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Abstract

We present a new algorithm to mesh an arbitrary piece-
wise linear complex in three dimensions. The algorithm
achieves an O(n log ∆ + m) runtime where n, m, and
∆ are the input size, the output size, and spread respec-
tively. This represents the first non-trivial runtime guar-
antee for this class of input. The new algorithm extends
prior work on runtime-efficient meshing by allowing the
input to have acute input angles (called creases). Features
meeting at creases are handled with protective collars. A
new procedure is given for creating these collars in an un-
structured fashion, without the need for expensive sizing
precomputation as in prior work. The collar surface di-
viding these two regions is represented implicitly using
surface reconstruction techniques. This new approach al-
lows the collar to be dynamically generated , allowing the
whole algorithm to run in a single pass. For inputs with ∆
bounded by a polynomial in n, this runtime is optimal.

1 Motivation

Conventional wisdom has often regarded the meshing
problem as a pre-process to a series of heavy computa-
tions on the output mesh. However, state of the art prob-
lems now rely on evolving geometries, particularly for
simulation problems involving fluid-solid interactions. In
such simulations, a new mesh must be generated at every
simulation timestep, either dynamically or from scratch.
Additionally, the linear system solves which traditionally
dominate compute time are increasingly fast, with modern
solvers running at least sub-quadratic in the mesh size.

This creates a need for advanced algorithms that are ef-
ficient enough to avoid dominating the overall runtime.
The Sparse Voronoi Refinement (SVR) algorithm [3] rep-
resented the first algorithm for meshing non-acute PLCs
in more than two dimensions with a non-trivial runtime
bound. We have extended this algorithm to handle acute
PLCs in three dimensions with the same overall runtime
guarantees.

2 Algorithm Overview
We follow a standard iterative Delaunay (Voronoi) refine-
ment paradigm, wherein we continually add new vertices
to a mesh with the two goals of increasing element qual-
ity, and conforming to an input PLC. The algorithmic dif-
ficulties for handling acute PLCs arise due to a conflict
between these two goals. It is impossible to fit quality
tetrahedra inside creases of the PLC. This is circumvented
by giving two different guarantees on element quality.

Adjacent to the creases of the input, we generate tetra-
hedra with no large dihedral angles. In regions disjoint
from the creases, we generate tetrahedra with a good ra-
tio of circumradius to shortest edge. These are almost all
good aspect ratio tetrahedra, with the exception of sliv-
ers. (The sliver removal post-process of [4] could be eas-
ily modified to improve the aspect ratio without additional
runtime cost.)

Unfortunately, a proper choice for these two regions is
not known in advance, and the problem of distinguish-
ing these regions is fundamentally the same as generating
the entire mesh. We observe that the regions that need
to be specially treated are precisely those where a tradi-
tional meshing algorithm will not terminate, refining for-
ever based on the conflicting goals of quality and con-
forming.

Ruppert [6] was the first to address the issue of small in-
put angles in a refinement based algorithms. His idea for
2D meshing was to add “small” protective balls around
vertices with small input angles thus removing the small
input angles from the mesh. In a series of papers, this
idea has been extended to 3D by adding a set of balls
(collars) around input points and edges that are common
to a small input angles [5, 1]. Their constructions are
nontrivial. Unfortunately, none of these algorithms have
sub-quadratic run times even for inputs with polynomially
bounded spread.

As with all refinement algorithms, SVR does not termi-
nate when the input features contain small angles. Even
though such algorithms do not terminate, they do con-
verge to a fixed mesh, though possibly infinite.

That is, if we pick any point p in the input domain
other than the vertex of a small input angle, the algorithm



Figure 1: Left: An simple input consisting of two lines
meeting at a crease. Right: An infinite quality mesh for
this input.

will eventually include the point in a fixed, finite trian-
gle/simplex or Voronoi cell of the output. Our idea is to
simulate the refinement algorithm generating an infinite
mesh and use this mesh to specify our final finite mesh.
Of coarse we will not let the mesh become of unbounded
size.

In keeping with traditional approaches, we too create a
collar region around the creases, and the mesh refinement
within is handled as a special case to ensure termination.
We achieve better runtime by creating this special region
dynamically. Our on the fly calculations allow the region
to be computed in a single pass with the rest of the algo-
rithm, avoiding any expensive pre-processes.

When the mesh elements in the neighborhood of a
crease are approximately small enough, a proper size is
computed and the collar region is augmented. Previ-
ous approaches to collar regions either required expensive
O(n2) pre-computations or assumed a lower-bound on
size and create constant-sized collar regions. We use care-
ful predicates and show that the collar region is always
augmented before refinement progresses too far, and that
the collar-sizing calculations can always be performed ef-
ficiently. In three dimensions, the creases may be corners
or whole segments. The collar region will consist of a
union of balls centered on these creases that will eventu-
ally cover all of the creases.

3 Collar Surface Construction
The infinite mesh will be generated fine enough so that
it has a good approximation to the boundary of the collar
region. It is necessary to have some approximation to this
boundary surface so that the two meshes (exterior and in-
terior the collar region) can be properly stitched together.

To extract from the infinite mesh an approximation to
this surface, we use the notion of the restricted Delaunay
triangulation [2]. Most prior work has proposed meshing
so that all the vertices in the restricted Delaunay of the sur-
face are explicitly on the surface. Forcing all these points

Figure 2: Left: A Voronoi diagram with a collar sur-
face cutting through. Center: The restricted Voronoi
cells. Right: The restricted Delaunay triangulation ap-
proximates the surface.

to be on the boundary of the ball is not always necessary
and may generate more vertices than needed. When the
collar region is dynamically augmented and the surface
is updated, we allow the existing mesh vertices to appear
in the restricted Delaunay, and only require that any new
vertices be placed on the surface. This relaxed approach
makes it easier to analyze the runtime, and we believe will
generate fewer vertices in practice.

A proper approximation to the surface of the collar re-
gion will need the appropriate topology to ensure a proper
mesh when the interior and exterior are stitched together.
Since the collar region is a union of balls, the interior will
be meshed with stars of tetrahedra emanating from the
crease to the surface of the collar region. To ensure that
these tetrahedra have no large dihedral angles, the facets
of the restricted Delaunay must approximate the surface
normals.

To meet these two goals of topology and normal
approximation, additional low-priority refinements are
added to the meshing process whenever there are vio-
lations. Violations can be detected efficiently, and ε-
sampling arguments bound the number of additional ver-
tices to be inserted.
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