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Abstract

We present new structure theorems for the Delaunay diagram of point sets in R? for fixed d where the point sets
arise naturally in the construction of finite element meshes. We then present a new parallel algorithm for computing the
Delaunay diagram in any fixed dimension in O(log n) random parallel time and n processors. In particular, we show that
if the largest ratio of the circum-radius to the length of smallest edge over all simplexes in the Delaunay diagram of P,
DT(P), is bounded, (called the bounded radius-edge ratio property), then DT(P) is a subgraph of a density graph. Our
algorithm then uses the the observation that DT(P) has a separator of size O(n'~'/?) that can be efficiently found by the
geometric separator algorithm of Miller, Teng, Thurston, and Vavasis. The bounded radius-edge ratio property is desirable
for well-shaped triangular meshes for finitc element and finite difference methods. Further, we show that the Delaunay
Ball system has finite ply based on which we give a linear space point-location structure for these Delaunay diagrams

with O(log n) time per query.
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1 Introduction

The Delaunay diagram (and its dual, the Voronoi Digram) is one of the most fundamental concepts in computational
geometry. Geometric properties and algorithms for Delaunay diagrams (DT)' have been active topics of research for
several years. The 2D Delaunay triangulation has several desired properties that make it very important to applications
such as computer graphics, numerical computing and geometric optimization [2]. In general, a higher dimensional DT
may have two drawbacks. One, it may have an exponential number of simplices, G(n["/ 21y [18]) and two, there will be
simplices which have arbitrarily bad aspect ratio even when the points are place with some care [11]. The goal of this
paper is to understand how to place points in space so as to minimize the two drawbacks but yet not lose sight of the
application cited above.

Much analytical and experimental work has been applied to DT for points placed uniformly and randomly in fixed
dimension, the Poisson distribution [14, 5, 16]. As far as we can determine the main importance of the uniform Poisson
distribution for DT is that the distribution is easy to generate and thus useful for running experiments. One drawback is
that many implemented parallel algorithms are tuned to work most efficiently for the uniform distributions [32, 30] but
fail to be efficient for nonuniform distributions. Here we define new point distributions for which we can find efficient
parallel algorithms and including all the distributions from the applications above. For these distributions we must prove
new structure theorems. Our distributions will allow singularities as in Figure 1 which do not occur in the uniform case
but do occur in mesh generation.

Figure 1: Triangulation of well-spaced point set around a singularity

Algorithmically, by a well-known reduction[6, 7], DT in d dimensions can be obtained from a projection of a d+1
dimensional convex-hull. A desired property of convex-huil algorithms is output-sensitivity. The complexity of an output
sensitive convex-hull algorithm depends on the number of faces, F, in the convex-hull. However, optimal parallel output
sensitive Delaunay diagram construction in high dimensions is still an open problem. Chazelle [8], gave the first optimal
deterministic convex-hull algorithm. This algorithm is not output sensitive and thus is optimal only in the worst-case
sense, i.e., it runs in O(nlogn + nl4/2]y which is the worst-case number of faces possible in d > 3 dimensions. Recently,
Amato, Goodrich and Ramos [1] gave an optimal randomized parallel algorithm for higher dimensions. They provide a
3-d output-sensitive algorithm, but their algorithm is not output sensitive for d > 3. There are no output sensitive parallel
algorithms for d > 3, all the sequential methods known seem to be hard to parallelize, like the randomized incremental
construction algorithm, [10]. Seidel’s sequential output sensitive algorithm [29], runs in O(n? + Flogn).

In this paper, We present new structure theorems for the Delaunay diagram of point sets in R for fixed d where the
point sets arise naturally in the construction of finite element meshes. Our structure theorems lead to the first optimal
parallel output sensitive algorithm for this important class of point sets. Furthermore, by exploring theses structure
properties, we show that the Delaunay diagrams of this class of points has a linear space, O(log n) time query structure
that can be found in parallel O(log n) time with n of processors.

In the following paragraphs, we provide some basic background and motivation of our work and give a high level
summary of our results.

1.1 Background

Our work is motivated by the following two directions of research concerning Delaunay diagrams.

1We use DT to abbreviate Delaunay diagram for historic reasons.




Mesh Generation: An essential step in scientific computing is to find a proper discretization of a continuous domain
with a mesh of simple elements such as triangular elements. This is the problem of mesh generation. However, not all
meshes have equal performance in the subsequent numerical solution. The numerical and discretization error depends on
the geometric shape and size of such as the angles and the aspect-ratio of its triangular elements.

The DT has some desired properties for mesh generation. For example, among all triangulations of a point set
in 2D, the DT maximize the smallest angle. In fact, Ruppert [27] and Chew [9] have developed Delaunay refinement
algorithms that generate a provably good mesh for 2D domains. DT based methods have also been used for coarsening and
refinement in domain decomposition and multi-grid methods. In addition to Ruppert’s Delaunay refinement algorithm,
Bern, Eppstein, Gilbert gave a provably good mesh generators using quad-trees [3, 28]. 3D mesh generation is much
harder than 2D; only one provably good mesh generator exist and it was developed by Mitchell and Vavasis [24] and uses
oct-trees. On the other hand, various parallel algorithms have been developed in recent years for finite element methods
but parallel mesh generation is still less common. Theoretically, Bern, Eppstein, and Teng [4] developed the first parallel
algorithm for quality mesh generation in 2D. Although, their approach can be extended to 3D by parallelizing Mitchell
and Vavasis oct-tree algorithm [24], the constant in mesh size may be fairly large. Its performance in practice still needs
to be seen. It is desirable to have a practical parallel mesh generator especially for 3D.

The expected extremes in Delaunay Triangulations: Bern, Eppstein, and Yao [5] studied various expected properties
of the DT of points from uniform distribution. They showed that the expected maximum vertex degree of a Delaunay
triangulation is @(log n/ log log n) in any fixed dimension and the smallest angle is ©(1/y/n) in 2D.

1.2 Our Contributions

By weakening the condition of bounded aspect ratio of well-shaped meshes, we introduce a geometric condition, called
bounded radius-edge ratio. The radius-edge ratio is equivalent to aspect-ratio in 2D (See Section 2 for details). We present
the following structure results for points with bounded radius-edge ratio.

o The Voronoi polytopes has bounded aspect ratio, namely, the ratio of the circum-scribed radius to the inscribed
radius is bounded.

e The Delaunay diagram is a bounded density embedding [22, 21 ]. The density of a Delaunay diagram is the largest
ratio of the longest edge incident to a point to the distance to its nearest neighbor.

e The set of Delaunay balls has finite ply, where the ply of a collection of balls is the maximum depth of overlap
among balls.

The bounded density property implies that the DT of a point set of bounded radius-edge ratio has a bounded degree.
A density graph is a special case of the overlap graph defined by the nearest neighborhood system [23]. Therefore, we can
use the geometric sphere separator decomposition of Miller, Teng, Thurston and Vavasis to develop a divide-and-conquer
algorithm that reduces the Delaunay diagram problem of n points in RY to a collection of n independent convex hull
problems of constant size in R?. The resulting algorithm finds the DT of a point set of bounded radius-edge ratio in
random O(log n) parallel time using n processors in any dimension.

The finite ply property of Delaunay spheres enables us to use the geometric sphere separator decomposition to develop
a linear space, O(log n)-query time structure. We can also find such a structure in O(log n) parallel time using n processors.

The result of Bern et al that the expected smallest angle of the DT of a random point set in two dimensions is ©(1//n)
implies that with high probability, a random point set does not have the bounded radius-edge ratio property. Their result
implies that, numerically, random point sets are not desirable for numerical discretization. This result may be surprising,
as the regular grids used for the finite difference method had point density very similar to uniform distribution. But the
regular spaced points set give great numerical stability. We introduce an algorithmically efficient “smoothing” technique
to make uniformly distributed point sets close to well-spaced.

e We show that the Delaunay balls of random point set from a uniform distribution has ply O((logn/ log log n)?) with
high probability.

e We present a smoothing technique, when applying to point set from random distribution, it gives a point set that
satisfies the bounded radius-edge ratio.




e We define a random point distribution called Lipschitz distribution and show that the application of our smoothing
technique to a point set from Lipschitz distribution gives a point set of bounded radius-edge ratio.

e We give an efficient parallel algorithm to approximate the Lipschitz distribution of an input domain and generate a
point set of bounded radius-edge ratio that respect the Lipschitz condition.

Our work has important consequences for computational geometry and numerical analysis. For the computational
geometry practitioner, this opens a new approach to devising higher dimensional mesh generation algorithms. For the
numerical analyst, this supplies tools for experimentation: the basic mesh can be set up quickly and efficiently, and then
heuristics can be used to remove the few special slivers that are still in the mesh. Combining our algorithms for DT and
Lipschitz distribution point set generation, we obtain a new scheme for parallel 3D mesh generation. Furthermore, our
parallel algorithms for DT and point location lead to parallel algorithm of adaptive multi-grid implementations.

2 Definitions

Suppose P = {p1,...,pn} is a point set in d dimensions. The convex hull of d + 1 affine independent points from P
forms a Delaunay simplex if the circumscribed ball of the simplex contains no point from P in its interior. The union of
all Delaunay simplices forms the Delaunay diagram, DT(P). If the set P is not degenerate then the DT(P) is a simplex
decomposition of the convex hull of P.

Associated with DT(P) is a collection of balls, called Delaunay balls, one for each cell in DT(P). The Delaunay ball
circumscribes its cell. We denote the set of all Delaunay balls of P by DB(P).

The geometric dual of Delaunay Diagram is the Voronoi Diagram, which of consists a set of polyhedra V,,..., V,,
one for each pointin P, called the Voronoi Polyhedra. Geometrically, V; the set of points p € R“ whose Euclidean distance
to p; is less than or equal to that of any other point in P. We call p; the center of polyhedra V;. For more discussion, see
[26, 13].

Following [21], we call a collection of balls in R a neighborhood system. For this reason, we refer the set DB(P) the
Delaunay neighborhood system of P. The ply of apointp € RY with respect to a neighborhood system B = {B,, ... ,B,}
is the number of balls from B that contains p. The ply of a neighborhood system B is the largest ply among all points in
RY. Given a neighborhood system B = {By, ..., B,}, we define a family of geometric graphs called overlap graphs.

Definition 2.1 (Overlap Graph) Leta > landlet B={B,,...,B,} be ak-ply neighborhood system. The (a, k)-overlap
graph of B is the undirected graph with vertices V = {1,...,n} and edges E = {(i,j) : (BiN(a-B;) # §) and ((a-B)NB; #
"n}.

An important property of overlap graphs, as shown by Miller, Teng, Thurston and Vavasis [23] is that they have small
separator. The following is a definition of separators.

Theorem 2.2 (Sphere Separators) Suppose B = {B,..., B,} is a k-ply neighborhood system in RY. Then for each
a > |, there is a sphere S that divides B into three subsets: By, Bg and Bo such that (1) balls from B; are completely in
the interior of S and balls from B are in the exterior of S, (2) there exists a constant 1/2 < § < 1 depending only on d
such that |By|, |Be| < 6n; (3) there is no edge in the (a, k)-overlap graph of B that connect any ball from B; with any ball
in Be. (4) |Bol = O(ak'/4n'=/4). Furthermore, such a separator can be found in random linear time sequentially and in
random constant time, using n processors.

A special case of the overlap graph is the density graph (first introduced by Miller and Vavasis (22]). The density
condition of an embedding is important for finite difference methods. Let G be an undirected graph and let w be an
embedding of its nodes in RY. We say 7 is an embedding of G of density « if the following inequality holds for all vertices
vinG. Let u be the closest node to v. Let w be the farthest node from v that is connected to v by an edge. Then

|| (w) — (W] <
[|w(u) = x| —

In general, G is an a-density graph in RY if there exist an embedding of G in RY with density a. We will show later
that there is a A(a, d) depending only on « and d such that the maximum degree of an a-density graph is bounded by

Aa, d).




3 Well Spaced Point Sets and their Structures

Numerically, the bounded aspect-ratio is a very desired property for mesh discretization. Computationally, it is important
to generate the mesh and to perform point location in the mesh efficiently. Geometrically, various fundamental questions
about DT need to be answered: Does the Delaunay neighborhood system of a bounded aspect-ratio DT have bounded ply?
What is the “weakest’” local condition that point sets need to satisfy to ensure linear size DT and bounded ply Delaunay
neighborhood system? How can we efficiently generate a point set with these desired conditions?

We give a characterization of well-spaced point sets based on a weakened aspect-ratio property, called the bounded
radius-edge ratio property. We show that this local condition implies

e The Delaunay diagram is a bounded density embedding and has linear size.
o The Delaunay neighborhood system has bounded ply.

e The Voronoi polyhedra have bounded aspect ratio.

3.1 Bounded Radius-Edge Ratio of Well-Spaced Point Sets

Definition 3.1 (Bounded radius-edge ratio) A DT has the radius-edge ratio bounded by C > 1 if the largest ratio of
the Delaunay sphere radius to the smallest edge over all of its simplices is bounded by 3.

In 2D, if a DT has radius-edge ratio bounded by C then its smallest angle is at least sin~'(1/(2C)). Thus bounded
radius-edge ratio implies bounded aspect ratio and vice verse. In 3D and higher, the bounded radius-edge ratio does not
guarantee that the minimal dihedral angle is bounded. A notorious example is a sliver in 3D which is a simplex whose
four nodes are placed almost in a square along the equator of their circumscribing Delaunay sphere. The radius-edge ratio
in that case is about v/2, but the area of the sliver can approach zero. Thus, the radius-edge ratio condition is weaker than
the aspect-ratio condition and hence all the structure theorems and algorithms presented in this paper apply to the DT with
bounded aspect ratio. An important application is mesh generation, as mesh generators all implicitly maintain bounded
radius-edge ratio.

3.2 Density of Delaunay Diagrams

In this subsection, we show that if DT(P) has a bounded radius-edge ratio, then its 1-dimensional skeleton is a density
graph, and hence has a bounded degree and a small sphere separator. We will use this result in section 5 to develop
an O(log n) parallel time n processor parallel algorithm for constructing the Delaunay diagram. In all the lemmas and
theorems in this section, let P be a point set in R such that DT(P) has ratio bounded by C > 1.

Theorem 3.2 (Density Embedding) There is a constant « dependent only on d and C such that P is an a-density
embedding of DT(P).

It is worthwhile to point out that we can not use the standard volume argument to prove Theorem 3.2 because the bounded
radius-edge ratio allows slivers which have close to zero volume. We introduce some notations. For each pointp € P,
let N(p) be the set of all Delaunay simplices incident to p. For each Delaunay simplex T € N(p), we refer to the vector
from p to the center of the Delaunay sphere of T as the radius vector of T. Two simplices are neighboring if they share a
common edge. The following set of lemmas will be used to prove Theorem 3.2.

Lemma 3.3 There are constants g and Cy depending only on C and d such that for all p € P, for each pair of Delaunay
simplices T\ and T, in N(p), if the angle between the two radius vectors, respectively, from p to T\ and T, is smaller than
«, then § < C,, where R is the larger radius and r is the smaller radius, of the two Delaunay balls.

Proof: Let ag = arcsine(1/C)/4. We depict the case in Figure 3.2, where we assume o < ao. We have Rsin(8) =
rsin(a + /3). Because all the vertices of the simplex of the smaller Delaunay sphere must be in the exterior of the larger
Delaunay sphere, by the bounded radius-edge ratio property, we have r/(rsin(3 + a)) < C. Hence sin(3 + o) > 1/C
and therefore 3 + a > arcsine(1/C). So 3 > 3arcsine(1/C)/4. Let Cy = 1/ sin[3arcsine(1/C)/4]. We have R/r =
sin(3 + o)/ sin(B3) < Cy. o
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Figure 2: Projection of two intersecting spheres on the plane defined by their radius vectors from P

Lemma 3.4 If e and E are edges of two neighboring simplices then |E|/|e] < ac.

Proof: If ge is an edge common to the two simplices, then |E|/|e| = (|1E|/|ge|)(|ge|/le}) < 4C?. a

Lemma 3.5 If the ratio of the length of radius vectors of two simplicesin a Delaunay diagram with radius-edge ratio C is
bounded by C\, then the length ratio of the largest edge E to the smallest edge e in the union of two simplices is bounded
by 2C,C.

Lemma 3.5 follows directly from the definition of the radius-edge ratio. Let D = max(2CC;, 4C?). To show the DT
is a density graph, we cover a very small sphere S centered at a point p € P by a collection of circular patches with cone
angle ag. The following lemma is a folklore,

Lemma 3.6 There is a constant K dependent only on ao and d such that there is a cover of the unit sphere in R? with no
more than K circular patches whose angle is equal to aq.

Proof of Theorem 3.2. Let S be a very small sphere centered at p € P. We cover S according to Lemma 3.6. Each radius
vector from p intersects sphere S in at least one cone patch (the patches are not necessarily disjoint, so it could intersect
more than one patch). Assign to each radius vector a label which corresponds to one of the patches it intersects. If two
radius vectors have the same label, then by Lemmas 3.5 and 3.4, the maximal ratio of the edges belonging to the two
simplices is bounded by D.

Let e and E be the shortest and the longest Delaunay edges, respectively, incident to p. There is a path between e and
E through edges that belong to neighboring simplices incident to p. In each transition of the path, the edge lengths can
grow by at most a factor of D.

We assign a label to each edge in the path. The label indicates the patch that the edge’s radius vector intersects. If
a label appears more than once in the path, we can “erase” all labels between last and first appearance of the label, and
instead use the ratio information forced by the label, which is D. This “erasing™ process reduce the number of labels to a
constant because no label can repeat, and therefore the ratio of |E| to le| is bounded by a constant and hence P is a density
embedding of DT(P). o

Lemma 3.7 There is a constant D¢ dependent only on « and d such that the vertex degree of each a-density graph is
bounded by Dg.

Proof: For each p € P, the neighboring nodes of p are contained in the sphere with radius a/e| centered at p, where e is the
smallest edge incident to p. Let g be one of ¢'s neighbors, then g has an edge of length at least |e|, so ¢'s nearest neighbor
is no closer than |e|/a. Therefore, the sphere centered at g of radius le]/(2cr) does not intersect with the sphere centered
at any other neighboring node of p of radius le]/(2a). A simple volume argument shows that p can have bounded number
of neighbors. D




3.3 The Ply of Delaunay Neighborhood Systems

In this section, we show that bounded radius-edge ratio, a local geometric condition, implies the bounded ply of the
Delaunay neighborhood system, a global condition. We will use this result in the next section to design a space and time
optimal query structure of Delaunay diagram of well-spaced point sets.

Theorem 3.8 (Bounded Ply) There is a constant k depending only on C and d such that the ply of the Delaunay
neighborhood system of P is bounded by k.

For ease of exposition, we present the 2D version of the proof and will point out how to extend it to higher dimensions.
We will use different techniques to bound the ply of points inside and outside the convex hull.

Lemma 3.9 (Voronoi is Well-Shaped) There is a constant C, depending only on C and d such that the Voronoi diagram
of P has the property that for each Voronoi polytope, the ratio of its circumscribed sphere to its inscribed sphere is bounded
by C\. For each Voronoi polyhedra, we define a truncated form which is aspect-ratio bounded.

Proof: We first consider the finite Voronoi polytope of point p € P. Let R be the radius of the largest Delaunay ball
touching p, and let p be half the distance to p’s nearest neighbour. By definition, the ball of radius p is contained in the
polytope, and the ball of radius R contains the polytope. By theorem 3.2 the ratio of p and R is bounded. For the Voronoi
polyhedra, which is an infinite region, we consider the region which is the intersection of the Voronoi polyhedra and the
ball of radius R defined above. D

Lemma 3.10 Each Delaunay ball can intersect at most a constant number of Voronoi cells within the convex hull.
Moreover, the ratio between the Delaunay ball to the smallest inscribed radius of the Voronoi cell it intersects within the
convex hull is bounded.

Proof: By scaling, we assume the radius of the Delaunay ball B is equal to 1. No Voronoi cell can be contained completely
in a Delaunay ball. We choose a small constant ¢ < 1. Let B’ be the ball of radius 1 — ¢ that is concentric to B.

We first bound the number of Voronoi cells that intersect B'. Let a be the aspect-ratio of the Voronoi diagram. By
Lemma 3.9, « is a constant. For each Voronoi cell that intersect B, one of its dimension must be at least ¢. Therefore, the
area of the intersection of the Voronoi cell with the B is at least @(¢2/a). Since Voronoi cells are disjoint in their interior,
the number of such cells is bounded by O(mr/(z).

We now define a “protective ring” around the outside of B and show that the number of Voronoi cells whose input
point lies in this ring is bounded. To define such a protective ring, we first examine a point g on the boundary of B
Suppose q is in the Voronoi cell for point p. Let I" be a ball centered at g of radius ¢ + p for a small constant u < €
such that for each point in the “crescent” defined by the section of I" outside B, a ball of radius ¢/a centered at the point
completely contains the crescent. If p is not in the crescent, then clearly the crescent can not contain any other input point
because p is its closest point. Now assume p is in the crescent, then because its Voronoi cell has one dimension of size at
least ¢, the ball centered at p of radius ¢ /a must be free of other input points. Therefore, the crescent contain at most one
input point. We can choose a finite number of points g; on the boundary of B’ such that the union of their crescent cover a
ring of some small constant width ¢; < p outside B. Moreover, the number of Voronoi cells whose input point is in this
ring is bounded.

To complete the proof, it suffices to bound the number of Voronoi cells whose point from P lies outside the protection
ring around B. All such Voronoi cells must have one dimension at least ¢; and the area of intersection with the protective
ring is at least (¢1)2/a. Therefore, there can be at most finite of them.

If B is not completely contained in the convex hull, we argue only for the section that is in the convex hull. The
argument generalizes by showing we can find some such B’ of radius é whichis contained in a union of truncated polyhedra
as defined in the previous lemma. Our proof can be directly extended to higher dimensions. o

It is interesting to point out that the part of a Delaunay ball B outside the convex hull may intersect unbounded number
of Voronoi cells. To bound the ply outside the convex hull, we need a different argument.

Lemma 3.11 There is a constant C, depending only on C and d such that if two Delaunay balls B, and B, intersect
outside the convex hull of P then the ratio between their radiuses is bounded C.
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Proof: We give a sketch of the proof. By scaling assume the radius of By is 1. We focus on the intersection of By with the
boundary of the convex hull of P. The Delaunay simplices neighboring the intersection of By with the convex hull must
be greater than some constant fraction a, by previous theorems. Therefore, the union of these neighboring cells and their
Delaunay balls forms a “protective region” near the boundary of the convex hull where B, intersect. If B, is too small, it
must originate in some simplex away from the protective region, and therefore its boundary is some fraction away from
the boundary of B as they both intersect the convex hull. Some constant fraction of B, is contained in the convex hull,
and therefore its slope as it intersect the convex hull is such that if B; is to intersect it outside the convex hull, the radius
of B, must be greater than some constant fraction. O
Proof of Theorem 3.8: In Lemma 3.10, we show that each Delaunay ball intersects at most a constant N, number of
Voronoi cells inside the convex hull. Because DT(P) is a bounded density embedding, each Voronoi cell neighbors at
most N, Voronoi cells. When two Delaunay balls intersect within the convex hull, they intersect in some Voronoi cell.
Therefore the set of all Voronoi cells intersected by the union of the two Delaunay balls can be reached from each other
by a N, steps of neighboring relation among Voronoi cells. There are at most N’lv > Voronoi cells that are within N, steps of
neighboring relation among Voronoi cells. This implies that a Delaunay ball can only intersect a constant number of other
Delaunay balls within the convex hull of P.

For each point g in the exterior of the convex hull of P, all Delaunay balls that contain g must intersect among
themselves. Therefore the ratio of their radius is bounded. Assume the largest radius is 1. For each point p € P that is
on one of the Delaunay balls, its nearest neighborhood ball has radius at least some constant fraction (from the bounded
radius-edge ratio) and all these balls are disjoint. By volume argument, there can be constant number of them. Because
the DT(P) has bounded degree, there are only constant number of Delaunay balls that touch them. Thus the ply of p is
bounded. o

3.4 Optimal Query Structure for Delaunay Balls

Given the Delaunay Diagram DT(P) of a point set P, there are two types of queries that are important to numerical and
geometric computing (1) Return the Delaunay simplex in DT(P) that contains a given query point g € RY. (2) Return the
set of Delaunay Balls of DT(P) that cover a given query pointg € RY.

An important corollary Theorem 3.8 is the following theorem:

Theorem 3.12 Both DT(P) and the Delaunay neighborhood system of P has a query structure of linear size and O(logn)
query time that can be found in random O(log n) parallel time using n processors.

To our knowledge, this is the first linear time structure for Delaunay diagrams in higher dimensions that achieves both
linear size and O(log n) query time.

Our query structure uses the sphere separator theorem of Miller ef al {21}, showing that for each k-ply neighborhood
system B = {By, ..., B,} in RY, there is a sphere S that divides B into three subsets: B;, Be and Bg such that (1) balls from
B, are completely in the interior of S and balls from Bg are in the exterior of S, (2) there exists a constant 1/2< 6 <1
depending only on d such that |Bil, |Be| < 6n: (3) |Bol = Ok dn' -1y,

By Theorem 3.8, we have that the ply of the Delaunay neighborhood system of P is bounded by a constant. We can
apply the sphere separator theorem recursively to build a binary tree of separating spheres. The root of the tree contains
the top level sphere separator S and its left subtree and right subtree are recursively generated for B; U Bo and Bg U Bo.
From Condition 3 of the sphere separator theorem, we can show that the query structure has size O(n). From Condition
2., we can show that the height of the structure is O(log n). To answer a query for point g, we step down the structure by
inclusion and exclusion tests against the separating sphere of the structure nodes.

4 Well-Space Point Set Generation

In this section, we show how to use two techniques, oversampling and filtering to generate a well-spaced point set according
to a density function. We also show that even a uniform random point set is ill-spaced, its Delaunay neighborhood system
in 3D has ply bounded by O(log? n) and at least as big as 2((logn/ loglog n)?).




For uniform distribution, we use the homogeneous Poisson point process of intensity one which is characterized by
the property that the number of points in a region is a random variable that depends only on the d-dimensional volume
of the region [19, 17, 5, 31]. In this model, The probability of exactly k points appearing in any region of volume V
is e”YV¥/k! and the conditional distribution of points in any region given that exactly k points fall in the region is joint
uniform.

4.1 Point Generation for Lipschitz Distributions

The aspect ratio, degree, and ply of the Delaunay diagram of a uniform random point set generated by the Poisson process
are all unbounded, as shown by Bern, Eppstein, and Yao [5]. If instead of using the Poisson point process with intensity
one, we oversampled such that with high probability each unit area has at least one point, the degree, aspect ratio and the
ply would still be unbounded. Our idea is to selectively remove some of the extra points after oversampling. By carefully
using these two techniques, oversampling and filtering, we can efficiently create a point set whose Delaunay diagram has
constant degree and constant ply. Moreover, we can extend the results to probability densities whose inverse, i.e., their
spacing function, is Lipschitz.

Definition 4.1 (Lipschitz) A functionf is Lipschitz with constant « if for any two points x, y in the domain |f (x) —f ()| <
allx = yl|.

Definition 4.2 Let f be a Lipschitz function, S be a point set, §2 be the domain. S is f -spaced if for any two points
P.Q €S, ||P— Q| > min(f (P),f(Q)). S is maximally f -spaced if no point from §2 can be added to S without violating
the f -spacing. S is approximately f -spaced if 36 s.t. Vx € §2 the 8f (x)-ball centered at x contains at least one point that
can not be added to S without violating the f -spacing.

We prove the following critical theorem for well-spaced point generation:

Theorem 4.3 A maximally f -spaced point set, withf «-Lipschitzwhere « < |, hasa bounded radius-edge ratio Delaunay
diagram, with constant 1/(1 — a).

Proof: Let R be the radius of the Delaunay ball of a Delaunay simplex D. Let [ be the length of the smallest edge of D.
Therefore, one of the end points of the smallest edge, P, has that f (P) < /. The value of the function f at the center of the
sphere is therefore smaller then / + aR. If I+ aR < R then the center can be added to S, which contradicts maximality.
Therefore, R < [ +aR,or, 2 < 2. 0.

A similar theorem is true for an approximately f -spaced point sets, for some é depending on the Lipschitz constant.
The above theorem ignored boundary effects, i.c., it made the assumption that the Delaunay ball is fully contained in the
domain. In order to account for boundary effects, the edges will have a g-spaced point set, where g is 3-Lipschitz for an
appropriate 3 < . In effect, we first place points on the edges (a lower dimensional process) more densely, so that points
in the interior will be slightly repelled from the edges, and will not have huge Delaunay circles that are mostly outside of

the domain [20].

Theorem 4.4 (Point Generation) Given a Lipschitzf in a domain §2, we can generate an approximately f -spaced point
set of size O(K) in O(log K) time, using K processors, where K is the size of optimal f -spaced point set for f -distribution
over §2.

Our approach is to first oversample a random point set such that each 6-ball, which is of area ;s is guaranteed to
contain a point, and then pick a maximal independent set of the violations graph, namely filtering.

In the context of mesh generation, the optimal point spacing is the Ifs function, which assigns to each point in the
domain its distance to the second closest input feature [24, 3, 27]. This function has a Lipschitz constant 1. Using the
above ideas, we can present an efficient parallel algorithm for generating a point set for an optimal mesh. In 2-d, the
algorithm is a hybrid of the quad-tree algorithm of Bern, Eppstein and Gilbert {3), and the Delaunay based algorithm by
Ruppert [27]. It has the efficiency and parallelization qualities of the quad-tree algorithm, and the output density is closer
to Ruppert’s, but unfortunately, in 3-d and higher, it introduces slivers.

We now show how to generate an Ifs-spaced point set. We will concentrate only on points in the interior, as producing
the points on the edges is a straightforward extension. We use Mitchell and Vavasis balanced oct-tree/quad-tree algorithm
as our start point as an initial approximation for the Ifs in the following sense:
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Definition 4.5 Given an oct—tree T, we define the function f (x) = | where | is the side length of the box x is in. fr is said
to approximate a functionf if 3¢y, c2 > Osuch thatc\fr < f < oof r

We use the oct-tree as an initial approximation for the points density, and then perform smoothing and filtering to obtain
a density closer to optimal. Of course the oct-tree corners themselves could be well spaced, but by using a rather coarse
oct—tree, we get a random point set which is well spaced, rather than boxes which are aligned with the x, y coordinates. By
filtering, we also get a point set whose density is closer to optimal, compared with the oct-tree which is experimentally
shown to have high constants [27].

Algorithm sketch

o Apply the 3D balanced oct-tree or 2D balanced quad-tree algorithm to approximate the Ifs.

o In each cell, place a constant number of points, and derive a better bound of the local feature size by searching
constant number of nearby cells.

o Create a graph over the points, by connecting two nodes if the distance between them is larger than some constant
times the local feature size of either and return a maximal independent set of the graph.

This is a simple sketch of the algorithm. In the presence of boundary faces and edges, a lower dimensional version
of the algorithm will have to be run first on the edges and faces of the input.

4.2 DT in Uniform Distribution

We show in the appendix that the ply of the Delaunay balls of points from uniform Poisson process in RY is bounded by
O(IOgW 21 ;). We also show an almost tight lower bound. This result complements Bern, Eppstein, and Yao’s that the DT
of uniform random point set over a square of side length n'/4 has the expected maximum degree ©(log n/ log log n) and
the 2D aspect-ratio \/n.

5 Parallel Algorithms

Theorem 5.1 Let P be a point set in RY. If DT(P) has a bounded radius-edge ratio, then DT(P) can be found in O(nlog n)
time sequentially and in randomized parallel O(log n) time using n processors.

Our parallel algorithm uses the structure theorems of Section 3. Using sphere separator decomposition, it first find a
supergraph of DT(P) that also has bounded degree. The supergraph reduces the Delaunay diagram problems of n points
in R to a collection of n independent convex hull problems of constant size in R

5.1 Density graphs as super-graphs for DT

We first define the a-density graph of a point set P, denoted by DG, (P). Let B; be the nearest neighbor ball of p;, i.e., the
ball whose center is p; and whose radius is equal to the distance between p; to its nearest neighbor in P. The a-density
graph of P is the restriction of the a-overlap graph (See section 2) for this neighborhood system to a density graph — that
is, all edges that are longer than « times the nearest neighbor are removed from the a-overlap graph.

Notice that the a-density graph of P is the supergraph of any a-density embedding of a graph that uses P as its
vertices. Therefore, if DT(P) satisfies the bounded radius-edge ratio property then by Theorem 3.2 there exists a constant
«, depending only on d and the radius ratio, such that DT(P) is a subgraph of DG, (P). Notice also that DG,(P) has
bounded degree as well.

Using a similarly construction as in [15], we can compute the a-density graph in random parallel O(log n) time using
n processors.




5.2 Convex Hulls and Delaunay Triangulations

The following lemma shows how to find the Delaunay diagram when a supergraph of the Delaunay diagram is given.

Lemma 5.2 Let P be a point set in RY and assume that DT(P) has degree bounded by D,. Let G be a supergraph of DT(P)
of maximum degree D, > D). Then we can compute DT(P) from G in O(Tcy 4(D>)) using n processors, where Tcy 4(m)
is the sequential time for finding the convex hull of m points in d dimensions.

Therefore, given G with a constant degree bound, DT(P) can be found in O(1) time using n processors.
In the proof of Lemma 5.2 we exploit the geometric relationship between Delaunay diagrams and convex hulls. For
each point p in RY, let lift(p) = (p, ||p]|*), where [|p|| is the norm of vector given by p. Geometrically, lifr maps point p
N g d
vertically onto the paraboloid x4 = Y_i_, x?
Brown [7] and Edelsbrunner and Seidel [12] proved the following result.

Lemma 5.3 Suppose P = {pi,....pa} is a point set in RY. Let Q = lift(P). Then DT(P) is isomorphic to the lower convex
hull of Q.

Therefore the problem of finding the Delaunay diagram in d dimensions can be reduced to the problem of finding
the convex hull in (d + 1) dimensions. Instead of using Lemma 5.3 directly, we use it to relate a Delaunay diagram in d
dimensions to a set of small convex hull problems in d dimensions.

From Lemma 5.3, (p;,p;) is an edge in DT(P) only if (gi,g;) is on the convex hull (lower hull) of Q. One way to
recognize the set of edges with endpoint p; that belong to DT(P) is to recognize the set of edges with endpoint g; that
belong to the convex hull of Q.

Lemma 5.4 Suppose we take a hyper-plane H in R**' close enough to q; 1o separate q; and Q — {q;}. Let q; be the
intersection of qiq; and H. Then qiq; is an edge on the convex hull of Q iijj’- is on the convex hull of{q} tj# i}

Lemma 5.4 yields another way to find DT(P): Lift P to the paraboloid to obtain Q and solve the n convex hull
problems (one for each point in Q) in d dimensions. The convex hull problem for g; determines the set of convex hull
edges of Q with g; as an endpoint, and hence, the set of edges of the Delaunay Triangulation of P with p; as an endpoint.

Now suppose G is a supergraph of DT(p). To determine the set of edges with endpoint p; of DT(P), we simply lift
the graph neighbors of p; and perform a d dimensional convex hull construction (as in Lemma 5.4). We can perform such
local operation independently for all points in parallel. Therefore, if the maximum degree of G is D>, we can compute
DT(P) from G in O(T¢cy 4(D>)) using n processors, completing the proof of Lemma 5.2.

6 Final Remarks

We have given a simple and efficient parallel algorithm to compute the Delaunay diagram in d dimensions, for point sets
with bounded radius-edge ratio, and for random point sets. This is the first parallel construction of a Delaunay diagram
for more than 2 dimension we know of, that is optimal for a linear sized diagram. We have also demonstrated that
point sets with these properties play a crucial part in the important problem of mesh generation and therefore that the
bounded radius-edge ratio is a natural restriction. We have shown as well that this condition implies that the Delaunay
graph is a density graph. Our point generation algorithm and our Delaunay triangulation algorithm provide two important
subroutines for parallel three dimensional mesh generation.
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A Appendix

A.1 DT in Uniform Distribution

We show the ply of the Delaunay balls of points from uniform Poisson process in RY is bounded by 0(log"/2 n). This
result complements Bern, Eppstein, and Yao's that the DT of uniform random point set over a square of side length n'/d
has the expected maximum degree ©(log n/ loglog n) and the 2D aspect-ratio V1. In the following theorems, let P be a
random point set by the unit-intensity Poisson process in RY over a cube of size length n'/¢.

Theorem A.l The ply of the Delaunay neighborhood system of P is bounded by O(logrd/ 2 n).

Proof: As shown in [5], with probability at least (1 — 1/n%), the radius of all Delaunay balls of P is bounded by ¢ log'/d n,
where ¢, is a constant depending only on d. Suppose there are m balls covering a point p. With probability at least
(1 — 1/n%), all m Delaunay balls are contained in the ball B, of radius 2¢, log'/‘l centered at p. With high probability the
number of points in B, is bounded by O(logn). Hence the number of Delaunay simplices that are contained in B, is at

most O(IOgr"/n n). @]
Theorem A.2 Whend = 3, with high probability, the ply of the Delaunay neighborhood system of P is least O((logn /loglog n)?).

Proof: We use Preparata’s example: the union of the set of N/2 uniformly placed points on a horizontal circle and another
set of N/2 uniformly placed points on a vertical line passing through the center of the circle [25]. This example has ply
of O(N?) since its O(N?) Delaunay balls are all within a cube of size N. We show that a construct similar to Preparata’s
example has high probability of appearing, for N = (logn/loglogn).

Rather than placing points, we place small spheres of volume logn~". The horizontal circle is of radius O(Iog‘/3 n)
and the vertical line is of the same length. The small spheres are placed such that if a small sphere S, placed on the
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horizontal circle is not empty, then for each nonempty sphere S, on the vertical line: 3¢ € §; and 3p € S such that g
and p are Delaunay neighbors. This is true if for any such S) and S; there is a larger sphere (of radius 0(log'/3 n)) that
includes S; and S, but not any of the other §;’s. Since we are placing log n/ loglog n spheres on a horizontal circle of
length 0(log'/3 n), there is some i, for example i = 6 or greater, for which this is true.

Our geometric construct is therefore a larger sphere of radius é1og'’? n, which is empty but for the smaller spheres
Si’s placed in it, as described above. For a small enough 6, there are more than n®° such empty independent spheres,
with high probability (see [5]). The following Lemma bounds below the probability that some constant fraction of the
horizontal spheres, and some fraction of the vertical spheres, are not empty. That fraction, g, is adjusted to compensate for
i fixed above. Since we run n®° independent experiments in one Poisson point process, such high ply is actually expected
to appear with high probability. Theorem A.1 then follows.

Lemma A.3 The probability that qlog [ loglogn of the horizontal and of the vertical spheres are non empty is at least
-2,,—2ig
e"“n~M.

Proof: Let / = logn/loglogn and k = gl for some small constant g to be fixed later. Let a denote the volume of the
smaller spheres. Then (1) The probability that a small sphere is not empty is greater than 0.5, (2) The probability

logn'*

that k = glogn/loglogn of the spheres are non empty is at least (we omit the binomial): a*(1 — a)'! — k) which is:

) S .. I . . .
@ =2-8n apnd (1 — @)\ ~* = ¢ twenarTt > % Therefore, the probability of k spheres non empty is at least e~ 'n"H,
(2) The probability of both horizontal and vertical events occuring at the same time is e~n~% 0




