnectallthesink.sthatbelongmLto,asupqgink,:_angiig.ﬂnsecondme
we connect all the sources that belong to R to a supersource. This is done to ensure that the
number of sources and sinks decreases by a constant factor:in gach recursive call. Observe
thatdmeﬂowsoompuwdineachoomponentaredisjointandhevnq_eihemmisvalegal flow.

Instcp4wecomputzthemaximumﬂowrﬁmanL similar to step 2.

We now prove the correctness of the algorithm. . . ‘

We first need a technical fact about writing a flow. as a sum of augmenting paths which
are viewed as flows, I:theaﬂowgraphwithsoumandsinks,nQnmgaﬁvecapaciﬁes,
and zero demands. Furthermore, let f be a legal flow for G. A sum of augmenting paths
a,fl+.---+akf;,=fisapasitivedecompositionoffif :

(i) a>0forl i<k :

(i) the arcs e and R(e) cannot both belong to any of the paths fi, ..., fis

(iii) each_pathstansatasomceandendsatasink. , .

LEMMA 6,1. Let G and f be as above. Then there exists another legal flow flonG
which has a positive decomposition into augmenting paths and agrees wish | on the sinks and
sources OfG- : i Lo .

Proof. We pick a source s in G such that £(s) > 0. Starting from s and ending at some
sink, we pick a path P of arcs such that the flow in_f on each arc is positive. Let a; be the
minimum flow on any arcin P. Set f = f —aw i and observe that f is still a legal flow. We
continueinﬂnismdyfashionunﬁl’allsinkshavewoﬂow. Let fi, - . ., fi be the constructed
augmenting paths. At this point we set ' = @1f1 + .- + a3 fi and discard the remaining
flowin f: =~ O IR _— ' :

" THEOREM 6.1. Algorithm (I) correctly compiites-a maximim: flow. s
Proof. The proof is by induction on the number of si ks ani sotirces in G. If G has only

one source or sink, then its flow must be zero since the doniand at a1l othier vertices is assumed

to be zero. Since Algorithm (II) returns zero in this case, we may assume inductively that at
the end of step 4, a maximum fiow was computed in each confiéeted component ¢ € C. That
is, there is no augmenting path contained in ¢ for the flow graph G — frz ~ fLar. In the time
analysis we shall bound more closely the number of sinks and sources in each recursive call,
but it is clear that each call has strictly fewer sources and sinks.

To prove the theorem, we have to show that there are no augmenting paths from any source
stoanysink? in G— fog— fLar— frL. ByLemma6.1 we canreplace the flow fg, with another
legal flow fg, such thiat it can be written as the positive sum a; f +- - -+ay fi. It will suffice to
show that there are no augmenting paths with respect to the flow G — fir— frar— fgy- Note
thatall thepaths f; (1 <i =< k)areaugmentingpathswithrespecttoﬂleﬂowG—fu — fL&r-
Furthermore, for any edge e belonging to the Ford-Fulkerson cut, only R(e) may belong to
an augmenting path f;. Hence an augmenting path f; can only leave a connected component
but not coier a connected component.

A e

o A B

AL v e 0

P
2l

1014 GARY L. MILLER AND JOSEPH (SEFFI) NAOR

NowsupposethatAisanangmentingpathﬁomasomcestoashktinG—fLR -
frar — fre- Therearefqurcases,dependingonwhethasisinLorRandtisinL and
R, which we denote by LL, LR, RR, and RL. We show that the existence of A results in a
contradiction in each case.

We know that A cannot be a type RL since step 4 computed a maximum flow from right
to left. ' —
Suppose that A is of type LL. We claim that one of the arcs of A must have zero residual
capacity in G — fir — frar- If A contains an arc of the Ford—Fulkerson cut, the claim is
clearly true. If not, then A is contai ed in one of the connected components ¢ from step 3.
Since step 3 returns a maximum flow for ¢ (by the induction hypothesis); the path A cannot
be augmenting for G — fLr — fLar and, therefore, the arc must exist. ‘Let ¢ be the first such
arc on A. Since e has residual capacity in G — fLr — fLar — Shis it mustbe the case that
one of the augmenting paths f; from the positive decomposition of ff; contains the arc R(e).
Consider the following path A’ that consists of the arcs of A up to but net inclading e plus the
arcs in f; following but not including R(e). By the observation above, the arcs in f; following
R(e) must belong to c. Thus, the path A’ is an augmenting path for G — fLr — frax, resulting
in a contradiction. Therefore, type LL augmenting paths do not exist. '

We__handlethelasttwo,cases,l.RandRR,gQgeﬂLg,Ag;igcggm.someagcon A must

have zero capacity in G — fix — fLax- Inthis case let be the last arc.on A with zero capacity.
Furthermore, let f; be an augmenting path containing R(e). We construct an augmenting path
A’ from arcs on f; before R(e) and arcs on A that follow e. It follows that A’ is an augmenting
path for G — fur — frar, again a contradiction. [o __
THEOREM 6.2. The running time of Algorithm (I) is O(n log!* n).sequentially. In par-
allel, it can be computed using O(n'?) processors; the time complexity is ol (n)log3 n),
where I(n) is the parallel time of computing the sum.of n valyes, 1(n) can be implemented in
O(1) time in the CRCW PRAM model and in Q (log) time in the EREW PRAM model.
Proof. In steps 2 and 5 we compute the maximum flow in-an {s, #}-planar graph. This
can be done by Hassin’s algorithm [5], and its time complexity is O(n/logn) sequentially
[5). In parallel, Hassin’s algorithm can be implemented in O(1 (n) logzn) time and O(n'*)
processors by using the shortest path procedure outlined in §3.1. Since all the recursive calls
at a given level of the recursion are on vertex disjoint subgraphs, we will only need O(n'*)
processors for the full algorithm. AR
Observe that if G has 2k sinks and sources, then each connected component will have at
most 4 + 1 siks and sources for k 0dd and k sinks and sources for n even. Tt follows that the
pumber of alternations of sources and sinks in each connected component of C is reduced by
a constant fraction. Note that in step 3, at most one source or one sink is added instead of the
edges of the Ford-Fulkerson cut. ' -~
Let T,(a) and P,(a) denote the time and number of processors, respectively, and let n
and a denote the number of vertices and alternations, respectively. For the parallel running
time we get the following recursive formula: ‘

and hence the running time of the algorithm is O(I(n) log® n). As already mentioned, the
number of processors then needed is o@n'®).
For the sequential running time we get the following recursive formula:

| To(@) < 2Ta(@/2+ 1) + O(ny/logn),

I T,@) < T,(a/2+ 1) + O(I(n)log?n),
|

and hence the sequential running time of the algorithm is O(nlog™nm). O

FLOW IN PLANAR GRAPHS 1015

6.2. Maximum flow on disk with negative capacities. In this section we show how to
reduce the maximum flow problem on a disk to the special case neededin §6.1. There are two
conditions that must be met in order to apply Algorithm (II):

o Vertices must have zero demand.
o Edges must have nonnegative capacities. :

The reduction is quite straightforward and consists of the following steps: First, choose
any flow f that meets the demands. Then, find a maximum legal flew f*in G — f and return
theflow f+ f. .

The first step is implemented very similarly to algorithm (T): the flow is returned from the
sinks to the sources via a spanning tree. Now, all vertices which are not variable sources or
sinks have demand equal to zero. However, we may still have negative capacities. To reduce
the case of negative capacities to the case of nonnegative capacities. we need only find any
flow. We introduce a supersource-sink vertex s and connect every source and sink to 5. We
also set the demand at s and at every. source and sink to zero. This gives a planar flow graph
G, which is in fact a circulation graph. Thus, the second step above will actually consist of
two substeps: first, find any flow f"in G + f using the reduction to the circulation problem;
then, find a maximum flow f'in G + f — f” using Algorithm (.

" 4. Maximum flow for a bounded number of faces containing sources and sinks,
There are several extensions of our work. As previously mentionéd, efficiently computing
(sequentially and in parallel) a maximum flow in ‘a planar graph with many sources and
sinks with variable demands is still open. However, we observe that we can provide efficient
sequential and parallel algorithms for the case where the sources and sinks belong to a fixed
or slowly growing number of faces. As in §6, we discuss the special case when all capacities
are nonnegative and all demands are zero. S : ' ‘

First observe that the following greedy algorithm computes a maximum flow with many
sources and sinks. Suppose that G is any flow graph with'sources s, . . ., spandsinkst;, ..., 4.
We claim that the following algorithm finds a maximum flow." :

SKETCH OF ALGORITHM (1II). o
Input: a planar flow graph (G, S, T, ¢, d) where the demand function is O for all vertices and
all capacities are positive. ' '
Output: a maximum flow function f.
1. Setf=0
2 Forl<i<kandl<j<ldo N
(8) Set the demand at all 5, and all #, for u # i and'v # j 10 zec0 and find a
‘ maximum flow f;; froms; to ;in G — f. '
() Set f=f+fy.
Return f

LEMMA 7.1. Algorithm (III) computes a maximum flow.

We next observe that the proof of correctness of Algorithm (II) is actually independent of
the following: (i) the fact that the sources and sinks are all on one face; (ii) the planarity of the
underlying graph. This implies that the following generic algorithm computes a maximum
flow in a graph G (not necessarily planar) with many sources and sinks:

1. Partition the sources and sinks into two disjoint sets L and R.

2. Compute the maximum flow from L to R, i.e., from the sources in L to the sinks
inR. LetC denote the Ford—Fulkerson minimum cut with respect to the maximum
flow.

3. Remove the edges of C from the graph G. Recursively compute a maximum flow in
cach connected component (in the residual graph). '

4. Compute a maximum flow from R to L (in the residual graph).

AT S O T

o BTN B ST ki W

o

e S S SRR PR VRS

1016 GARY L. MILLER AND JOSEPH (SEFFI) NAOR

Let G beaplanargraphwithvariablesourmandsinksthatlieonatmostkfacesof
G, denoted by Fi, ... Fx. We now show how to combine Algorithm (II) with the generic
algorithm to efficiently compute a maximum flow inG. .

Step 1 in the generic algorithm is implemented as follows: the sources and sinks on face
F; (1 < i < k) are partitioned into two sets, L; and Ry, in the same way that the sources and
sinks on the disk are partitioned in Algorithm (I). The set L is defined as the union of the sets
L; (1 <i <k)and the set R is defined as the union ofthesets Ry (1 <i <k). —

To implement step 2, first connect the sources in each set £; 16° a supersource s;, and the
sinks in each set R; to supersink #. This operation does not violate the planarity of the graph.
The maximum flow from L to R is computed by Algorithm (III). Computing the flow from
source ; to sink #; in Algorithm (III) is an instance of the problem of computing the maximum
flow in a directed planar graph with one source and one sink. Step 4 is implemented similarly.

Note that in step 3, the number of alternations of sources and sinks is reduced by a constant
factor for each face F; (1 <i < k).

Hence we get recursive formulas for the running time which are similar to those obtained
in the proof of Theorem 6.2. For the parallel running time we get

T,(@) < T,(a/2+1)+ 0 I*(m)log'n),

and hence the running time of the algorithm is O (k*log*n) in the CRCW model. The number
of processors needed is O(n'%). ’
For the sequential running time we get

L.@) < 2T.(a/2+1) + 0@ n* logn),

and hence the sequential running time of the algorithm is O (k*n'* log? n).
We conclude with the following theorem. ')
THEOREM 7.1. If G is a planar flow graph with variahle sources and sinks that lie on at
most k faces of G, then amaximum fiow for G can be computed sequentially in O(k*n'S log? n)
time. In parallel, the running time is G (k" iog’) using O@'") processors in the CRCW
model.

REFERENCES

{11 C.BERGE AND A. GrourLA-Houi, Programming, Games and Transportation Nesworks, John Wiley, New York,
1965.
(2] S.EVEN, Graph Algorithms, Computer Science Press, Potomac, Maryland, 1979.
31 L. R. Forb AND D. R. PULKERSON, Maximal flow through a network, Canad. J. Msth., 8 (1956), pp. 399-404.
[4] G.N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs with applications, SIAM J. Comput.,
16 (1987), pp. 1004-1022.
[5] R HASSIN, Maximum flows in (s, t) planar networks, Inform. Process. Lett., 13 (1981), p. 107.
[6} R. Hasspe ANp D. B. JouNsON; An O(_rﬂbgz n) algorithm for maximum flow in undirected planar networks,
SIAM J. Comput., 14 (1985), pp. 612-624.
{71 H.Gazitr anD G. L. MuLLER, A parallel algorithm for finding a separator in planar graphs, Proc. 28th Symposium
on Foundations of Computer Science, Los Angeles, CA, 1987, pp. 238-248.
(8] ———, A deterministic parallel algorithm for finding a separator in planar graphs, manuscript.
[9] M. GOLDBERG AND T. SPENCER, Comucﬁugamaximaliudepmdaamhpardlel, SIAM J. Discrete Math.,
2 (1989), pp. 322-328.
[10] L. GOLDSCHLAGER, R. SHAW, AND J. STAPLES, Ihe»mzimwnﬂowpmblanislogspacecompkuforP,Theotet.
Compat. Sci., 21 (1982), pp. 105-111.
[11] J.E. Horcrorr AND R. E. TAAR, Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974), pp. 540-558.
[12] A. ITa1 AND Y. SHILOACH, Maximum flow in planar networks, SIAM J. Comput., 8 (1979), pp. 135-150.
[13] L.JANIGA AND V. KOUBEK, A note on finding cuts in directed planar networks by parallel computation, Inform.
Process. Lett., 21 (1985), pp. 75-78.

P

i A A U T B I PPN B

FLOW IN PLANAR GRAPHS 1017

{14} D.B.Jot-msou.Pmalklalgoﬁdmuformb:imwncmmdmﬁawshﬂmarmmb,lAuoc.Compln.
Mach., 34 (1987), pp. 950-967. :)

[15] D. B. JOHNSON AND S. VENKATESAN, Using divide and conquer to find flows in directed planar networks in
o'’ logn) ﬁme,Pmc.ZO&AnmmConfmmemmicaﬁm.Oonuoldeomppﬁng,Unimsity
of Ilinois, Urbana-Champaign, Urbana, IL, 1982, pp. 898-905. :

(16} R.M_KA»,B;’UmmAWmsm,CommwﬁngapufeaMhhmdomNc,Comﬁmmdm
6 (1986), pp. 3548, St i EREE S Do

[17] P. W. KasteLevN, Graph theory and erystal physics, in Graph Theory and Theoretical Plrysics, F Harary, ed.,
Academic Press, New York, 1967, pp. 43-110. o

'[lﬁl 'S, KiuLLER AND J. NAOR, Flow in planar graphs with venacapaciues.Algomhm'wn. 1717(1’_994)',‘ pp- 200-225

{19] P. N'KLaN AND J. H. REFF, An efficient parallel algorithm for planarity, J. Comput. System Sci., 37 (1988),
(201 R.J.Lrrron, D.J. Resg, AND R E. TARIAN, Generalized nested dissection, SIAM 1. Numer. Anal., 16 ¢1979),

, pp. 346:358. .. . o ,
{21) R. J. LirToN AND R E. TARIAN, Applications of a planar separator theorem, SlAvM‘J.Conynl,,9(l980),

pp. 615-627. .

[22] N. MBGIDDO, Opmdﬂwshmommmkmmaﬂm,mmm&7(l974),
Pp.97-107. ’ - o = R R

23] , A good algorithm for lexicographically optimal flows in multi-ferminal networks, Bull. Amer. Math.
Soc., 83 (1977), pp. 407-409. :

[24] K. MuLmuLey, U. YmeV.VVmMm:uamumﬁxmm Combinatorica,
7 (1987), pp. 105-113. : . ' ’

{25] T. NiSHIZEXL AND N. CHiba, Planar graphs: Theory and algorithms, in Ann. Discress Math., Vol. 32, North—
Holland Mathematical Smdies, 1988,) ’ '

[26] V.PANAND J. H. REIF, Fast and efficient parallel solution of sparse linear systems, Tech. report 8819, Computer

' Science Departmeat, State Univezsity of New York ut Albany, Albany, New York, 1988. i

2N , Fast and efficient solution of path algebra problems, J. Comput. System Sci., 38 (1980), pp. 494-510.

28] —,WMMJMMMBMM&MMMMPW.
Lett., 40 (1991), pp. 79-83. :

[29] Vnmumnn,ﬂowwhgmmmmwmﬂows,mubhﬂdmm

[30) J.}LREF,MMMJ—taaafaplamrmdimctednaworkhO(nwn),mS!AlMl.Com,lul%ﬂ,
pp- 71-81. -

31] Y. SMANDU.‘VmAn O(Qogn) parallel connectivity algorithm, J. Algorithms, 3 (1982), pp. 57-67.
[321 V.V. VAzZIRANI; NC algorithms for computing ﬁembcrofperfactma'sﬁlg,g-ﬁugmhsmdnw
problems, Inform. snd Comput., 80 (1989), pp. 152-164.

3

S

