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ABSTRACT
We use exponential start time clustering to design faster
parallel graph algorithms involving distances. Previous al-
gorithms usually rely on graph decomposition routines with
strict restrictions on the diameters of the decomposed pieces.
We weaken these bounds in favor of stronger local proba-
bilistic guarantees. This allows more direct analyses of the
overall process, giving:

• Linear work parallel algorithms that construct span-
ners withO(k) stretch and sizeO(n1+1/k) in unweighted
graphs, and size O(n1+1/k log k) in weighted graphs.

• Hopsets that lead to the first parallel algorithm for ap-
proximating shortest paths in undirected graphs with
O(m poly log n) work.

1. INTRODUCTION
Graph decompositions are widely used algorithmic rou-

tines. They partition the graph to enable divide-and-conquer
algorithms. One form that has proven to be particularly
useful is the low diameter decomposition: the decomposed
pieces should have small diameter, while few edges have end-
points in di↵erent pieces. Variants of the low diameter de-
composition are used in algorithms for spanners [Coh98], dis-
tance oracles [TZ05], and low stretch embeddings [AKPW95,
Bar96, CMP+14].

Early applications of the low diameter decomposition in-
clude distributed algorithms by Awerbuch [Awe85], and low-
stretch spanning trees by Alon et al. [AKPW95]. Further
study of low stretch tree embeddings led to a probabilistic
decomposition routine by Bartal [Bar96]. On an unweighted
graph, this decomposition partitions the graph so that only
a � fraction of the edges are cut, and the resulting pieces
have diameter O(��1 log n).

The development of parallel algorithms for finding tree
embeddings [BGK+14] led to a parallel low diameter clus-
tering routine using exponential start times [MPX13]. This
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routine then led to algorithms that generate tree embeddings
suitable for a variety of applications [CMP+14]. The clus-
tering algorithm itself has properties suitable for reducing
the communication required in parallel connectivity algo-
rithms [SDB14]. This suggests that exponential start time
clusterings have a variety of other applications in graph al-
gorithms.

Graph decomposition routines are often invoked hierarchi-
cally, leading to many levels, each refining the output of the
previous one. The O(log n) discrepancy between the proba-
bility of edges being cut and diameters of pieces in standard
low diameter decomposition could then accumulate through
the levels. To address this issue, recent algorithms using low
diameter decompositions usually require stronger properties
at intermediate steps.

In this paper, we give an alternate approach based on the
probabilistic guarantees of the exponential start time clus-
tering. We regard the multiple levels as independent events,
and analyze the output probabilistically in each locality.
This weakens the interactions between the levels, while still
allowing us to analyze the final outcome using probabilistic
methods. We apply this method to several classical graph
problems involving distances.

Spanners are sparse subgraphs that approximate distances
in the original graph. We show that one round of exponential
start time clustering augmented with a few edges leads to
spanners. This algorithm extends to the weighted setting by
bucketing the edges by weights, and then clustering them
hierarchically. This leads to an overhead of O(log k) in the
size compared to the optimal construction where k is the
stretch factor, and O(logU) in depth, where U is the ratio
between the maximum and minimum edge weights.

Theorem 1.1. There exists an algorithm that given as

input a graph G and parameter k � 1, finds with high prob-

ability a subgraph H in which shortest path distances are

preserved up to a factor of O(k) (i.e. H is a O(k)-spanner
of G). If G is an unweighted graph, then H has expected

size O(n1+1/k) and is computed in O(log n log⇤ n) depth with

O(m) work. If G is a weighted graph with ratio of maximum

and minimum edge weights bounded by U , H has expected

size O(n1+1/k log k) and is computed in O(logU log n log⇤ n)
depth with O(m) work.

Closely related to spanners are hopsets, which do not limit
the edge count, but aim to reduce the number of edges in
the shortest paths. These objects are crucial for speeding up
parallel algorithms for (approximate) shortest paths [KS97,
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Coh00]. Using the exponential start time clustering, we
construct hopsets which lead to the first parallel algorithm
for approximating shortest paths in undirected graphs with
O(m poly log n) work. Here, our key idea is to employ back-
ward analysis and analyze the algorithm with respect to a
single (unknown) optimal s-t path. We show that in ex-
pectation this path is not cut in too many places by the
decomposition scheme, and use this to bound the overall
distortion.

Theorem 1.2. There exists an algorithm that

given as input an undirected, non-negatively weighted

graph G, and parameters ↵, ✏ 2 (0, 1), prepro-

cesses the graph in O(m✏�2�↵ log3+↵ n) work and

O
⇣
n

4+↵
4+2↵ ✏�1�↵ log2 n log⇤ n

⌘
depth, so that for any

vertices s and t one can return a (1 + ✏)-approximation to

the s� t shortest in O(m✏�1�↵) work and O
⇣
n

4+↵
4+2↵ ✏�2�↵

⌘

depth.

The paper is organized as follows: Section 2 reviews some
standard notions and compares our results with related works.
In Section 3, we describe our spanner construction for both
unweighted and weighted graphs. We then describe our
hopset algorithm for unweighted graphs in Section 4, and
extend it to the weighted setting in Section 5.

Although the probabilistic analysis allows us to decou-
ple some of the levels, mild dependencies between the lev-
els remain. Such dependencies result in terms of O(log k)
and O(log2 n) in our results for spanners and hopsets re-
spectively. A promising direction for improvements is to
construct the clusterings on di↵erent levels in a dependent
manner. Picking the randomness across levels from the same
source could allow more streamlined analysis of the overall
process.

2. BACKGROUND AND RELATED WORKS
We consider a graph G = (V,E,w) with |V | = n, |E| = m

and edge weights/lengths w : E ! R+. Throughout the
paper we will only deal with undirected graphs with positive
edge weights, so we can assume w(e) � 1 by normalizing and
w(u, v) = w(v, u). Furthermore, the graph is unweighted
if w(e) = 1 for all e 2 E. If X is a subset of V or E,
we will use G[X] to denote the induced subgraph of G on
X. If H is a subgraph of G, we will use G/H to denote
the quotient graph obtained from G after contracting the
connected components of H into points, removing self-loops
and merging parallel edges (by keeping the shortest edge).

The parallel performances of our algorithms are analyzed
in the standard PRAM model. The longest sequence of de-
pendent operations is known as depth, while the total num-
ber of operations performed is termed work. In practice, the
abilities of algorithms to parallelize are often limited by the
number of processors. For instance, a common assumption
in the MapReduce model is that the number of processors is
n� for some small � [KSV10]. In such settings, an algorithm
will fully parallelize as long as the depth is less than n1��.
As a result, it is more important to reduce work in order to
obtain speed-ups over sequential algorithms.

2.1 Exponential Start Time Clustering
We start by formalizing the key routine in this paper,

a graph decomposition routine which we call Exponential

Start Time Clustering. It generates a partition of V into
subsets X1, · · · , Xk, and a center ci for each Xi. It also
outputs a spanning tree for each cluster rooted at its center.
For convenience, if v 2 Xi, we use c(v) to denote ci. We use
a routine from [MPX13].

Algorithm 1 Exponential Start Time Clustering

ESTCluster(G,�)
Input: Graph G = (V,E,w), parameter 0 < � < 1.
Output: Decomposition of G.

1: For each vertex u, pick �u independently from the expo-
nential distribution exp(�).

2: Create clusters by assigning each v 2 V to u =
argminu2V {dist(u, v) � �u}, if v = u we let it be the
center its cluster.

3: Return the clusters along with a spanning tree on each
cluster rooted at its center.

In this paper we extend the algorithm to e�ciently run
on weighted graphs and also extend the analysis bounding
the number of inter-cluster edges to more general subgraphs.
The following lemma gives bounds on the run time and clus-
ter diameter for the weighted case.

Lemma 2.1. (Theorem 1.2 from [MPX13]) Given a weighted

graph G = (V,E,w) where |V | = n, |E| = m, w : E ! Z+

with mine2E w(e) = 1, ESTCluster(G,�) generates a set

of disjoint clusters [iXi = V . The diameter of each Xi is

certified by a spanning tree on Xi, which has diameter at

most
k
� log n with probability at least 1 � 1/nk�1

, for any

k � 1. This computation takes O(��1 log n log⇤ n) depth

with high probability and O(m) work.

We discuss the e�cient implementation of the ESTClus-

ter routine in Appendix A, as well as the e↵ect di↵erent
models of parallelism have on the depth. An analysis of
the resulting decomposition in unweighted graphs is in Sec-
tion 4 of [MPX13], and it extends immediately to weighted
graphs. Our spanner algorithm requires a stronger variant of
the edge cutting guarantee which we state below and prove
in Appendix A.

Let G be a weighted graph, a ball centered at c of radius
r is defined as B(c, r) = {v 2 V | d(v, c)  r}. The center c
may either be a vertex or the midpoint of an edge. We can
show that balls with small radius do not intersect with too
many clusters.

Lemma 2.2. The probability that a ball of radius r inter-

sects at least k clusters from ESTCluster is at most �k�1

where � = 1� exp(�2r�).

Corollary 2.3. An edge e with weight w(e) is cut in

the clustering produced by ESTCluster with probability at

most 1� exp(�� · w(e)) < � · w(e).

2.2 Spanners
A subgraph H of G is said to be a k-spanner, if for every

u, v 2 V , we have distH(u, v)  k · distG(u, v), where k is
also called the stretch factor. Notice that it is su�cient to
prove the stretch bound for endpoints of every edge. It is
known that for any integer k � 1, any undirected graph with
n vertices admits (2k � 1)-spanners with O(n1+1/k) edges,
and this is essentially the best tradeo↵ between sparsity and
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weighted graphs

multiplicative distortion Size Work Parallel depth Notes

2k � 1 1
2n

1+1/k O(mn1+1/k) O(n1+1/k) [ADD+93]
2k � 1 O(kn1+1/k) O(km) O(log n) [BS07]
2k � 1 O(kn1+1/k) O(km) O(log n) [RTZ05]
O(k) O(n1+1/k log k) O(m) O(logU log n log⇤ n) new

unweighted graphs

multiplicative distortion Size Work Parallel depth Notes

2k � 1 n1+1/k O(m) O(log3 n) [Pel00]
2k � 1 O(kn1+1/k) O(km) O(log n) [BKMP10]

O(2log
⇤ n log n) O(n) O(m log n) O(log n) [Pet08]

O(k) O(n1+1/k) O(m) O(log n log⇤ n) new

Figure 1: Known results for spanners, U represents the range of weights.

stretch [PS89, TZ05]. These notions have also been studied
under additive error [DHZ00, BKMP05].

A summary of e�cient algorithms for constructing span-
ners can be found in Figure 1. Our algorithms improve upon
the O(k) overhead in spanner sizes from previous parallel al-
gorithms while losing constant factors in the stretch. On un-
weighted graphs, this improvement comes mainly from the
ability to invoke exponential start time decomposition in the
spanner construction by Peleg and Scha↵er algorithm [PS89].
Our extension of this routine to the weighted case relies on
the probabilistic aspects of the decomposition. This leads to
improvements by factors of k

log k in spanner size and factors
of k in work over the previous best [BS07]. Such routines are
also directly applicable to the graph sparsification algorithm
by Koutis [Kou14].

2.3 Hopsets
Hopsets were formalized by Cohen [Coh00] as a crucial

component for parallel shortest path algorithms. The goal
is to add a set of extra edges to the graph so that the h-hop
distance in the new graph su�ces for a good approximation.
Let weight of a path p, denoted as w(p), be the sum of
weights of all edges on it, w(p) =

P
e2p w(e). The distance

between two vertices s and t, dist(s, t), is the weight of the
shortest (lightest) s-t path. Furthermore, with a set of edges
E0, the h-hop distance between s and t in E0, denoted by
disthE0(u, v), is defined to be the weight of the minimum
weight path with at most h edges between s and t, using
only edges from E0. If h is omitted we assume h = n, if
E0 is omitted we assume E0 = E. A probabilistic version of
hopsets can be described as follows:

Definition 2.4. Given a graph G = (V,E,w), a (✏, h,m0)-
hopset is a set of edges E0

such that:

1. |E0|  m0
.

2. Each edge uv in E0
corresponds to a uv-path p in G

such that w(uv) = w(p).

3. For any vertices u and v, with probability 1/2 we have:

dist
h
E[E0(u, v)  (1 + ✏)distE(u, v).

Given such a hopset, a result by Klein and and Subra-
manian [KS97] allows us to approximate the length of the

path e�ciently. They showed that when given an (✏, h,m0)-
hopset, a shortest path can be found in O(m✏�1) work and
O(hn↵✏�1) depth. As a result, the main work in parallel
shortest path algorithms is to e�ciently compute hopsets.
A summary of previous algorithms, as well as ours, is below
in Figure 2.

For Cohen’s algorithm, n↵ processors are needed for par-
allel speedups in both the construction and query stages 1.
In our case, if ✏ is a constant, O(log3+↵ n) processors are
su�cient for parallel speedups. Furthermore, once a hopset
is constructed, even a constant number of processors su�ces
for speedups.

3. SPANNERS
We first describe our spanner construction. Our spanner

construction in unweighted graphs has the same structure as
the sequential routine by Peleg and Scha↵er [PS89]: after the
decomposition step, we add in single edges between adjacent
clusters. We formalize this algorithm for completeness here.

Algorithm 2 Spanner construction for unweighted graphs.

UnweightedSpanner(G, �)
Input: An unweighted graph G and parameter k � 1.
Output: A O(k)-spanner of G.

1: Compute an exponential start time clustering with � =
logn
2k , let H be the forest produced.

2: From each boundary vertex, add to H one edge connect-
ing to each adjacent cluster.

3: Return H.

The Peleg and Scha↵er algorithm [PS89] relied on a bound
introduced by Awerbuch [Awe85], which bounds the num-
ber of interacting clusters around a single vertex. The same
bound can be obtained with exponential start time cluster-
ings using Lemma 2.2.

Corollary 3.1. In an exponential start time decomposi-

tion with parameter � = logn
2k , for any vertex v 2 V , the ball

B(v, 1) = {u 2 V | d(u, v)  1} intersects O(n1/k) clusters

in expectation.

1A more detailed analysis leads to a tighter bound of
⌦(exp(

p
log n))
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Hop count Size Work Depth Notes

O(n1/2) O(n) O(mn0.5) O(n0.5 log n) [KS97, SS99],exact
O(poly log n) O(n1+↵ poly log n) Õ(mn↵) O(poly log n) [Coh00]

(log n)O((log logn)2) O
⇣
nO( 1

log log n )
⌘

Õ
⇣
mnO( 1

log log n )
⌘

(log n)O((log logn)2) [Coh00]

O(n
4+↵
4+2↵ ) O(n) O(m log3+↵ n) O(n

4+↵
4+2↵ ) new

Figure 2: Performances of Hopset Constructions, omitting ✏ dependency.

Proof By Lemma 2.2, B(v, 1) intersects k or more clusters
with probability at most (1 � exp(2�))k�1. Let K be the
number of clusters intersecting B(v, 1), we then have

E [K] =
1X

k=1

Pr [K � k] 
1X

k=1

(1� exp(�2�))k�1

=
1

exp(�2�)

=
1

exp(� log n/k)

= n1/k.

⌅

Lemma 3.2. Given a connected unweighted graph and for

any k � 1, UnweightedSpanner constructs a O(k)-spanner
with high probability of expected size O(n1+1/k). This takes

O(log n log⇤ n) depth with high probability and O(m) work.

Proof The algorithm starts by constructing an exponen-
tial start time decomposition with parameter � = logn

2k . Let
F be the forest obtained from the decomposition, notice that
F has at most n�1 edges. Then for each boundary vertex v,
(i.e. v is incident to an inter-cluster edge), we add one edge
between v and each of the adjacent clusters to our spanner.
Using Corollary 3.1 and considering the ball B(v, 1) for each
v 2 V , we see that O(n1+1/k) edges are added this way in
expectation.

For an edge e internal to a cluster, its stretch is certified
by the spanning tree within the cluster, whose diameter is
bounded by O(k) with high probability by Lemma 2.1. If
the edge e has its endpoints in two di↵erent clusters, our
spanner must contain some edge between these two clusters.
As with high probability both of these clusters has diameter
O(k), the stretch of e is agin bounded by O(k) with high
probability. The depth and work bounds also follow from
Lemma 2.1. ⌅

This routine can be extended to the weighted setting by
bucketing the edges by powers of 2. Given G = (V,E,w)
where U = (maxe w(e))/(mine w(e)) is the ratio between
maximum and minimum edge weights, we bucket the edges
as

Ei = {e 2 E | w(e) 2 [2i�1, 2i)}.

This allows us to run the unweighted algorithm on essentially
disjoint sets of edges, but leads to an overhead of logU in the
total size. We reduce this overhead to log log n using an ap-
proach introduced in [CMP+14] that’s closely related to the
AKPW low-stretch spanning tree algorithm [AKPW95]. We
build spanners on these buckets in order, but contract the
low-diameter components with smaller weights. Lemma 3.2

then allows us to bound the expected rate at which vertices
are contracted, and in turn the size of the spanner.

Our contraction scheme is significantly simpler than previ-
ous ones because we will be able to ensure that edge weights
in di↵erent levels di↵er by factors of poly k, where k is the
stretch factor. To this end, we first break up the input graph
into O(log k) graphs where edge lengths are well separated.
We define Gj to be the graph with vertex set V and edge
set [i�0Ej+i·c lg k, where c is an appropriate constant2. It
is clear that the union of O(log k) such Gjs form the whole
graph, and they all have O(logU) buckets of edges, where
weights di↵er by at least O(kc) between di↵erent buckets.
Thus if we can find a O(n1+1/k)-sized spanner for each of
Gj , we obtain a O(n1+1/k log k)-sized spanner for G.

For each Gj , we use the fact that the weights are well-
separated to form hierarchical contraction schemes. Pseu-
docode of this algorithm is given in Algorithm 3.

Algorithm 3 Spanner Construction on graphs with well
separated edge weights.

WellSeparatedSpanner(G)
Input: A weighted graph G with well separated edge weight
buckets as described above.
Output: A O(n)-sized spanner for G.

1: Relabel the edge buckets to be A1, A2, . . . , As in increas-
ing order of weights, such that edges in Ai have weights
in [wi, 2wi) and wi+1/wi � O(k).

2: Initialize H0 = ; and S = ;.
3: for i = 1 to s do

4: Let �i = G[Ai]/Hi�1 with uniform edge weights.
5: Perform ESTCluster with � = logn

2k on �i

6: Let F be the forest produced in the previous step.
7: S = S [ F and Hi = Hi�1 [ F .
8: For each boundary vertex, add one edge connecting

each of the adjacent clusters to S.
9: return S.

Theorem 3.3. Given a weighted graph G with n vertices,

m edges and for any k � 1, we can compute with hight proba-

bility a O(k)-spanner for G of expected size O(n1+1/k log k),
using O(log n log⇤ n logU) depth and O(m) work.

Proof As discussed above, we break G into O(log k) edge-
disjoint graphs in which edge weights are well separated. We
run WellSeparatedSpanner on each of these graphs in
parallel, each iterations of the loop performs an exponential
start time decomposition on disjoint sets of edges, thus the

2The constant c should be chosen to achieve the desired
succes probability from Lemma 2.1. We will hide c inside
big-O notations from now on.
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overall work is O(m). As there are O(logU) iterations, the
overall depth is O(log n log⇤ n logU) with high probability.

Now we show that WellSeparatedSpanner produces a
spanner for each of these graphs. In each iteration of the for-
loop, the unweighted algorithm is run on �i = G[Ai]/Hi�1.
This produces an unweighted spanner for edges in Ai by
Lemma 3.2. Since the edge weights di↵er by at least O(k)
between levels, using Lemma 2.1 and induction on the loop
index we see that vertices in the quotient graph �i corre-
sponds to pieces of diameter at most wi in the spanner con-
structed so far, with high probability. Therefore the stretch
bound for edges from Ai in �i gets worse by at most a factor
of 2 when translated in G.

We finish by bounding the size of our spanner. Using
an argument similar to the proof of Lemma 2.1, we notice
that any non-singleton vertex in one of �i has probability
at least 1/n1/k of being contracted away. Thus in expecta-
tion each vertex participates in O(n1/k) level of WellSep-

aratedSpanner, and in each level it contributes O(n1/k)
inter-cluster edges and O(1) forest edges in expectation.
Thus WellSeparatedSpanner produces a spanner of size
O(n1+2/k), where the exponent 1 + 2/k can be reduced to
1 + 1/k if we back down on the stretch bound by a factor
of 2. Since the graph is decomposed into O(log k) well sepa-
rated graphs, this gives us the O(n1+1/k log k) overall bound
on the expected size of our spanner. ⌅

4. HOPSETS IN UNWEIGHTED GRAPHS
Our hop-set construction is based on recursive application

of the exponential start time clustering from Section 2.1. We
will designate some of the clusters produced, specifically the
larger ones, as special. Since each vertex belongs to at most
one cluster, there cannot be too many large clusters. As a
result we can a↵ord to compute distances from their centers
to all other vertices, and keep a subset of them as hopset
edges in the graph. There are two kinds of edges that we
keep:

1. star edges between the center of a large cluster and all
vertices in that cluster.

2. clique edges between the center of a large cluster and
the centers of all other large clusters.

In other words, in building the hopset we put a star on top
of each large cluster and connect their centers into a clique.
Then if our optimal s-t path p⇤ encounters two or more of
these large clusters, we can jump from the first to the last
by going through their centers. One possible interaction
between the decomposition scheme and a path p⇤ in one
level of the algorithm is shown in Figure 3.

This allows us to replace what hopefully is a large part
of p⇤ with only three edges: two star edges and one clique
edge. However this replacement may increase the length of
the path by the diameter of the large clusters. But as this
distortion can only happen once, it is acceptable as long as
the diameter of the clusters are less than ✏w(p⇤). Our algo-
rithm then recursively builds hopsets on the small clusters.
The probabilistic guarantees of an edge being cut gives that
p⇤ does not interact with too many such clusters. So once
again a reasonable distortion within these clusters can be
incurred.

Formally, two parameters are crucial to our algorithm: the
parameter � with which the decomposition routine is run,

and the threshold ⇢ by which a cluster is deemed large. The
algorithm then has the following main steps:

1. Compute a exponential start time clustering with pa-
rameter �

2. Identify clusters with more than n/⇢ vertices as large
clusters.

3. Construct star and clique edges from the centers of
each large cluster.

4. Recurse on the small clusters.

Our choice of � at each level of the recursion is constrained
by the additive distortion that we can incur. Consider a
cluster obtained at the ith level of the decomposition ran
with �i. Since the path has length d and each edge is cut
with probability �i, the path is expected to be broken into
�id pieces. Therefore on average, the length of each piece
in a cluster is about ��1

i . The diameter of a cluster in the
next level on the other hand can be bounded by k��1

i+1 log n,
where the constant k � 1 can be chosen with desired success
probability using Lemma 2.1. Therefore, we need to set �i+1

so that:

k��1
i+1 log n  ✏��1

i

�i+1 �
�
k✏�1 log n

�
�i.

In other words, the �s need to increase from one level to
the next by a factor of k✏�1 log n where ✏ < 1 the distor-
tion parameter. This means that the path p⇤ is cut with
granularity that increases by a factor of O(✏�1 log n) each
time. Note that the number of edges cut in all level of the
recursion serves as a rough estimate to the number of hops
in our shortcut path. Therefore, a di↵erent termination con-
dition is required to ensure that the path is not completely
shattered by the decomposition scheme. As we only recurse
on small clusters, if we require their size to decrease at a
much faster rate than the increase in �, our recursion will
terminate with most pieces of the path within large clusters.
To do this, we introduce a parameter ⇢ to control this rate
of decrease. Given a cluster with n vertices, we designate a
cluster Xi to be small if |Xi|  n/⇢. As our goal is a faster

rate of decrease, we will set ⇢ =
�
k✏�1 log n

��
for some � > 1.

Pseudocode of our hopset construction algorithm is given
in Algorithm 4. Two additional parameters are needed to
control the first and last level of the recursion: � = �0 is the
decomposition parameter on the top level, and nfinal is the
base case size at which the recursion stops.

We start with the following simple claim about the � pa-
rameters in the recursion.

Claim 4.1. If the top level of the recursion is called with

� = �0 as the input parameter. then the parameter � in itha
level, denoted �i, is given by �i =

�
k✏�1 log n

�i
�0.

We now describe how hopsets are used to speed up the par-
allel BFS. We prove the lemma in the generalized weighted
setting as it will become useful in Section 5.

Lemma 4.2. Given a weighted graph G = (V,E,w) with

|V | = n and |E| = m, let E0
be the set of edges added by

running HopSet(V,E,�0). Then for any u, v 2 V , we have

with probability at least 1/2:

dist
h
E[E0(u, v)  distE(u, v) +O(✏ log⇢ n · distE(u, v))
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s t

c2c1

vu

Figure 3: Interaction of an s� t path with the decomposition scheme. Shortcut edges connecting the centers

of large clusters allow us to ‘jump’ from the first vertex of p⇤ in a large cluster (u), to the last vertex of p⇤ in

a large cluster (v). The edges uc1, c2v are star edges, while c1c2 is a clique edge.

Algorithm 4 Hop Set Construction on Unweighted Graphs

HopSet(V,E,�).
Input: Undirected, unweighted graph G = (V,E) and de-
composition parameter �.
Output: The input graph G augmented with a set of
weighted edge E⇤.

1: If |V |  nfinal , exit.
2: Compute a exponential start time clustering of G with

parameter �, X .
3: if this is first call then
4: For each cluster X and in parallel, recursively call

HopSet(X,E(X), (k✏�1 log n)�).
5: else

6: Let Xb = {X 2 X : |X| � |V |/⇢} be the set of large
clusters.

7: Let Xs = {X 2 X : |X| < |V |/⇢} be the set of small
clusters.

8: For each large clusterX 2 Xb with center c and v 2 X,
add a star edge (v, c) with weight dist(v, c)

9: For all pairs of large clusters X1, X2 2 Xb with cen-
ters c1, c2 respectively, add a clique edge (c1, c2) with
weight dist(c1, c2).

10: For each X 2 Xs, recursively call
HopSet(X,E(X), (k✏�1 log n)�) in parallel.

where h = n1�1/�
final n

1/��0distE(u, v).

Proof Let p be any shortest path with endpoints u and
v, we show how to transform it into a path p0 satisfying the
above requirements using edges in E0. In each level of the
algorithm, the clustering routine breaks p up into smaller
pieces by cutting some edges of p. Consider an input sub-
graph in the recursion that intersects the path p from vertex
x to vertex y. The decomposition partitions this intersec-
tion into a number of segments, each contained in a cluster.
Starting from x, we can identify the first segment that is
contained in a large cluster, whose start point is denoted by
x0, and similarly we can find the last segment contained in
a large cluster with its end point denoted by y0. We drop all
edges on p between x0 and y0 and reconnect them using three
edges (x0, c(x0)), (c(x0), c(y0)) and (c(y0), y0). We will refer
to this procedure as shortcutting. We then recursively build
the shortcuts on each segment before u0 and after v0. Note
that these segments are all contained in small clusters, thus

they are also recursed on during the hopset construction.
We stop at the base case of our hopset algorithm.

We first analyze the number of edges in the final path
p0, obtained by replacing some portion of p with shortcut
edges. The path p0 consists of edges cut by the decomposi-
tion, shortcut edges that we introduced, and segments that
are contained in base case pieces. It su�ces to bound the
number of cut edges, as the segments in p0 separated by the
cut edges have size at most the size of the base case. Recall
from Lemma 2.2 that any edge of weight w(e) has probabil-
ity �w(e) of being cut in the clustering. Thus, the expected
number of cut edges can be bounded by

X

e2p

 
X

i

�i

!
w(e) =

 
X

i

�i

!
w(p).

Since �is are geometrically increasing, we can use the ap-
proximation

P
i �i ⇡ �l, where l = log⇢ n is the depth of

recursion. Recalling that ⇢ = (k✏�1 log n)�:

�ld =
�
k✏�1 log n

�log⇢
✓

n
nfinal

◆

�0d

=
⇣
⇢1/�

⌘log⇢
✓

n
nfinal

◆

�0d

=

✓
n

nfinal

◆1/�

�0d.

As the recursion terminates when clusters have fewer than
nfinal vertices, each path in such a cluster can have at most

nfinal hops. Multiplying in this factor gives n1/�n1�1/�
final �0d.

Next we analyze the distortion introduced by p0 compared
to the original path p. Shortcutting in level i introduces an
additive distortion of at most 4c��1

i log n. The expected
number of shortcut made in level i, in other words the ex-
pected number of cluster in (i � 1)th level intersecting the
path p, is bounded by �i�1d. Thus the amount of additive
distortion introduced in level i is at most

(�i�1d) ·
4c log n

�i
= O(✏d).

This gives an overall additive distortion of O(✏d log⇢ n). ⌅

Lemma 4.3. If HopSet is run on a graph G with n ver-

tices, it adds at most n star edges and O
�
(n/nfinal) log

2� n
�

clique edges to G.
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Proof As we do not recurse on large clusters, each vertex
is part of a large cluster at most once. As a result, we add
at most n edges as star edges in Line 8 of HopSet.

To bound the number of clique edges, we claim that the
worst case is when we always generate small clusters, except
in the level above the base cases, where all the clusters are
large. Suppose an adversary trying to maximize the number
of clique edges decides which clusters are large. Since we
do not recurse on large clusters, if on any level above the
base case we have a large cluster, the adversary can always
replace it with a small cluster, losing at most ⇢ clique edges
doing so (since there are at most ⇢ large clusters), and gain
⇢2 edges in the next level by making the algorithm recurse on
that cluster. Since the base case clusters have size at most
nfinal, there are at most n/nfinal clusters in the level above,
where each cluster adding at most ⇢2 edges. Therefore at
most (n/nfinal)⇢

2 = (n/nfinal)(log n/✏)
2� edges are added

in total. ⌅

Theorem 4.4. Given constants � > 1 and �1 < �2 <
1, we can construct a (✏ log n, h,O(n))-hopset on a graph

with n vertices and m edges in O(n�2 log2 n log⇤ n) depth and

O(m log1+� n✏��) work, where h = n1+1/�+�1(1�1/�)��2 .

Proof We claim that the theorem statement can be ob-
tained by setting �0 = n��2 and nfinal = n�1 . The correct-
ness of the constructed hopset follows directly from Lemma
4.2, Lemma 4.3, and the fact that any path in an unweighted
graph has weight at most n. Specifically, for any vertices u
and v with dist(u, v) = d, the expected hop-count is:

n1/�n1�1/�
final �0d  n1/�n�1(1�1/�2)n��2n

= n1+1/�+�1(1�1/�)��2

and the expected distortion is O(✏ log n · d). By Markov’s
inequality, the probability of both of these exceeding four
times their expected value is at most 1/2, and the result can
be obtained by adjusting the constants.

So we focus on bounding the depth and work. As the
size of each cluster decreases by a factor of ⇢ from one level
to the next, the number of recursion levels is bounded by
log⇢(n/nfinal). As n/nfinal is polynomial in n with our
choice of parameters, we will treat this term as log n.

The algorithm starts by callingHopSet(V,E, n��2). Since
the recursive calls are done in parallel, it su�ces to bound
the time spent in a single call on each level. Lemma 2.1 gives
that the clustering takes O(��1 log n log⇤ n) depth and lin-
ear work. Since the value of � only increases in subsequent
levels, all decompositions in each level of the recursion can be
computed in O(n�2 log n log⇤ n) depth and O(m) work. This
gives a total of O(n�2 log2 n log⇤ n) depth and O(m log n)
work from Line 2. In addition, Line 8 can be easily incorpo-
rated into the decomposition routine at no extra cost.

To compute the all-pair shortest distances between the
centers of the large clusters (Line 9), we perform the par-
allel BFS by [UY91] from each of the centers. By Lemma
2.1, the diameter of the input graphs to recursive calls af-
ter the top level is bounded by O(n�2 log n). Therefore
the parallel BFS only need to be ran for O(n�2 log n) lev-
els. This gives a total depth of O(n�2 log n log⇤ n) and work
of O(⇢m) per level. Summing over O(log n) levels of re-
cursion gives O(n�2 log2 n log⇤ n) depth and O(⇢m log n) =
O(✏��m log1+� n) work. ⌅

The unweighted version of Theorem 1.2 then follows from
Theorem 4.4 by setting � = 1 + ↵, and solving h = n�2

to balance the depth for hopset construction and the depth
for finding approximate distances using hopsets [KS97]. For
a concrete example of setting these parameters, � = 1.1,
✏ = ✏0

logn , �2 = 0.96, and setting �1 to some small constant
leads to the following bound.

Corollary 4.5. For any constant ✏0 > 0, there exists an

algorithm for finding (1 + ✏0)-approximation to unweighted

s � t shortest path that runs in O(n0.96 log2 n log⇤ n) depth

and O(m log3.2 n) work.

5. HOPSETS IN WEIGHTED GRAPHS
In this section we show how to construct hopsets in weighted

graphs with positive edge weights. We will assume that the
ratio between the heaviest and the lightest edge weights is
O(n3). This is due to a reduction similar to the one by Klein
and Subramanian [KS97]. In that work, they partition the
edges into categories with weights between powers of 2, and
show that only considering edges from O(log n) consecutive
categories su�ces for approximate shortest path computa-
tion. This scheme can be modified by choosing categories
with powers of n, and then considering a constant number
of consecutive categories su�ces for good approximations.
This result is summarized in the following lemma, we refer
the readers to the full version of this paper [MPVX14] for
the full proof.

Lemma 5.1. Given a weighted graph G = (V,E,w), we

can e�ciently construct a collection of graphs with O(|V |)
vertices and O(|E|) edges in total, such that the edge weights

in any one of these graphs are within O(n3) of each other.

Furthermore, given a shortest path query, we can map it to

a query on one of the graphs whose answer is a (1 � ✏)-
approximation for the original query.

Recall that the parallel BFS of [UY91] conducts the search
level by level, and divides the work of each level between
the processors. So a simple adaptation of parallel BFS to
weighted graphs can lead to depth linear in path lengths,
which can potentially be big even though the number of
edge hops is small. To alleviate this we borrow a rounding
technique from [KS97]. The main idea is to round up small
edge weights and pay a small amount of distortion, so that
the search advances much faster.

Suppose we are interested in a path p with at most k
edges whose weight is between d and cd. We can perturb
the weight of each edge additively by ⇣d

k without distorting
the final weight by more than ⇣d. This value serves as the
“granularity” of our rounding, which we denote using ŵ:

ŵ =
⇣d
k

for some 0 < ⇣ < 1 and round the edge weights w(e) to w̃(e)

w̃(e) =

⇠
w(e)
ŵ

⇡
.

Notice that this rounds edge weights to multiples of ŵ. The
properties we need from this rounding scheme is summarized
in the following lemma.

Lemma 5.2 (Klein and Subramanian [KS97]). Given

a weighted graph and a number d. Under the above rounding
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scheme, any shortest path p with size at most k and weight

d  w(p)  cd for some c in the original graph now has

weight w̃(p)  dck/⇣e and ŵ · w̃(p)  (1 + ⇣)w(p).

Thus we only need to run weighted parallel BFS forO(ck⇣�1)
levels to recover p, giving a depth of O(ck⇣�1 log n). There-
fore, if we set c = n⌘ for some ⌘ < 1, and since the edge
weights are within O(n3) of each other, we can just try build-
ing hopsets using O(3/⌘) estimates, incurring a factor of
O(3/⌘) in the work. As one of the values tried satisfies
d  w(p)  cd, Lemma 5.2 gives that if ⇣ is set to ✏/2, an
(1+ ✏/2)-approximation of the shortest path in the rounded
graph is in turn an (1 + ✏)-approximation to the shortest
path in the original graph. Therefore, from this point on
we will focus on finding an (1 + ✏)-approximation of the
shortest path in the rounded graph with weights w̃(e). In
particular, we have that all edge weights are positive in-
tegers, and the shortest path between s and t has weight
O(n1+⌘/⇣) = O(n1+⌘/✏).

Theorem 5.3. For any constants � > 1 and �1 <
�2 < 1, we can construct a (✏ log n, h,O(n))-hopset
on a graph with n vertices and m edges in expected

O((n/✏)�2 log2 n log⇤ n) depth and O(m log1+� n✏��) work,

where h = n1+1/�+⌘+�1(1�1/�)��2/✏1��2 .

Proof Since the edge weights are within a polynomial of
each other, we can build O(1/⌘) hopsets in parallel for all
values of d being powers of n⌘. For any pair of vertices s
and t, one of the value tried will satisfy d  dist(s, t) 
n⌘d. Given such an estimate, we first perform the rounding
described above, then we run Algorithm 4 with � = (n/✏)��2

and nfinal = n�1 . The exponential start time clustering
in Line 2 takes place in the weighted setting, and Line 9
becomes a weighted parallel BFS. The correctness of the
hopset constructed follows from Lemma 4.2, Lemma 4.3,
and the fact that dist(s, t) = O(n1+⌘/✏) by the rounding.
Specifically, the expected hop count is

n1/�n1�1/�
final �d  n1/�n�1(1�1/�)

⇣n
✏

⌘��2 n1+⌘

✏

= n1+1/�+⌘+�1(1�1/�)��2/✏1��2

and the expected distortion is O(✏d). By Markov’s inequal-
ity, the probability of both of these exceeding four times
their expected values is at most 1/2.

The number of recursion levels is still bounded by log⇢ n.
Since the �s only increase, according to Lemma 2.1 we spend
O((n/✏)�2 log n log⇤ n) depth in each level of the recursion
and O((n/✏)�2 log2 n log⇤ n) overall in Line 2. Since our de-
composition is laminar, we spend O(m) work in each level
and O(m log n) overall in Line 2. Again, Line 8 can be in-
corporated into the decomposition with no extra cost.

Since the diameter of the pieces below the top level is
bounded by ��1 log n = (n/✏)�2 log n and the minimum edge
weight is one, Line 9 can be implemented by weighted par-
allel BFS in depth O((n/✏)�2 log n log⇤ n) in one level and
O((n/✏)�2 log2 n log⇤ n) in total. The work done by the
weighted parallel BFS is O(⇢m) per level and O(⇢m log n) =
O(m log1+� n✏��) in total. ⌅

Theorem 1.2 then follows from Theorem 5.3 by adjusting
the various parameters. Again, to give a concrete example,
we can set � = 1.1, ✏ = ✏0/(log n), �2 = 0.96, and set �1 and
⇣ to some small constants to obtain the following corollary

Corollary 5.4. For any constant error factor ✏0, there
exists an algorithm for finding (1+✏0)-approximation to weighted

s-t shortest path that runs in O(n0.96 log2 n log⇤ n) depth and

O(m log3.2 n) work in a graph with polynomial edge weight

ratio.

Notice that with our current scheme it is not possible to
push the depth under Õ(

p
n) as the hop count becomes the

bottle neck. A modification that allows us to obtain a depth
of Õ(n↵) for arbitrary ↵ > 0 at the expense of incurring
more work can be found in the full version of this paper
[MPVX14].
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APPENDIX
A. DEFERRED PROOFS

We now show the properties of the exponential start time
clustering routine from Section 2.1 in more detail.

Proof of Lemma 2.1:
The bound on diameter of the clusters follows from taking

a union bound on the maximum value of �u at vertices:

Pr


�max >

k log n
�

�

X

v2V

Pr


�v >

k log n
�

�

= n · exp
✓
�� · k log n

�

◆

=
1

nk�1
.

To compute the output of ESTCluster e�ciently, we
can add a super-source and connect it to vertex u via an
edge of length �u, then we build a shortest path tree in in-
creasing order of distance. The clusters then correspond to
the subtrees below the super-source. We can construct this
shortest path tree level by level in O( logn

� ) steps, taking only
the integer part of the �us into consideration with arbitrary
tie breaking in the search. Since we assume the minimum
edge weight is 1, this modification in implementation can be
shown to have negligible e↵ect on the probabilistic guarantee
from Lemma 2.2 (see Theorem 2 from [SDB14]). The over-
head of O(log⇤ n) per search level comes from the overhead
of CRCW PRAM [GMV91]. We remark that this factor of
log⇤ n depends on the model of parallelism, but is standard
in parallel BFS algorithms [KS97]. It is O(1) in the OR
CRCW PRAM model, and can be bounded by O(log n) in
most models of parallelism. ⌅
Proof of Lemma 2.2:

Let B be a subgraph of G with center c and radius r. From
c’s point of view, the algorithm can be seen as a race between
all the vertices to c: vertex v starts its race at time �max��v,
and arrives at c at time d(v, c) + �max � �v. In particular,
the winner of this race will include c in its cluster. For B to
intersect k or more clusters, the first k arrivals at c must be
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within 2r units of time of each other. Since �max is a common
term in everyone’s arrival time, we can drop it and flip the
sign to obtain a quantity Yv = �v�d(v, x), for each vertex v.
Notice that it is just an exponential random variable with
some constant o↵set. The event we are interested in then
becomes: the k largest Yv’s are within 2r of each other.

We will use the law of total probability for continuous
random variables. Let S vary over subsets of V of size k�1,
u 2 V \S, and ↵ a fix real number. Let ES,u,↵ be the event
that Yu = ↵ and Yv � ↵ if v 2 S and Yv < ↵ if v 62 S. That
is, set S represents the first k � 1 arrivals, and u is the kth
arrival at time ↵. Clearly, ranging over all possible S, u and
↵ gives a paritition of the probability space. Thus it su�ces
to show

Pr[Yv  ↵+ 2r for all v 2 S | ES,u,↵]  (1� exp(�2r�))k�1

for any fixed S, u and ↵.
By independence of the Yvs we have that

Pr[Yv  ↵+ 2r for all v 2 S | ES,u,↵]

=
Y

v2S

Pr[Yv  ↵+ 2r | ↵  Yv].

For each v 2 S,

Pr[Yv  ↵+ 2r | ↵  Yv]

= Pr[�v  ↵+ 2r + d(v, c) | ↵+ d(v, c)  Xv].

There are two cases to consider. If ↵+ d(v, c)  0, then by
the definition of the exponential distribution

Pr[�v  ↵+ 2r + d(v, c) | ↵+ d(v, c)  Xv]

 Pr[�v  2r]

= 1� exp(1� 2r�).

If ↵ + d(v, c) > 0, using the memoryless property of the
exponential distribution, we have

Pr[�v  ↵+ 2r + d(v, c) | ↵+ d(v, c)  Xv]

= Pr[�v  2r]

= 1� exp(1� 2r�).

This finishes the proof. ⌅
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