Deterministic Unbiased Permuting in Parallel

Gary L. Miller Shang-Hua Teng

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

March 6, 1989

1 Introduction

In this paper, we present a parallel permutation scheme which always halts after O(log n)
steps with a permutation completely unbaisedly selected. Our scheme only uses n processors.
This improves the previous result of [?] which takes O(log n) time, using n*/ log n processors.
The models of computation used are Parallel Random Access Machine (PRAM) with finite
number of fair coins [?].

The design of many randomized parallel algorithms calls for the efficient generation of
uniform random permutation on parallel machines. Basically, there are four types of uniform
permutation scheme;

e Deterministic unbiased scheme: an algorithm that always halts successfully and
each permutation is compeletely unbiasedly generated.

e Random unbiased scheme: an algorithm that may not halt successfully, but each
permutation is compeletely unbiasedly generated.

o Deterministic error bounded scheme: an algorithm that always halts successfully,
and differneces of the probabilities between each pair of permutations are bounded by
a small epsilon.

e Random error bounded scheme: an algorithm that does not always halt, but
differneces of the probabilities between each pair of permutations are bounded by a
small epsilon.

Miller and Reif presented an randomized CRCW PR AM parallel algorithm which gen-
erates a random permutation of n elements using O(logn) time, ﬁ; processors. However,
their algorithm does not always terminate successfully. The probability of failure is O(3)!

1

Many questions were left open. An interesting and important one is: is there a parallel
deterministic unbiased permutation scheme which runs in O(logn) time, using polynomial
number of processors?. The affirmative answer to this question provides an efficient and
completely trustworthy source for the generating unbiased permutation.

The question was answered affirmatively in [?]. A deterministic O(log n) time unbi-
ased permutation scheme is derived from their uniform. permutation networks and uniform
permutation programs. However, the best know processor count is n?/ log n.

To many applications, such as the parallel load balancing, the time used to generate
random permutation is the major concern, provided the time and processor product is lin-
early bounded by the number of permuted inputs; while the possibility of failure is tolerable
if its probability is not terribly big. Therefore the goal is to minimize the time complexity up
to the linear. time and processor product. We give an optimal randomized PRAM algorithm
which generates a random permutation of n elements in O(l-olfl%:—;) time, "—l—‘llfrs-l%u processors,
with the probability of failure at most O(%) This result improves upon the one of Miller
"and Reif [?].

2 Deterministic Generation Schemes

Let an m-probabilistic-pattern P be an m-vector (p1,..-,Pm) with 1 < p; < 1. An assign-
ment A to an m-probabilistic-pattern is an m-Boolean-vector (ay, .- .,am) € {0, 1}M. The
probability of an assignment A= (a1,...,am) to a probability-pattern P = (P1y---»Pm)s
denoted by Prp(A), is

M
Prp(A) = [T (1 —p)™
i=1

Let D = {di,...,dn} be a finite domain and @7 = (q1,...,4x) be a preassigned proba- -
bilistic vector where 0 < ¢ <1land T3, ¢ = 1. (D, Qp) is called a random pair.

A deterministic generation scheme over a finite domain D is a binary tuple S = (P, F)
where P = (p1,-..,Pr) 15 @ probabilistic pattern; and F is a function from {0,1}" to D where
r is callel the coin complezity of S.

For all d € D, let A(d) be the set of assignments whose image by applying function F
is d, 1.e.,

Ad)=FH(d)={A|Aisa r-assignment such that F(A) = d}

The probability of d € D induced by an deterministic permutation scheme S =(P,F),
denoted by Probs(d), is

Probs(d) = > Prp.(A)
A€ A(d)

]

Definition 2.1 S = (P, F)wsa deterministic generalion scheme for a random pair (D, Qy)
if for all 1, Probs(d;) = q:.

o

A deterministic generation scheme S = (P, F) is polynomial computable if r is polyno-
mial in n and F is a polynomial computable function. A DGS S = (P,F)is in NC if Fis
A'C computable.

A deterministic permutation scheme is a set S = {&,.. ., S}, where for all n, S, =
(P, Frn) is @ deterministic generation scheme over domain S, the set of all permutations of
n elements.

Definition 2.2 A deterministic permutation scheme (R,S) is unbiased if for all n, for all
T € Sp,

Probs, (7)) = %
3 Unbiased Permuting and Parallelization

The first deterministic unbiased permutation scheme was published by Moses and Oakford
[?] and Durstenfeld (7). Their algorithm can be specified as following:

1. let A[l : n] be an array with n entries and initially A[z] = ;
2. for k=nto?2
(a) generate a random number p; uniformly selected from the set {1,--,k};;

(b) exchange Alk] and A[p];;

It can be easily prove that the above algorithm is a deterministic unbiased permutation
scheme for n elements, and the run time is linear in n. The algorithm uses n — 1 random
coins. Moreover, the above algorithm is also a deterministic generation scheme in the sense
that all random numbers used in the algorithm can be generated at the first step. i.e., the
following algorithm.

1. generaten — 1 random numbers (P2, Pn)s where pi is uniformly selected from the
set {1,---,k}3

2. let A[l : n] be an array with n entries and initially A[s] = %
3. fork=nto?2

e exchange A(k] and A[pe];;

At the first glance, the above algorithm is not easy to be parallelized. We shall show
that efficient NC scheme can be derived from a similar transformation.

3.1 Inversion Table and Random Permuting

For each permutation 7, let RANK,[i] = n7'(i). The inversion table IT, of = is a n-place
integral vector defined as,

IT.() = 14 15 2 8 & () < 7))

In other words, ITy[i] is the number of elements in RANK, left to ¢ which are larger
than i plus 1. We write IT(r) = IT.. '

Definition 3.1 An n-place integral vector T is an inversion-table if it is a inversion table
of some permutation.

Lemma 3.1 for all n,
1. for each n-element permutation 7, 1 < IT i) <n+1—1
2. if m # w2, then ITx # IT,,, i.e., IT is an injective.

Lemma 3.2 ([?]) For each n-element permutation m, IT(m) can be computed in O(logn)
time, using n processors.

Lemma 3.3 An n-place vector T is an inversion-tables if Tl < n+1—21.

[PROOF]: the only-if condition follows from the Lemma 3.1, we now prove the sufficient
condition.

Let T be an n-place integral vector satisfies the condition T[i] < n+1—:. The following
algorithm computes a permutation 7 whose inversion table is T'.

Algorithm IT(T)
1. let A be an n-place vector, initially all elements of A are labelled free;;
2. fork=1ton
(a) A[j] =k, where) is the T[k]** free element in A3
3. define a permutation 7 be the one =1(1) = Al

The correctness of the above algorithm can be easily proved. Clearly, for each w,
IT-Y(IT(x)) = 7 and for each inversion-tables T, ITIT-Y(TH) =T. Therefore,

Lemma 3.4 IT is a bijection between the set of permutations and the set of inversion-tables.

The above lemmas suggest the following deterministic unbiased permutation scheme.
A Perfect Permutation Scheme

L. generate n — 1 random numbers (T[1),- -+, Tln = 1]), where T(k] is uniformly selected
from the set {1,---,k}3;

o

T(n] = 13

3. 7 = IT-1(T);;

3.2 Conmputing Permutation from Inversion Table in Parallel

For each permutation table T', let 7 = IT-}(T). Clearly, RANK,[1] = T[1]. Moreover,
RAN K,[i] is uniquely determined by (T[1], -, T[s])-
Let @ be a binary operator defined as,

_foa fa<b
a@b—{ a+1 otherwise

Clearly, & 1s not associative. Define @ to be left associative, i.e., a1 Da, das =
(a1 D az) ® a3). Let
@(a1,---1an) =a,Pa;® - Dan

Lemma 3.5 For each permutation table T, let 7 = IT-YT),
1. RANK[1]=TI[1};
9. RANK,[i) = ®(T[i], Tli — 1),- -, T[1)).
Using parallel tree contraction (?,7],

Lemma 2.8 for all a1,...,an, @®(a1,..-,an) can be computed in O(logn) time, using n

processors on EREW PRAM.

Theorem 3.1 For each inversion-table T, # = ITY(T) can be computed in O(logn) time,
using n? processors.

4 An Efficient Parallel Permutation Scheme

In this section, we present an O(log?® n) time, O(n) processor parallel algorithm for computing
a permutation from its inversion table. To the best of our knowledge, this is the first linear
processor, NC parallel deterministic unbiased permutation scheme. The efficient parallel
algorithm involves the use of some additive closure properties of the following unary function
class.

4.1 A Unary Function Class

For ay,...,an € 1L, 1€t J(a,..,

Clearly, f(a;,....an) © forrbm) = flatsmsanibryeibm)s in other words, Foplius 18 closed under

composition. Hence, (F,o) forms a semi-group.
Let T be an inversion-table and 7 = IT~}(T). It follows from Lemma 3.5 that

1. RANK,[1]=T[1};
2. RANK[i] = ferti-n,-1ap(T(E])-

Let size of a function f € Foplus denoted by size
the z-value which is not differentiable.

(f) be the number of its breakpoints,

Lemma 4.1

1. All functions from Fq are montonicly increasing;

2. for allay,...,qx, size(fiay, ... an)) <

3. for all f and g € Fo, size(fog) < size(f) + size(g)-

It can be proven by induction that each function f € Fg of sizen, thereare by < by -+ <

b, and ¢, < cz:"* < Cn such that,
T r<h
T+C bls.l'(bg
f(z) = r4+c bh<z<bs

.:1:+cn bngx

Such a representation is called a canonical represention of f.

Lemma 4.2 for each function f,g € Fg of size n and m, respectively, given in canonical

form,
1. for each a € R, f(a) can be evaluated in O(
o g can be computed in O(log(m + n)) time, using

log n) time sequentially;

2 the canonical representation of f
(m + n)/ log(m + n) processors;

[PROOF: See [?]

4.2 An Improved Algorithm

We now show how to use the above lemmas to design a linear processor, NC algorithm to
compute a permutation from its inversion table.

The new algorithm consists of two steps, where in the first step, a data structured is
built from the given inversion-table which can be used in the second step to compute each
RANK,[1] in O(log? n) time sequentially.

The data structure built in the first step is a labeled complete binary tree B ofn—-1
leaves. The nodes of B are named as,

1. The i* leaf is named v;;

9. an internal node with left child and right child named v; and vi41,;, Tespectively, is
named with v; ;.

Clearly, the root of B is named with vy n-1.

Let the function of a node v j, denoted by F.,, be fru,. 1l Clearly, in O(log® n)
time, using n processor, the canonical representation of the function of each node in B can
be computed.

We now show how to use the information provided in B to compute IT™Y(T)in O(log® n)
time, using n processors.

Let p; = (wowy - - wy) be the path from leaf v;; to the root, le., wo = Vi, Wk = root,
and wj41 is the parent of w;. In pi, wjis a right link if wi_y is the right child of w;. If wjis
a right link, let u; be its left child. Then the value of RANK «|7] can be computed by the

following procedure.

1. let p; = (wows - - - wx) be the path from leaf v;; to the root;;
2. valueld] = T[i];;
3. forj=1tok
(a) if w; is a right link then value[t] = Fuj('value[i]);;
4. RANK,[i] = valuels).

The correctness of the above procedure can be easily proved. Clearly, using B, for each
i, RANK,[i] can be computed in O(log? n) time, sequentially.

Theorem 4.1 A permutation can be computed from its inversion table in O(log? n) time,
using n processois. Consequently, there is a deterministic unbiased permutation scheme runs
in O(log? n) time, using n processors.

Remark 4.1 Using cascading technique of [?], an O(log n) factor of runing time can be
saved from the above algorithm. Therefore.

Theorem 4.2 A permutation can be computed from its inversion table in O(logn) time.
using n processors. Consequently, there is @ deterministic unbiased permutation scheme
runs in O(logn) time, using m processors.

5 Optimal Random Unbiased Permuting

To many applications, such as the parallel load balancing, the time used to generate ran-
dom permutation is the major concern, provided the time and processor product is linearly
bounded by the number of permuted inputs; while the possibility of failure is tolerable if its
probability is not terribly big. Therefore the goal is to minimize the time complexity up to
the linear time and processor product.

The searching of optimal O(log n) time parallel algorithm for generating random per-
mutations of n elements was raised as an open question by Vishkin. By reducing the random
permuting problem to integer sorting, Reif gave the first optimal O(logn) time randomized
parallel random permuting algorithm. The algorithm is on CRCW PRAM. The probability
of failure of Reif’s algorithm is bounded by O(Z). A very simple O(logn) time optimal
random unbiased scheme is given by Miller and Reif [?]. The probability of failure in their
scheme is O(%).

In this section, we presend an optimal random unbiased parallel permutation scheme
which runs in O(2%2-) time, using % processors, with the probability of failure at

log logn 1
most O(%). This result improves upon the one of Miller and Reif.

5.1 'The Algorithm of Miller and Reif

Miller and Reif’s permutation algorithm is very simple. It uses 2n space in the common
meomry. Initially, all cells of the 2n memory cells are free. There are n / log n processors.
Each of them takes care of logn elements. The elements taken cared of by the i** processor
s stored in a queue Q;. The following procedure is performed by each processor.

1. for k=1 toclogn

(a) if Qi is not empty, select a number n; randomly distributed from [1..2n];;

(b) if cell n; is free, then move the head of Q; to cell n;;;

9. if all queues are empty, compute the rank of each element in the common ety * ia
prefix sum, and halt successiullys,;

3. else halt with failure.

5.2 An Improved Algorithm

The improved permutation algorithm involves the following result due to Cole and Vishkin

tl

Lemma 5.1 (Cole and Vishkin) Prefiz sum over integers can be computed in O(l—olgﬁfo-;l;)
time, using "—l‘l’fsl—‘;u processors on CRCW PRAM.

At the first glance, it seems that it is very easy to incorporate the above lemma with
Miller and Reif’s permutation algorithm. But, since the simple space is reduced from O(log n)
to O(l?ls‘lls.i—n), the probability of failure will be unbounded. Here, we introduce a two phase
algorithm to reduce the probability of failure.

