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1 Abstract
We introduce a new family of spectral partitioning methods. Edge separators of
a graph are produced by iteratively reweighting the edges until the graph dis-
connects into the prescribed number of components. At each iteration a small
number of eigenvectors with small eigenvalue are computed and used to deter-
mine the reweighting. In this way spectral rounding directly produces discrete
solutions where as current spectral algorithms must map the continuous eigen-
vectors to discrete solutions by employing a heuristic geometric separator (e.g.
k-means). We show that spectral rounding compares favorably to current spec-
tral approximations on the Normalized Cut criterion (NCut). Results are given
in the natural image segmentation, medical image segmentation, and clustering
domains. A practical version is shown to converge.

∗This work was supported in part by the National Science Foundation under grants CCR-
9902091, CCR-9706572, ACI 0086093, CCR-0085982 and CCR-0122581. CMU disclosure sub-
mitted.
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2 Introduction
Several problems in machine perception and pattern recognition can be formu-
lated as partitioning a graph. In general, most formulations of partition quality
yield NP-hard optimization problems. This raises two important questions. First,
does a particular optimization problem capture good partitions for the image seg-
mentation domain, especially in light of the optimization being NP-hard and thus
we may never know the true optimum anyway. Second, given that the optimal
value is a good characterization are approximations quickly constructible and do
they return good partitions?

One popular formulation, used in image processing and clustering, is the nor-
malized cut (NCut) of a graph introduced by Shi and Malik [14]. The ideas con-
tained therein were further explored by Ng et al. [12] and Yu and Shi [17] both of
whom motivated multi-way partitioning algorithms. In part, our method was mo-
tivated by observations made in [12, 17]. Now, how does the NCut optimization
problem fare against our two questions?

It is not difficult to construct image examples for which common image per-
cepts do not correspond to the optimal NCut of the image (e.g. see Shental et al.’s
example [13] and see Figure 4 for similar sub-optima). This is unsurprising, and
an acknowledged attribute of all objective measures of cluster or partition qual-
ity (see Kleinberg [5] and Meilă [10] for treatment of this issue). But, for many
images, as we shall show, there are segmentations with a smaller normalized cut
value than in those generated by earlier methods that are at the same time more
pleasing. For example, one of the main empirical advantages of spectral round-
ing technique seems to be that it is less likely to split the image in homogeneous
regions, see Figure 3, while returning smaller NCut values. Thus good image seg-
mentations are generated as graph partitions without reformulating the underlying
combinatorial problem.

The two common paradigms for approximating such objective functions are
1) linear or semidefinite programming [8, 16, 1]. and 2) spectral methods [3, 14].
In this paper we introduce a spectral technique that empirically improves upon
existing spectral algorithms for quotient cuts. Earlier spectral methods consisted
of a two stage algorithm. In the first stage a small collection of, say k, eigen-
vectors with small eigenvalues are computed. While in the second stage these
vectors are used to map the graph vertices into Rk and a geometric separator is
then applied [2]. Recently, Lang and Rao have proposed a compelling alternative,
a flow-based technique [6] that bests geometric rounding for quotient 2-cuts of a
graph.
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Our approach is to skip the geometric separator step by iteratively reweighting
the graph in such a fashion that it eventually disconnects. At each iteration we
will use the eigenvalues and eigenvectors of the reweighted graph to determine
new edge weights. At first hand this may seem very inefficient, since the most
expensive step in the two stage method is the eigenvector calculation. By using the
eigenvector from the prior step as a starting point, for finding the new eigenvector,
simple powering methods seem to work in only a small number of steps.

2.1 Problems and Results
Let G = (V, E, w) be a graph on n vertices with connectivity E; we wish to find
a partitioning of vertices such that some cut metric is minimized. An apparently
equitable measure of the quality of a cut is the normalized cut (NCut). As NCut
minimizes the ratio cut cost over the balance in total degree of the partitions. The
normalized cut criterion is:

nc(G) = argmin
V1,..,Vp

:
1

p

p∑
i=1

vol(Vi, V \ Vi)

vol(Vi)
(2.1)

where vol(Vi) is the sum of edge weights associated with the vertices in Vi,
vol(Vi, V \ Vi) is the sum of the edge weights connecting Vi to remainder of
the graph, and Vi ∩ Vj = ∅ . The combinatorial problem in Equation 2.1 can
be stated as a Quadratically Constrained Quadratic Program (QCQP)[17]. This
QCQP admits a straightforward eigenvector relaxation, stated as minimization of
the Rayleigh Quotient over orthogonal functions.

2.2 Quality of the Spectral Bound
Spectral methods are so named because the second smallest eigenvalue λ2 of
the normalized Laplacian bounds the best cut obtained from a continuous vec-
tor. The associated eigenvectors provide a means of obtaining a discrete solution
that satisfies the eigenvalue bound. The eigenvalue bound on the isoperimetric
number of a graph Φ(G), see [11, 3], can be ported to the normalized 2-cut as
1
2
λ2 ≤ nc(G) ≤ Φ(G) ≤

√
2λ2, as Φ(G) is an upper bound on nc(G). The upper

bound on Φ(G) is loose in general, as demonstrated by the pathological graphs
constructed by Guattery and Miller in [4]. While, guaranteed O( 1√

n
) cut bounds

were exhibited for planar graphs in [15].
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Equation 2.1 has been studied in the context of image segmentation in the
vision community [14, 17] and clustering in the learning community [12, 16]. In
all cases a standard spectral algorithm is used. The methods [14, 17, 12] differ
primarily in how the eigenvectors are used to find a feasible solution satisfying
the constraints in Equation 2.1.

3 Preliminaries
Throughout this paper we let G = (V, E, w) denote an edge weighted undirected
graph without multiple edges or selfloops, where V is a set of n vertices numbered
from 1 to n, E is a set of m edges, and w : E → [0, 1] is the edge weighting.

We associate four matrices with the graph: First, W the weighted adjacency
matrix,

Wij =

{
wij = w(i, j) if (i, j) ∈ E
0 otherwise (3.1)

The weighted degree of vertex i is di =
∑n

j=1 wij . We assume that no vertex has
zero degree. Second, the weighted degree matrix D is

Dij =

{
di if i = j
0 otherwise . (3.2)

Third, the generalized Laplacian or simply the Laplacian of G is L = D −W .
Finally, the normalized Laplacian of G is L = D−1/2LD−1/2.

Rather than working directly with the normalized Laplacian we shall work
with a similar system. If D1/2f = g and g is an eigenvector of L with eigen-
value λ, i.e., Lg = λg then it is an easy calculation to see that f is a generalized
eigenvector for the pair (L, D) with eigenvalue λ. That is Lf = λDf . It will be
convenient to work with the generalized eigenvalues and vectors of (L, D). In this
case the normalized Rayleigh quotient is fT Lf/fT Df of the valuation f .

We make a simple, but important, observation about these Rayleigh quotients:

Lemma 1. Given a weighted symmetric graph G = (V, E, w) then the normalized
Rayleigh quotient can be written as

fT Lf

fT Df
=

∑
(i,j)∈E,i<j(fi − fj)

2wij∑
(i,j)∈E,i<j((fi)2 + (fj)2)wij

(3.3)

where fi = f(vi)
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The main importance of Lemma 1 is that for each valuation f and each edge
eij we get the fraction (fi−fj)

2

(fi)2+(fj)2
. We will use this fraction to reweight the edge

eij . The simplest reweighting scheme would be to replace the edge weight wij

with the weight (fi)
2+(fj)

2

(fi−fj)2
wij . There are several issues with this scheme that will

be address in the next section.

4 Spectral Rounding
In this section spectral rounding is introduced as a procedure for obtaining graph
cuts. At each iteration a small number of eigenvectors with small eigenvalue are
computed and used to determine the reweighting w′ for the graph G = (V, E, w).
We show this process induces a k-way multiplicity in the k smallest eigenvalues
of L (i.e. λi(L) = 0 for 1 ≤ i ≤ k). By obtaining a Laplacian with this nullspace
property we guarantee that the matrix represents k disconnected subgraphs, whose
vertex membership can be read off directly from the first k eigenvectors.
§4.1 defines the spectral rounding algorithm. §4.2 connects decreasing a Rayleigh

quotient to reweighting the graph. §4.6 the spectral rounding algorithm is shown
to converge for a reweighting scheme proposed in §4.1.

4.1 The SR-Algorithm
For a graph G = (V, E, w0) prescribe the number of partitions k that the edge cut
is to yield. Given a valid reweighting scheme, iteration of the SR-Step pro-
duces a sequence of N weightings {w(N)} such that the graph GN = (V, E, wN)
is disconnected into k components by the weighting wN .

Algorithm 1 SR-Step(w: ||w||k > 0)
Let Fk = [f1 ... fk] denote the k generalized eigenvectors of L(G; w), D(G; w)
associated with the k smallest eigenvalues Λk = diag([λ1 ... λk])

1. compute wr = R(Fk, Λk), set α = 1 & w′ = wr

2. while ||w′||k ≥ ||w||k
α← 1

2
α, w′ = (1− α)w + αwr

3. return w′

The function R computes a new weighting of the graph given the first k eigen-
pairs of L, D. The norm || · ||k is taken over weightings of the graph, such that
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||w||k = 0 iff the weighting w disconnects the graph into at least k pieces. A pair
R, || · ||k is called a reweighting scheme if the SR-Step converges in a finite
number of iterations. We define Algorithm 2, the SR-Algorithm, as the itera-
tion of Algorithm 1 until ||w(N)||k u 0. In the following sections we propose Rs
and corresponding norms || · ||k such that the SR-Step and SR-Algorithm
converge in the desired fashion.

In §4.6 a simplified version of SR-Algorithm is shown to converge on
graphs with || · ||k < 1. In the case of a 2-cut this reduces to λ2(L) < 1. The
class of graphs satisfying this spectral constraint is very general, excluding an un-
interesting collection of graphs for our purposes. In particular, if λ2 ≥ 1 then
no subset of the vertices exists with more than half of its edge volume contained
within it (entailed by the Cheeger bound 2Φ(G) ≥ λ2 [3]). Such graphs are often
called expander graphs.

4.2 Fractional Averages: a reweighting function
By Lemma 1 we saw that the Rayleigh quotient could be written as a sum of for-
mal fractions where the numerators are added separately from the denominators.
Define a formal fraction as a pair of real numbers a

b
and its value as the real num-

ber a/b. We call the average of a set of formal fractions the fractional average.
We now prove a few simple but important facts about fractional averages.

Definition 1. Given formal fractions

a1

b1

, · · · , an

bn

the fractional average is the formal fraction∑n
i=1 ai∑n
i=1 bi

where the ai’s and bi’s are reals.

We will simply call formal fractions fractions and only make a distinction
between the formal fraction and its value when needed. In the case when the ai’s
and bi’s are nonnegative we first observer that the fractional average is a convex
combination of the fractions. That is we can rewrite the sum as

n∑
i=1

bi

b̄
· ai

bi
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where b̄ =
∑n

i=1 bi. Thus fractional average lies between the largest and smallest
fraction.

Possibly a more important interpretation is by viewing each fraction ai

bi
as the

point Pi = (bi, ai) in the plane and the value of the fraction is just its slope. The
fractional average is just the vector sum of the points. Since we are only interested
in the value of the fraction, the slope, we will think of the fractional average as the
centroid of the points. If we multiply the numerator and denominator by a scalar
w we shall say we reweighted the fraction by w. Geometrically, we are scaling
the vectors or points Pi and then computing the centroid.

In the next lemma we show that we can control the slope of the fractional
average by reweighting.

Lemma 2. If a1

b1
≤ · · · ≤ an

bn
and w1 ≥ · · · ≥ wn then∑n

i=1 ai∑n
i=1 bi

≥
∑n

i=1 aiwi∑n
i=1 biwi

The inequality is strict if for some pair 1 ≥ i < j ≤ n we have that ai

bi
<

aj

bj
and

wi > wj .

Proof. It will suffice to show that∑n
i=1 ai∑n
i=1 bi

−
∑n

i=1 aiwi∑n
i=1 biwi

≥ 0 (4.1)

Multiplying the left hand side through by its denominators we get∑
i,j

ajbiwi −
∑
i,j

ajbiwj =
∑
i,j

ajbiwi − ajbiwj (4.2)

Observe that term where i = j are zero. Thus we can write the sum as:∑
i<j

ajbi(wi − wj) + aibj(wj − wi) (4.3)

Rearranging the last term in the sum gives:∑
i<j

ajbi(wi − wj)− aibj(wi − wj) (4.4)

Finally we get:
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∑
i<j

(ajbi − aibj)(wj − wi) (4.5)

By the hypothesis each term in the sum above is nonnegative which proves the
inequality. The strict inequality follows when one of the pair of terms in the sum
are both positive as prescribed in the hypothesis. �

We get an exact expression by observing that the only time we got an inequal-
ity was when we cleared the denominators. Thus we have the following equation.

n∑
i=1

ai

n∑
i=1

biwi −
n∑

i=1

aiwi

n∑
i=1

bi =
∑
i<j

(ajbi − aibj)(wj − wi) (4.6)

The Rayleigh quotient in Lemma 1 associates a formal fraction with each
edge in G. One of the simplest ways to get weights satisfying the hypothesis
of Lemma 2, for such a system, is to pick wi = bi

ai
= f(ui)

2+f(vi)
2

(f(ui)−f(vi))2
, if ai is not

zero. We shall call this inverse fractional reweighting. This reweighting scheme
gives very large values for small values of ai. We have found that using the stere-
ographic map to normalized the inverse fractions between zero and one works
well.

Observation 1. The stereographic projection Ψ : Rd → Sd preserves the order
of points on the real line, mapping points at ∞ to 1 and points at 0 to 0. Thus
the inverse weight ordering of the edge update values is preserved by the stere-
ographic map.

If we think of the Φ as mapping points in Rd to Rd+1, where we are only
interested in the value in the d + 1 dimension, then the images of v ∈ Rd is

vT v
vT v+1

≥ 0. We use Ψh to denote the map which returns the value in this dimension
(i.e. the “height” on the sphere).

4.3 Reweighting for Multiple Valuations (step 1)
In the discussion so far we have assumed only one valuation is being used. To
produce cuts of higher degree (i.e. k > 2) it is crucial that we simultaneously
handle multiple valuations in computing the reweighting. Given two valuations,
say f and g, we need to pick a single new weight per edge, i.e. a reweighting
functionR. This can be thought of as finding a reweighting of the graph, w′, such
that

fT L′f + gT L′g

fT D′f + gT D′g
<

fT Lf + gT Lg

fT Df + gT Dg
(4.7)
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we begin be proving that such a weighting exists. We state a corollary of lemma
2 for the case of two fractional averages, but extending it to a larger number of
terms may be done with the same argument.

Corollary 1. Given two sets of n fractions {ai

bi
} and { ci

di
} and weights {wi} and

{ωi} such that ∑n
i=1 ai∑n
i=1 bi

>

∑n
i=1 aiwi∑n
i=1 biwi

,

∑n
i=1 ci∑n
i=1 di

>

∑n
i=1 ciωi∑n
i=1 diωi

there exists a single reweighting {γi} satisfying∑n
i=1 ai +

∑
i=1 ci∑n

i=1 bi +
∑n

i=1 di

>

∑n
i=1 aiγi +

∑n
i=1 ciγi∑n

i=1 biγi +
∑n

i=1 diγi

. (4.8)

Proof. First observe that the l.h.s. of equation 4.8 is a fractional average. Thus
by Lemma 2 there exists a weighting of the formal fractions ā

b̄
=

Pn
i=1 aiPn
i=1 bi

and
c̄
d̄

=
Pn

i=1 ciPn
i=1 di

such that ā+c̄
b̄+d̄

< α1ā+α2c̄
α1b̄+α2d̄

. This condition insures the existence of
a single reweighting {αk} where γi = α1wi + α2ωi satisfying the inequality in
equation 4.8.

An example weighting {αk} for the fractional average of fractional averages
is given by αk = b̄k

āk
. In §? we show how this reweighting of the fractional average

of two values will connect the inequality in equation 4.7.
The fractional average over the Rayleigh quotients Rfa, takes the fractional

sum of f and g per edge, yielding one fraction per edge. Formally, for an edge
(uv), let ai(u, v) = 1

λi
(fi(u) − fi(v))2, and bi(u, v) = fi(u)2 + fi(v)2 for k

valuations. Define the reweighting function as

Rfa(F, Λ, wuv) = Ψh

(∑k
i=1 bi(u, v)∑k
i=1 ai(u, v)

)
wuv (4.9)

To successfully link the reweighting functions R to eigenvalue optimization we
must specify a norm function || · ||k on weightings of G. For example, given

the function Rfa we specify the norm ||w′||k =
Pk

i=1

P
(uv)∈E wuv(f ′i(u)−f ′(v))2Pk

i=1

P
(uv)∈E wuv(f ′i(u)2+f ′i(v)2)

, i.e.

the fractional average of the updated eigenvectors f ′i | L′f ′i = λ′iD
′f ′i . Given the

reweighting functionRsa the norm ||w′||k is the sum of k smallest eigenvalues of
L′, D′. We now connect linear combinations of weightings to their eigenvalues.
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4.4 From Rayleigh Quotients to Eigenvalues
In §4.2 we showed how to, given a valuation or set of valuations of a graph,
reweight the edges so as to reduce the Rayleigh quotient. In general this does
not mean that if the valuation f is an eigenvector with eigenvalue λ of the old
graph that the corresponding eigenpair f ′ and λ′ of the new graph will have the
property that λ′ ≤ λ.

Given a new edge weighting w′ such that the fractional average of an eigen-
vector is decreased, we show that there is a linear combination of the weights of
the form w + t ·w′ for t > 0 such that the associated eigenvalue is also decreased.
This yields an algorithm which forces the target eigenvalue to zero. And moti-
vates a matrix where the entries are linear functions of a scalar t and the following
lemma.

Definition 2. Given two weightings w and w′ of G we define the matrix curve, a
1−dimensional family of matrices, as:

W (t) = W + tW ′

for t ≥ 0.

A direct consequence of the scale invariance of the Rayleigh quotient fT Lf
fT Df

is that any linear combination W (t) = W + tW ′ may be expressed as a convex
combination W (α) = (1 − α)W + αW ′ on 0 ≤ α ≤ 1 (i.e. α = t

t+1
). The

eigenstructure of normalized laplacians defined on W (α) and W (t) are identical
by the scale invariance of the Rayleigh quotient.

Lemma 3. Given a weighted graph G = (V, E, w), matrices L and D, the simple
eigenpair (f, λ) | Lf = λDf , and a new weighting w′ such that fT L′f

fT D′f
< fT Lf

fDf
=

λ then the derivative of the eigenvalue function1 λ(t) of the matrix curve W (t) =
W + tW ′ is well defined for small t and

dλ(t)

dt
< 0

at t = 0.
1The proof that dλ exists follows from properties of the characteristic polynomial of L,D and

relies on the implicit function theorem. Details can be found on the differentiability of λ and f in
Lax [7] chapter 9.
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Proof. For a simple eigenpair (f, λ), recall that fT Lf
fT Df

= λ, as W (0) = W and
thus L(0) = L, D(0) = D by definition. We deduce the bound on dλ

dt
with a

simple derivation.

dλ(t)

dt
=

fT
(

dL(t)

dt
− λ

dD(t)

dt

)
f

fT DfT
(4.10)

=
fT (L′ − λD′)f

fDfT

{
dL(t)

dt
= L′

}
(4.11)

= fT (L′ − λD′)f (4.12)
= fT L′f − λfT D′f (4.13)

=

(
fT L′f

fT D′f
− λ

fT D′f

fT D′f

)
fT D′f (4.14)

=

(
fT L′f

fT D′f
− λ

)
fT D′f (4.15)

=

(
fT L′f

fT D′f
− fT Lf

fT Df

)
fT D′f (4.16)

The bound is entailed by observing that 1) the term fT D′f =
∑

v∈V f 2(v)d′(v)

is positive, and 2) thus the sign of dλ(t)
dt

is strictly negative due to the inequality
fT L′f
fT D′f

< fT Lf
fDf

. The above derivation demonstrates that the slope dλ(t)
dt

is negative
at t = 0. By the continuity of λ there exists a t > 0 such that λ(t) < λ(0). This
insures that the eigenvalue λ associated with f can be decreased algebraically
using the procedure in §4.2 on fractional averages.

To handle multiple eigenvectors one hope might be to simultaneously bound
the derivatives of the target eigenvalues {λ2, ..., λk} of L(t), D(t). To do this
one arrives at the update criteria for the re-weighting w′; select a w′ such that
fT

i L′fi

fT
i D′fi

<
fT

i Lfi

fT
i Dfi

insuring that λi(L(t)) < λi(L) for 2 ≤ i ≤ k. But in general
this may be unrealistic since we must use the same weight per edge for all the
eigenvectors fi. In the case where the aforementioned inequalities do not hold, we
determine w′ so as to decrease the fractional average of the Rayleigh quotients (see
Rfa in §4.3). The average of the target eigenvalues tends to zero as a consequence
of the decrease in the fractional average. We now state a Lemma connecting the
derivative of two eigenvalues λf and λg with the reweighting scheme suggested in
the previous section.
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Lemma 4. For a weighted graph G = (V, E, w) with matrices L and D and sim-
ple eigenpairs (f, λf ) |Lf = λfDf and (g, λg) |Lg = λgDg, given a reweighting
w′ such that

αfT L′f + βgT L′g

αλffT D′f + βλggT D′g
<

1
λf

fT Lf + 1
λg

gT Lg

fT Df + gT Dg
= 1 (4.17)

then
dλf (t)

dt
+

dλg(t)

dt
< 0

at t = 0.

Proof. We begin by stating a related quantity of interest, the derivative of the
fractional average of Rayleigh quotients on f and g for the matrix curve w =
w + t · w′ as:

d

dt

[ 1
λ
fT (t)L(t)f(t) + 1

λ
gT (t)L(t)g(t)

fT (t)D(t)f(t) + gT (t)D(t)g(t)

]
(4.18)

and examine its derivative centered at t = 0. First we must fix the scale of
the eigenvectors f(t) and g(t), we choose f(t)T D(t)f(t) = g(t)T D(t)g(t) = 1
w.l.o.g. Thus equation 4.18 simplifies to

d

dt

[
1

λf
fT (t)L(t)f(t) + 1

λg
gT (t)L(t)g(t)

1 + 1

]
=

1

2

(
1

λf

d

dt
λf (t) +

1

λg

d

dt
λg(t)

)
(4.19)

by the linearity of the derivative. We may now substitute the functional form of
dλ(t)

dt
in

1

2

(
1

λf

d

dt
λf (t) +

1

λg

d

dt
λg(t)

)
=

1

2

(
1

λf

fT (L′ − λfD
′)f +

1

λg

gT (L′ − λgD
′)g

)
(4.20)

assume the bound holds
1

2

(
1

λf

fT L′f − λf

λf

fT D′f +
1

λg

gT L′g − λg

λg

gT D′g

)
< 0(

1

λf

fT L′f − fT D′f +
1

λg

gT L′g − gT D′g

)
(4.21)

< 0
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arriving at

1

λf

fT L′f +
1

λg

gT L′g < fT D′f + gT D′g

which is equivalent to the hypothesis in equation 4.17. The remainder of the proof
follows the continuity argument in Lemma 3.

4.5 Termination of SR-Step
In order to prove that the algorithm SR-Algorithm converges to a k-way partition
we first need to show that each step of SR-step terminates. In the next subsection
we use this termination to show convergence. To simplify the discussion we only
consider using one eigenvector. The SR-Algorithm has two majors steps. In the
first step given a valuation f it computes a reweighting wr. We claim with a
reasonable assumption about the Rayleigh quotient that

fT Lf

fT Df
>

fT Lrf

fT Drf
. (4.22)

By lemma 2 we know that equation 4.22 is true as long as not all the fractions
δij = (fi− fj)

2/(f 2
i + f 2

j ) are equal. We show that if the fraction are all equal the
Rayleigh quotient is at least one, contradicting how we construct affinity graphs.
We take

R(f)ij = Φh(δ
−1
ij ) · wij = Φh

(
f 2

i + f 2
j

(fi − fj)2

)
· wij (4.23)

as the reweighting functionR used in SR-step.

Lemma 5. Let G = (V, E, w) be a connected graph and f a valuation such that
all the fractions δij = (fi − fj)

2/(f 2
i + f 2

j ) are equal then fT Lf
fT Df

≥ 1

Proof. Let f be a valuation of G with Rayleigh quotient λ. Suppose all δij =
(fi − fj)

2/(f 2
i + f 2

j ) over all edges of G are the same value. Observe that: 1)
δij > 1 if the sign of fi and fj differ, 2) δij = 1 if fifj = 0, 3) δij < 1 if
fifj > 0. If we are not case 3) then the value of each fraction is at least one. Thus
by Lemma 1 the Rayleigh quotient is at least one.

Lemma 6 can be easily generalized to the case of multiple valuations under
the update ruleRfa in §4.3. As the fractional average of the generalized Rayleigh
quotients is a convex sum it lies between the largest λk and smallest λ2 eigenval-
ues. If λk < 1 holds the method will terminate as stated above with the update
ruleRfa.
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Lemma 6. Algorithm SR-step terminates for graphs such that λk < 1

Proof. Follows from Lemma 3 and Lemma 5.

4.6 Convergence of SR-Algorithm
By Lemma 6 we know that each step of procedure SR-step produces a new weighted
graph such that the norm || ||k is strictly decreasing. We show that in fact the limit
norm must be zero, i.e., SR-Algorithm converges.

Again for simplicity of the exposition we only consider the case of a single
eigenvector.

Let Gi, Di, λi, and xi be the ith graph, its degree matrix, its second eigenvalue,
and eigenvector. That is Gixi = λiDixi. We also assume that each xi is a unit
length vector. Thus all the eigenvectors all belong to a compact region in Rn,
the unit sphere. The Bolzano-Weierstrass theorem dictates such a space contains
an accumulation point, say, x. Let {x(i)} be a subsequence of eigenvectors that
converge to x, and let G′, D′, and λ′ be the corresponding graph, degree matrix
and eigenvalue. The eigenvectors converge to x and the eigenvalues converge to
some value λ. To insure that the graph also converges to a unique graph we apply
the Bolzano-Weierstrass theorem again to the weighted graphs which belong to
a compact set in Rm. Thus, we may also assume the graphs and degree matrix
converge to G′, D′, and λ′ such that G′x′ = λ′D′x′.

Lemma 7. The limit of the sequence of λi, as defined above, converges to λ = 0

Proof. Suppose that λ′ > 0. We know by Lemma 6 that if we run SR-step on
G′ we will get a new graph with λ′′ < λ′. Let ε = λ′ − λ′′. We can also run
SR-Step on each G′

i getting a new eigenvalue λ′′i . Let εi = λ′i − λ′′i . Since SR-
step is a continuous function in G′

i and x′i we get that the εi converge to ε. For
sufficiently large i it follows that εi ≥ ε/2. But this implies that λ′i goes to −∞
which contradicts the fact the they a bounded below by zero.

4.7 Convergence & Global Convergence for multi-valuation cases
In the previous section a proof of convergence was given for spectral rounding
where one eigenvector, say the kth, used to drive the first k eigenvalues to zero. In
this section we provide an analogous proof for the multi-valuation case. Unlike
the previous proof, the following depends directly on a generalization of Fiedler’s
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theorem constraining the number of sign connected components induced by the
kth eigenvector fk.

Need some defs – sign connected components, the Lovasz statement of Fiedler’s
theorem, and the joint nodal domain lemma.

4.7.1 termination

Lemma 8. Let G = (V, E, w) be a connected graph with n vertices and m edges.
Further let f and g be valuations, with generalized Rayleigh quotients λ = fT Lf

fT Df

and λ′ = gT Lg
gT Dg

respectively. If all fractions of the form

δij =
1
λ
(fi − fj)

2 + 1
λ′

(gi − gj)
2

f 2
i + f 2

j + g2
i + g2

j

are equal then f and g must define n joint nodal domains (sign connected compo-
nents).

Proof. W.l.o.g. assume that all the fractions are equal to 1. The following calcu-
lation entails the theorem statement.

1
λ
(fi − fj)

2 + 1
λ′

(gi − gj)
2

f 2
i + f 2

j + g2
i + g2

j

= 1

1

λ
(fi − fj)

2 +
1

λ′
(gi − gj)

2 = f 2
i + f 2

j + g2
i + g2

j

1

λ
(f 2

i + f 2
j − 2fifj) +

1

λ′
(g2

i + g2
j − 2gigj) = f 2

i + f 2
j + g2

i + g2
j

(
1

λ
− 1)(f 2

i + f 2
j ) + (

1

λ′
− 1)(g2

i + g2
j ) =

2

λ
fifj +

2

λ′
gigj (4.24)

this is wrong it seems. notes:

1

λ
(fi − fj)

2 = f 2
i + f 2

j (4.25)

(fi − fj)
2 = λ(f 2

i + f 2
j ) (4.26)

f 2
i f 2

j − 2fifj = λ(f 2
i + f 2

j ) (4.27)
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4.8 Offset Inverse Fractional Reweighting
There are an inexhaustible number of reweighting functions and norms that satisfy
the conditions in §4.5. In the following subsection we introduce a reweighting
function with improved performance over the simple reweighting rule specified
above. The reweighting in the SR-step convergences for a large class of graphs
(those satisfying a modest eigenvalue constraint). Recall that if we wish to break
the graph into k pieces we must drive the kth eigenvalue to zero. We begin by
fixing the following reweighting scheme, define f | Lf = λkDf where λk is the
kth smallest generalized, let

R(fk, λk) = Φh

(
f 2

i + f 2
j + 2α2

(fi − fj)2

)
· wij (4.28)

|| · ||k = λk. (4.29)

The term α is taken to be 1/
√

vol(G), which can thought of as an entry in the
normalized 1s vector (associated with λ = 0). We now show that this scheme
converges, in the desired sense, on a large set of graphs (in essence we must
exclude a larger class of expanders than in §4.5).

At a high level it’s worth motivating the use of Equation 4.28 over 4.23. In par-
ticular what deficit in Equation 4.23 does it overcome? It is clear that reweighting
according to Equation 4.23 will most aggressively down-weight edges that span
0 in the valuation f (i.e. fifj < 0). Immediately a number of graphs come to
mind where this property is undesirable. For example, a symmetrically weighted
odd-length line graph with a heavy-weight edge at the center will yield a subopti-
mal 2-cut under Equation 4.23 but not Equation 4.28. This is because the Fiedler
vector of the line crosses zero at the center edge for such a weighting. Thus the
update rule in 4.28 biases toward cutting edges with large gap (fi − fj)

2 and high
magnitude f 2

i + f 2
j .

The following Lemmas and definitions will be combined to supplant Lemma 5,
and allow the remaining technology in §4.6 to be employed to demonstrate con-
vergence. Their purpose is to establish the greatest lower bound of SR-Algorithm
as λk = 0. To do so we establish that update rule only admits fixed offset frac-
tions, of ai, bi as show in Figure 1, for graphs of large eigenvalue λ > 1

2
. We will

call valuations that produce a constant update iso−δ valuations.

Lemma 9. The Rayleigh quotient fT Lf
fT Df

is invariant to a uniform rescaling of the
weighting.
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Figure 1: An illustration of shifted formal fractions producing a constant slope
(update value). The offset 2α2 is given in red and maps the slopes corresponding
to the blue points to the green co-linear points (i.e. the green points produce a
constant update fraction δij for all edges.)

Proof. A direct consequence of the rewriting Lemma in Chapter 3 �
Given Lemma 9 we may choose a global scale for w such that

∑n
i=1 di = 2,

and by a simple calculation verify that 2α2 = 1, simplifying the reweighting
scheme. The second degree of freedom that we fix in Equation 4.28 is the norm
of f | fT Df = 1. While this has no effect on the Rayleigh quotient fT Lf

fT Df
, this

scaling has a dramatic effect on Equation 4.28.
Having fixed α and the scale of f it is possible to derive an iso−δ valuation

f : V → R, such as that shown in Figure 1, for the weighted line graph. Given
such an f , a weighting of the line graph G may be constructed such that L(G)f =
λ2D(G)f is satisfied. We will show that the weights drop off exponentially as
one walks from the center to end of the line, indicating that the weighted line is
an expander graph. Further, from the properties of f we can bound the eigenvalue
λ2 for all lines or arbitrary length.

Lemma 10. Given an iso−δ valuation f for a connected graph G the following
properties hold

I . for all vertices (u, v) ∈ E(G) where f(u) > f(v) then f(u) =
f(v) + ε(f(v)),
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II . for two vertices v and u where (u, v) ∈ E(G) then f(u) 6= f(v),

III . graphs with cliques of size 3 or greater do not admit iso−δ valu-
ations.

Proof. We prove the properties for the ith + 1 term, and assume that fi+1 ≥ fi

is satisfied. Property I follows from the observation that equation 4.31 admits a
unique positive solution for εi+1 in terms of the known quantities fi and δ. This
dictates that every edge joins vertices spanning exactly one threshold in f . Prop-
erty II is simple to observe, as all the fractions would equal 0 and as G is connected
this would contradict the orthogonality conditions fD1 = 0. Property III depends
on I and II. Label the vertices of a 3-clique as a, b, and c using PI and PII we may
assume that f(a) < f(b) < f(c). The unique monotonicity of the edge equations
contradicts this ordering relationship, demonstrating III for the minimal case.

4.8.1 Constructing an iso−δ valuation for the line graph

For the weighted line graph on n vertices it is possible to construct an iso−δ
valuation f insuring that for all edges (i, j) the update δij = c. For simplicity
we assume that n is odd and number the vertices, over the integers, as −bn

2
c to

bn
2
c, as the line is odd length f0 = 0. Given f0 there must be an offset ε so that

f1 = f0 + ε. Thus we can write down the first update value, to the right, as

δ01 =
ε2
1

ε2
1 + 1

(4.30)

or more generally

δi,i+1 =
(fi − fi+1)

2

f 2
i + f 2

i+1 + 1
=

ε2
i+1

f 2
i + (fi + εi+1)2 + 1

(4.31)

the valuation fi+1 can be written as

fi+1 = fi + εi+1 = fi +
δfi +

√
δ (1 + 2f 2

i − (1 + f 2
i )δ)

|δ − 1|
(4.32)

an iso−δ valuation can be constructed by applying this recurrence, starting at the
center of the line and moving toward end points.

Claim. Given the update equation δij with 2α2 = 1 a vertex valuation f can be
constructed such that the fraction δij is constant for all edges in the graph.

18



Claim. A weighting of the line graph, with Laplacian L and degree matrix D, can
be derived from a vector f such that f | Lf = λ2Df

The construction of a such a beast – give the recurrence relation.

Lemma 11. The constant update vector associated with a line graph f grows
exponentially with n, the length of the graph.

Proof. The recurrence relationship in equation 4.31 can be expressed purely in
terms of the first offset, ε, between valuations of vertices v1 and v2. Thus we can
express fi+1 terms of f1, and ε by recursively back substituting εi for εi+1. Routine
calculation reveils that the resulting recurrence grows more quickly, in magnitude,
than the simplified polynomial below

fi = ε(i + 2ε2)(1 + 2ε2)i−1 (4.33)

which grows exponentially in magnitude as n, the limit of i, tends toward infinity.

Lemma 12. The eigenvalue λ is fixed for a line graph weighted by a valuation f .

Lemma 13. A δ−valuation weighted line graph has minimum λ2 of 1
2
.

Proof. currently a numerical argument, clean version forthcoming

4.8.2 All graphs with iso−δ valuations reduce to the line

Lemma 14. Given an iso−δ valuation f of a graph G such that Lf = λDf then
a line graph G′ may be constructed such that L′f ′ = λD′f ′.

Proof. We begin by demonstrating that the thesis holds for a contraction of two
vertices with the same value in f . w.l.o.g. assume that these vertices are associated
with the least valued vertices of f and order the graph accordingly, generality
holds as this is accomplished by permuting the associated matrices L and D. We
expand Lf = λDf to clarify our assumptions

d1 0 −w1,i . . .
0 d2 −w2,j . . .
. .
. .
. .
.




a
a
b1

.

.

.

 = λ


d1 · a
d2 · a
d3 · b1

.

.

.

 . (4.34)
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For the first vertex, rewrite the constraint equation Lf = λDf as

d1 · a− λd1 −
∑
vi∼v1

w1ibi = 0 (4.35)

(a− λa)
∑
vi∼v1

w1i −
∑
vi∼v1

w1ibi = 0 (def. of d1) (4.36)

(a− λa)
∑
vi∼v1

w1i − b
∑
vi∼v1

w1i = 0 (iso−δ hyp.) (4.37)

(a− λa− b)
∑
vi∼v1

w1i = 0 (4.38)

analogously the linear constraint for v2 can be written as (a−λa−b)
∑

vj∼v2
w2j =

0. The replacement of the bis with b is a direct consequence of P I in Lemma
10. Thus we see that the constraint applies only to the weighted degrees, i.e.∑

vi∼v1
w1i =

∑
vj∼v2

w2j . Define L′ and D′ as the graph with v1 and v2 con-
tracted to v′1, removing double edges. The contraction reduces to adding the first
two rows and dividing by two, which preserves the total weight constraint and
thus the eigenvector equation L′f ′ = λD′f ′ preserves λ.

We now handle the next contraction, along the order induced by f . The only
novel term introduced is the backward edge to the previously contracted layer. We
drop the ′ notation to simplify the expressions. We have

(b− λb− c)
∑
vi∼v2

w2i − a · w21 = (b− λb− c)
∑

vj∼v3

w3j − a · w31 (4.39)

as the weights w21 and w31 may be taken to be equal the lower diagonal terms
cancel and thus the previous argument applies. This operation is repeated along
the ordering induced by f , producing a line graph with matrices L′ and D′ such
that if Lf = λDf then L′f ′ = λD′f ′.

4.9 Multi-valuation Updating
In this section we describe two methods for integrating multiple valuations into
a single update. The first treats the δij update associated the valuations f1, ..., fk

as a coordinate and maps the resulting coordinates onto the k−sphere using a
stereographic map. The second takes the fractional average of the valuations and
maps the resulting combined δij update value to the circle under a stereographic
projection.
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In the factored form the update functionR is taken to be

R(Fk, Λk)ij = Φh

([
F 2

1 (i) + F 2
1 (j)

(F1(i)− F1(j))2
, ... ,

F 2
k (i) + F 2

k (j)

(Fk(i)− Fk(j))2

])
· wij (4.40)

4.9.1 A fixed update condition

Given that the δ
(k)
ij points are mapped onto the sphere a fixed update is only possi-

ble when updates for all edges (ij) are co-circular prior to the mapping. The

5 Empirical Evaluation
We show that spectral rounding compares favorably to recent spectral approxima-
tions for the Normalized Cut criterion (NCut). For the purpose of our evaluation
we compared our method, denoted SR, to that of Yu and Shi [17], denoted EIG, as
it reliably returns superior cuts relative to methods which use K-means and less of
the eigenvectors, those based on [12]. In the following sections results are given
in geometric clustering, natural image segmentation, and medical image segmen-
tation. In all cases, the same graph G = (V, E, w), is passed to both algorithms.
To compare the partitioning we report the expected improvement in NCut value,
on the initial graph G = (V, E, w), and the variation of information between
clusterings.

The first comparison, the expected improvement in value, can be expressed as
a positive scaler c such that nc(SR) u c ·nc(EIG) on average. In the case where
c < 1 spectral rounding finds an improved cut on average.

Throughout this section we report the variation of information described in
[9] to measure the difference between two partitionings, Pa and Pb of the vertex
set V , defined as

Dvi(Pa, Pb) = H(Pa) + H(Pb)− 2I(Pa, Pb) (5.1)

with I(Pa, Pb) = −
∑p

i=1

∑p
j=1

ni,j

n
log

ni,j

n
, H(P ) = −

∑p
k=1

nk

n
log nk

n
, where

nk is number of vertices in the kth partition, ni,j the size of the overlap between
the ith partition in Pa and jth partition in Pb, and n = |V |. The entropy term H(P )
can be thought of as the number of bits required to represent the distribution of
partition sizes. Where as I(Pa, Pb) is the mutual information between the two par-
titionings Pa and Pb. And so, Dvi can be thought of as the number of bits needed
to represent the cumulative disagreement between the overlapping partitions of Pa

and Pb. As expected Dvi(Pa, Pa) = 0.
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Geo-Graph nc(SR)=.064 nc(EIG)=.109

Figure 2: A (|V | = 300) geometric graph, and two 5-way cuts.

5.1 Random Geometric Graphs
We compare SR and EIG in the expected partition cost on a collection of random
geometric graphs. The vertices of G = (V, E, w) are associated with uniformly
distributed coordinates in Rd. The edge set of E(G) is then constructed using
the following rule, for {u, v ∈ V |u 6= v}, (u, v) ∈ E ⇐⇒ dist(u, v) <
r. We sampled 10000 graphs with 1000 vertices and chose the radius r such
that the expected degree of each vertex was approximately log(|V |). As shown
in Figure 2 such graphs afford a large number of relatively small cuts. Table 1
contains the improvement factor, and the cluster divergence. We note that the
divergence distance, relative to partition entropy H(SR), highlights that the NCut
improvements are not due to a small number of boundary vertex exchanges, but
rather that SR and EIG return significantly different subgraphs.

Dvi(SR, Eig) nc(SR) = c · nc(EIG)

geo-graph 0.910± .219 c = .690± .113

Table 1: Comparison between spectral rounding SR and the multi-way cut algo-
rithm of Yu and Shi [17] EIG. The partition entropy for SR was H(SR) u 1.935.

5.2 Image Segmentation
The parameters used in constructing a weighted graph from an image were fixed
for all the results presented in this section. The graph G = (V, E, w) represents
an image as follows. For each pixel in the image a vertex in V is assigned. If
two pixels are connected in E a weight in w is determined based on the image
data. The graph connectivity, E, was generated by connecting pixels to 15% of
their neighboring pixels in a 10 pixel radius. The initial weighting w of the graph
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G = (V, E, w) was determined using the Intervening Contour cue described in
[14]. This cue assigns small weights to pixels which lie on opposite sides of a
strong image boundary, and large weights otherwise.

5.2.1 Natural Image Segmentation

We compiled a set of a 100 images from Google Images using the keywords farm,
sports, flowers, mountains, & pets. Examples from this data set, and segmen-
tations can be found in Figure 3. Again, we note that changes in the cut value
often correlate with large changes in the co-membership relationships on the im-
age pixels. To quantitatively compare the methods on natural images we report
the divergence distance and NCut improvement factor c.

Dvi(SR, Eig) nc(SR) = c · nc(EIG)

natural 1.23± .160 c = .536± .201

Table 2: Comparison between spectral rounding SR and the multi-way cut algo-
rithm of Yu and Shi [17] EIG on segmentations of natural images. The average
cluster entropy over SR-segmentations of the image collection is 1.62± .4.

5.2.2 Medical Image Segmentation

To a degree, clustering methods are only successful in that are useful in servicing
a particular task. We have selected a simple medical task, segmenting out the
left ventricle (a fluid sack located in the brain), as it is well defined – i.e. the
boundary of the percept is agreed upon by experts. While this task would seem to
be relatively easy, a successful automatic method represents a significant reduction
in human effort for a common labeling task.

The test set was constructed from a collection of 200 NMR images containing
the left ventricle. The collection was built by taking 5 slices each from scans
of 40 individuals. Images were selected randomly from slices containing the left
ventricle. As shown in Figure 6 the appearance of the ventricle varies substantially
in shape and size.

The comparison of segmentations obtained from spectral rounding and the
eigenvector method of Yu and Shi [17] with the human labels is given in Table 3.
The divergence distance and expected cut improvement are given in Table 4. The
average cluster entropy for SR was 0.611 ± .131. As this is a two-class problem,
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this suggests that one of the segments tends to be much smaller than the other.
This is due to the often small size of the ventricle in the image.

nc(SR) nc(EIG)[17]

Pr(v ∈ T (Im)) .95± .04 .37± .12

Table 3: The value Pr(v ∈ T (Im)) is reported over the population of images,
where T (Im) is the expert’s hand segmentation and Pr(v ∈ T (Im)) is the prob-
ability that a pixel v in a segment is also contained in T (Im) – this statistic was
computed for the segment with the largest overlap with T (Im).

Dvi(SR, Eig) nc(SR) = c · nc(EIG)

medical 1.856± .192 c = .598± .237

Table 4: The divergence and expected value improvement for the medical image
data set. The average cluster entropy for SR segmentations on the medical data set
was 0.611± .131.
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Input Data Feature Map Eig [17] SR

k=4 nc(EIG) = .0151 nc(SR) = .0064

k=5 nc(EIG) = .0119 nc(SR) = .0030

k=5 nc(EIG) = .0069 nc(SR) = .0033

k=5 nc(EIG) = .0019 nc(SR) = .0015

Figure 3: The first four rows illustrate with qualitative examples the improve-
ments in NCut value for natural images. Column three contains segmentations
generated by the published code of Yu and Shi [17]. Column four contains results
for Spectral Rounding. The number of segments k is fixed for each comparison.
We emphasize that the cut cost was evaluated on identical combinatorial problems
(graphs).
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Input Data Feature Map Eig [17] SR

k=2, comparison nc(EIG) = .0021 nc(SR) = .0021

Figure 4: The second to last row illustrates a 2-way cut in which the NCut values
are nearly identical, but which support very different percepts.

Input Data Eig [17] Intermediate SR final

k=6, SR iteration nc(EIG) = .0074 i = 1, nc(SR) = .0062 i = 4, nc(SR) = .0057

Figure 5: A sequence of iterations projected onto the feasible set, starting left
with solution from Yu’s method and ending with the fourth and final SR iteration
on the right. Notice that the large cuts in the sky and field shift to small cuts in the
area around the farm.
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nc(SR)=.019 nc(EIG)=.061 nc(SR)=.024 nc(EIG)=.057

nc(SR)=.021 nc(EIG)=.021nc(SR)=.048�� nc(EIG)=.068

Figure 6: Examples of the left ventricle, and qualitative results for the SR and
EIG algorithms. Segmentations required approximately 1.2 seconds for EIG and
1.9 seconds for SR.
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