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Provably Good Channel Routing Algorithms
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I._Introduction

In this paper we present three new two-layer channel routing algorithms that are provably
goud in that they never requirc morc than 24-1 horizontal tracks where 4 is the channel density,
when each net connects just two terminals. To achieve this result we use a slightly relaxed (but
sull realistic) wiring model in which wires may run on top of cach other for short distances as
long 25 they are on different layers, T'wo of our algorithms will never use such a "parallel run”
oi length greater than 24-1 and our third algorithm will requirc overlap only at jog points or cross
points, Since in this wiring model at least d/2 horirontal tracks are required, these algorithms
produce. 2 routing requiring no more than four times the best possible numbar of horizontal
wracks. The sccond algorithm also has the property that it uses uses at most 4n contacts, where n
is the numbzr of ncts being connected.
1I._The Model :

The (infinite) channel of widts / consists of (1) the ser V of grid points (x,y) such that the
integers x and y satisfy the conditions 0<y</+1 and -90<x<L, (2) the set I of poly segments

-consisting of all unit length line segments connecting pairs of adjacent grid points which do not

both have y=0 or. y=1+1, (3) the set M of meial segmenis which is isomorphic to but disjoint
from P. The channel (V. P.Af) thus forms a multigraph with vertex-set V' and cdge-set PUM. If
wo vertices are adjacent in this graph they are connected by precisely two cdges - ohe of type
poi: and onc of type mctal. We define track i of the channel (}.P.Af) to be the subgraph
composed of all grid points in ¥ with y-coordinate equal t J, and all segments of PUM which
connect pairs of these grid points, ’
A wire W consists of a sequence of distinct grid points scparated by scgments which connect
them: ;
W = ()0 oS pennsS e Py)-
Here FgP), arc the grid points and s; connects p., to p. Each s, may be of cither type, poly or
meli. and we define the sets of poly segments and metal segments of wire W as follows:
W) = {s;| s€P}.
M(W) = s, | s€M]}.
suniiarly. the contuct points C(I1) is defined to be the set of grid puints where H’ starts. ends or
thanges lavers:
iy = {p

]
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(type(s)=poly if s, €P(¥) and type(s)= metal if s €AI(H))

We say that two wires ¥, and W, are compatible if there does not exist a pair of segments
s€W, and sﬁWz such that s, and 5 are incident on a common grid point and type(s)=typels).
Notice that two compatible wires may "overlap™ by connecting to common grid points with
segments of different type, as illustrate¢ in Figure L.
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Figure 1.
Many previous channel routing algorithms employ a more restricted wiring model in which
no such "overlap” is permitted. We do not know how to prove our current results without
making use of a modest amount of overlap. ‘The current model is certainly a realistic two-layer
model, although it does permit wirings which are susceptible to "cross-talk” via the capacitive
coupling of long overlapping wires. Qur wirings will not have any long sections-of ovérlappiug
wires - the longest such section will have length at most the width of the channel.
A net N; = (p,q) is an ordered pair of integers specifying an entry (x-)coonldinate p, and an
exit coordinate q, A net is said to be rising if g<p, failing if p<q, and trivial if p;=q, A
channel. routing problem is simply a set of n nets, for some integer n, such that no twu nets have a
common entry coordinate or 2 common exit coordinate. A solution to a channel routing problem
consists of am integer ¢ and a set of n compatible wires W, ... W, in the channel of width 1, such
that W, begins at grid point (p,/+1) and ends at grid point (g,0). The optimal width for &
channel routing problem is defined to be the least integer ¢ such that the problem has a solution
in a channel of width .

For any real number x, we say that a net N; = (p,q,) "crosses x" if cither p;<x<g; of 4, 5P,
The channel density of a channcl routing problem is defined to be the maximum over ail 1€R of
the number of nets crossing x. It is simple to show that a probiem has optimal width ac least Jil
if it has density 4
1IL._A Provably Good Channel Routing Algorithm

Let CRP={N..N,} denote any channel routing problem. We agsume without loss of
generality that 1<p,q;<m for all 1<i<n and some integer m. Thus the nets .VECRP spealy

end-points which lie within some m "columns” of the channel. We will now describe 3
polynomial time algorithm which is guarznteed to compute a solution w CRP having channc
width exacdy 1=2d-1. where d is the channel density of CRP. Since /2 is a lower buund on the
optimal channcl width for CRP, this algorithm will never generate d solution with channel Wit

more than four tmes optimal.

Algorithm 1.
This algonthm proceeds colwnn by column roating all nets which cross j oo
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solution generated will have the properties that 1=24-1, there will be at most d wires passing from
column j to column j+1 for any j, and for some j there will be at least d such wires. Further,
wircs will pass from a column + to column j+1 only on the odd-numbered tracks; there will be
no horizontal scgments on the even-numbered tracks. In addition, if there are k nets which cross
jthen there will be exactly k horizontal segments connecting columns j and j+1. These segments
will all lie on di.f:tinct odd-numbered tracks and they may be of either type, poly or metal,
independently. Finally, if exactly r of the k nets which cross j are rising and f are falling (so that
r+/=k). then between colurnn; Jj and j+1:

(1) The top-most r odd tracks will be devoted to wire segments for the r rising nets,
(2) The "middle” &rf odd tracks will be empty, and

(3) The bouom-most / odd tracks will be devoted to wirc segments for the f falling nets.

It now remains to demonstraie that this set of invariant properties can be maintained as the
algorithm procceds from column to column. If a column contains a trivial net, the net is wired
straight across the column using the even numbered tracks to change layers as necessary. No
other wiring is needed in such a column.

If a falling net N;=(p,j) enters column j from column j1 on track , the algorithm drops a

vertical connection from grid point (j,1,) down to grid point (j0). The algorithm then “closes up
ranks” in column j so that all the empty odd tracks are in the middle of the channel. Figure 2
fllustrates how such a wiring can be generated. Rising nets with entry coordinate j are -handled
similarly.
_ Finally, any rising net N;=(p,)) is routed in column j with 2 vertical connection from grid
point (.0) up to grid point (ji7,), where /_ is the top-most odd track which would be empty (ie.
contuin ne horizontal segment between grid points (jir,) and (j+1.7)) if net N; were not present.
Similarly any falling net is routed down to the lowest odd track that would otherwise be empty.
If both of these situations occur in the same column, a modest amount of "overlap” is required as
indicated in Figure 3. However, the situation of Figure 3 is thce only placc where overlap is
needed.

column ) col

F\s‘.ﬁ - e e e o=

nets

nchy
Figure 3.
Theorem 1:

Algorithm 1 is guaranteed 1o compute a solution o CRP having channe] width no more than
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four times optimal.

Proof:

The proof of Theorem 1 follows directly from the above discussion.

At this point it should also be clear that the running time of Algorithm 1 is bounded by a
polynomial in m, the number of columns which must be processed. [n practice, however, we only
need process columns having index equal to some net entry or exit coordinate. Thus with the
appropriate output representation, Algorithm 1 is O(d-n) for a channel routing problem containing
n nets and having density d :

Although Algorithm 1 never generates a solution with channel width more than four tmes
optimal, it does generate solutions containing as many as d-nt contact points. Further, it generates
solutions containing overlapping parallel runs as long as length 24-1. In the remainder of this
paper we present algorithms which cope with these two problems indepcndendy.

IV. Bounding the Number of Contacts

In this section we will describe a polynomial time algorithm which, like Algorithm 1, is
guaranteed to compute a solution (0 CRP having channel width no morc than four times optimal,
but unlike Algorithm 1 requires no more than 4n total contact points. This new algorithm
employs the same basic approach as Algorithm 1 and thus its description will be facilitated by
simply noting the differences between the two algorithms, ’

Algorithm 2. T

Similar to Algorithm 1, this algorithm proceeds column by column routing «ll nets which cross
j in step j. Further, a solution gencrated by Algorithm 2 will have ascnunliy the same properties
as a solution gencrated by Algorithm 1 with only two significant exceptions. The first of these
exceptions is that all horizontal segments belonging to wires of failling nets (with the possible
exception of the top-most such segment in cach column) will be of type metal. A similar
property will hold for rising ncts and poly horizontal scgments. The second significant exception
is that for each column j there may be a-t most one distinct herizontal scgment which is associated
with a falling net and connccts columns j and. j+1 while lying on an cven-numbered track
Further. the net of such a scgment will not have exit coordinate cqual to j+1 and the add-
numbered track immediately below the scgment will be cmpty between columns j and j+L A
similar property will also hold relative (0 rising nets.

The maintenance of this new set of invariant properties requires a somewhat different set of
wiring rules from those employed by Algorithm 1. Consider the cuse where a falling act
N;=(p,J) cnters column j from column j-L on track 1, As in the previous algorithm, a vertiedi

connection is dropped from grid point (jit) down (o grid point (.0). Notice, however. that X
most one contact point will be required along this connection since all segments which must be

crossed will have the same type. The algorithm must now "close up- ranks” so that all blans
columns remain in the middlc of the channel. [t should be clear that the technigue employed &
Algorithm 1 in solving this problem can be of no use here. However, the problem can be Cusii

solved by dropping a. vertical connection from the op-most track containing & falling. net w it
The onlv problemn that oot »

crusses j down o grid point (47,+ 1. ay shown in kFgure -,
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when the net to be dropped has exit coordinate equal to j+][ In this case, however, the
algorithm simply drops ihe next lower net (if any) as shown in Figure 4b. Rising nets with entry
coordinate j are handled similarly and all other cascs are handled as in Algorithm 1.

(@ smllase ' o . -

- e -

-
a

Figure 4.
Theorem _2:
Algorithm 2 is guaranteed to compute a soiunon to CRP with channel width no more than
four times optimal and with no more than 4n total contact points.
Proof:
The proof of Theorem 2 follows from the above discussion and a more detailed case analysis
of the wiring rules applied within each column.

Finally, we notc that Algorithm 2 has time complexity O(dn) for a channel routing problem
containing » nets and having density d. '
Y. Rcducing Overlap

Let us now assume that we wish to computc a solution to CRP which has minimal channel
width and no scgment overlap. In this section we will describe a polynomial time algorithm
which is guaranteed to compute a solution to CRP having channel width no more than four times
opumal and requiring only “corner overlap”. However, the number of contact points required by
tis algorithm will be O(dn) rather than O(n).

Algorithm 3.

This algorithm proceeds track by track rather than column by column. The processing at each
siep involves a pair of adjacent tracks, / and i+1, such that i is odd. Furthermore. the algorithm
proceeds bottom-up beginning with tracks 1 and 2. At each step the algorithm extends all
@uisting wires across both track / and track i+ 1. in such a way that the density of the subproblem
oetween uack i+1 and the top of the channel decreases. This reduction in density will result
from horozontal wire extension along the odd-numbered track. Once again the final solution will
fave the properties that r=24-1 and there will be horizontal wire scgments lying only on odd-

numbered tracks: the even-numbered tracks will be uscd solcly for layer changes along vertically
Tunning  wires,

When the algorithin begins processing a pair of tracks i and i+ 1. there will exist exactly n
dstinct vertical segments connccting a grid point in track 1 w a grid point in vack i Further,
¢ch of these segments will belong to a distinct wire. Since track /-1 is even-numbered and thus
wed solely for layer changes, we note that the type. poly or metal. of cach of these SCEMENts can
iways he asigned s a function of ine horizontal routing in track L We will now deseribe the
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procedure for routing nets across track i
The processing of track i is performed in either a lefl-fo-right or a right-to-left fashion
depending on how track ~2 was processed. ‘The processing direction for track i is initially set to
be the opposite of that for track 2.
Let us assume that track i is to be processed in a left-to-right fashion: an analogous procedure is
employed. for the right-to-left case. Further, assume that column j, is the left-most column
containing a vertical segment connecting grid point (jpi1) to grid point (7.0} and belonging to a
rising net N =(p,.q,) for which pj;. Thus net ¥, requires cxtension to the right. [f no such
column cxists then track i is processed in a right-to-left fashion. _
Now let W denote the wire associated with net V. Note that W, ends at grid point (j.i). The
algorithm then simply cxtends wire W, horizontaily to the right from grid point (j,) undl it
reaches either column p,, (the cntry coordinate of net V) or a column j, containing the terminus
of a wire W, for a net ¥V, =(p,.q) with pop, (ie. W isa wire which must be cxtended farther
right than W)
In the latier case wire W, ends at column j, and wirc W, is extended to the right in a manner
similar to the extension of W,. In the former case wire W/, ends at column p, and the algorithm
searches to the right for the first wire requiring some extension.
Let column j; denote the left-most column (if any) such, that j,2p, and the point (1) is the
terminus of a wire W, for a net N=(p.q) with p#/, Thus wire W, requires soine horizonual
extension: cither to the right or to the left. Further, if j;>p, then NV must additionally be a rising
net so that W, requires extension (0 the right. The wire W_is then the next wire (0 be-extended
The only difference in the manner of extension occurs when N, happens to be a falling net [n
this case W, is extended to the right only ur!til it reaches a column j, such that the point (j,i) is
not the terminus of a wire for a net with enay coordinate equal to j, This will -allow ¥ 10
extend to the left, without gencrating segment overlap. when rack i+2 is processed.
Once the processing of track i Has been completed. ail wires are cxtended vertically across
.track i+1 and the horizontal processing of track i+2 begins. The entire procedure for tracks i
and i+1 is illustrated in Figure 5. Notice that a wire W for a net N=(p.g) is never cxtended
horizontally once its terminus lies in column p. Therefurc, Algorithm } terminates when 10

further horizonwal cxtension is necessary.
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Theorem _3:

Algorishin 3 is guaranteed 10 compute a solution 1o CRP with channel width no more than
four umes opumal and requiring only “corner overlap”.

It follows directly from the above discussion that Algorithm 3 will always generate a solution
in which the only type of overlap is comer overlap. The upper bound on channcl width then
follows from the obscrvation that the density between track 7 and the top of the channel is strictly
decreasing as the wlgorithm proceeds and [ increases.

We now point out that Algorithm 3, like the previous two algerithms, has ime complexity
0tr). Unlike the previous two algorithms, however, this algorithm may generate wires which
are non-monotonic {1.c. weave back and forth across the channel), thus resulting in increased total
wire ichgth. .

V1. Conclusions

We have presented three channel routing aigorithms which are guaranteed to compute a wiring
Tequiring no more than four times the optimal channel widdh. Furthermore, one of these

slgoritims requires only a small number of contact cuts and another rcquires only a minimal

ammount of overlap. Howcver, many open questions still remain:

(1) Can the upper bound be improved (e.g. to 3d/2)?

(2) Can this bound be proved in more restricicd wiring -models (e.g. the model of
DEY? :

(3} Can this bound be proved for multi-terminal nets?

{4) Can both the number of contact cuts and the amount of vverlap be simultancoustly
minimized? !
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