
Introduction 

•! Segmentation provides a means of visualizing and measuring specific retinal layers in 3D spectral domain (SD-

OCT) scans. Recently introduced, SD-OCT has an approximately 1.5 second scan time and provides a high 
resolution volumetric sample (e.g. 200x200x1024 samples).   

•! Unassisted segmentation would provide clinicians with easy access to new visualizations and potential clinical 

variables that respect the boundaries of retinal layers. Commercial SD-OCT software (Cirrus HD-OCT Software 
version 3.0, Carl Zeiss Meditec, Inc., Dublin, CA) has approached this problem by inferring the: internal limiting 

membrane (ILM), and retinal pigment epithelium (RPE). This method appears to use a low-order spline model to 
regularize the automatically fit curve. Such statistical models trade rigidity for fidelity an may fail to return 
segmentations of complex surfaces - such as those found in pathological cases (Figure 2).    

•! The purpose of this study was to test modern graph theoretic approaches to image segmentation on SD-OCT 

scans in order to assess the appropriateness of their application to Ophthalmological imaging data (Figure 3).  

Abstract 

Purpose: To develop an automatic system to segment multiple retinal layers in three-dimensional 

spectral domain optical coherence tomography (3D SDOCT) images and to evaluate its 

performance in comparison with human assessment.  

Methods: Spectral rounding, a graph partitioning image segmentation algorithm, was applied to 

weighted degree 4 lattice graphs constructed from 3D Cirrus OCT (Carl Zeiss Meditec, Inc., Dublin, 

CA) scan slices (200x200x1024 samplings in 6x6x2 mm centered). Intensity differences between 

adjacent pixels were computed to weight the lattice. Small magnitude eigenvectors of the resulting 

matrix representation, the normalized Laplacian of the graph, were calculated and used to 
determine probable boundary regions in the scan. The scans were automatically segregated into 5 

regions, requiring 4 boundary detections.  

Results: The proposed method successfully segregated the scans into 5 regions (Figure 1). The 

percentage of automatically detected boundary pixels within (+/- 5 pixels) of the human specified 

curves are given for the 4 boundaries, color-coded in the figures. The aggregate accuracy for the 

detected boundaries was 97.1% (red), 86.9% (green), 98.8% (blue), and 85.5% (yellow). These 

statistics were aggregated over 9 pathological subjects and 2 normative subjects - testing against 
hand segmentations of 4 randomly selected slices per case.  

Conclusion: The graph theoretic model tracks complex boundary contours between anatomic 

ocular regions. This differs from conventional segmentation algorithms such as adaptive contours, 

which tend to fail in the presence of retinal pathology.  
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Results 

•! The proposed method successfully segregated the scans into 5 regions (Figure). The percentage of automatically detected boundary 
pixels within (+/- 5 pixels) of the human specified curves are given for the 4 boundaries, color-coded in the figures. The aggregate 
accuracy for the detected boundaries was 97.1% (red), 86.9% (green), 98.8% (blue), and 85.5% (yellow). These statistics were 

aggregated over 9 pathological subjects and 2 normative subjects - testing against hand segmentations of 4 randomly selected slices 
per case.  

•! The results above demonstrate the systems tolerance to the intricate contours induced by retinal pathologies. The upper collection 
contains segmentation results without registration or noise reduction. The second collection, boxed in yellow, contains results on slices 
with 3D median filtering and registration. All shown results are on scans taken of subjects with pathologies – as existing methods are 

believed to be reliable on normative subjects. Note the green and yellow contours are less constrained by the data and thus produce 
the lower prediction scores – an example of a failed segmentation can be seen in the yellow box, upper left hand corner.        

Discussion: 
•! Analogously to  3D median filtering providing superior noise reduction when compared to 2D filtering – we believe 

substantial improvements in robustness and accuracy will come from direct 3D segmentation of SD-OCT scans.  

•! Our current research is focused on applying our technology to 3D scans directly, as the graph theoretic model is 

essentially coordinate free – the same algorithm used to create the shown 2D results are directly applicable to 3D 
scans (see below for preliminary results). 

•! Reliable segmentation opens the possibility of clinical measurements based on the volume and shape statistics of the 

imaged structures – enhancing the set of inputs for computer assisted diagnoses.          
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Figure 2 

Figure 3: The red, green, blue, and 
yellow layers were automatically 

extracted from the inferred raw frame.  

Note: the original image was not 
available for a comparison – an inferred 
raw image was reconstructed by 

removing colored pixels from the image 
and in-painting; the hard white lines 

where suppressed manually. The figure 
was produced by overlaying the segment 
boundaries on the reconstructed image. 

Results: no noise filtering or registration 

Results: thresholding, volumetric registration and 3D median filtering 

Method Description 

•! Overview: The algorithm consists of 3 primary steps: graph construction from SD-OCT scans, spectral rounding (which requires the 

calculation of eigenvectors of the normalized Laplacian), and recursive decomposition (which calls spectral rounding on the residual 
graph). The eigencalculation step consumes the majority of the computational resources and is addressed below.   

•! Graph Construction: the initial graph used in these experiments were constructed in either a 2 or 3 stage process. The first stage 

registers the 3D SD-OCT volume removing Z-axis and X-axis motion, after which a 3D median filter with (5 x 5 x 5) support is applied. 
Second, for a randomly selected slice, a matched quadrature-pair filterbank is applied to the slice image to detect zero crossings in 

the image intensities and determine an orientation robust edge magnitude (Figure 4). Third, a graph constructed from the edge 
feature images according to the following rule: w(p,q) = exp((mag(p)-mag(q))^2/s)•abs(phase(p)-phase(q))  

  Figure 4   

•! Spectral Rounding iteratively updates an estimate of the bounding contour, by evaluating the eigenstructure of the associated graph 
Laplacian. This is accomplished by weakening the weights on heavily stretched edges in the graph. This stretch is measured as the 

difference in the eigenvector taken at neighboring pixels. In the visualization below low values are mapped to blue and high values 
are mapped to red, therefore a maximal stretch occurs between adjacent red and blue pixels.     

 Recursive decomposition: after a boundary has been detected, the graph is restricted to those candidate pixels that contain the 

next layer to be segmented out. The segmentation results shown here require 4 cuts, one for each of the boundaries – the 
decomposition order was as follows: red, blue, green, yellow (note the green and yellow cuts may be performed in parallel as they are 

independent).  

•! Computational Efficiency: a novel eigensolver algorithm computes the required eigenstructure of the graph Laplacian. The 

algorithm4 is mathematically robust and fully scalable: essentially a small number of CPU operations are performed for each pixel of 
the image, or voxel in a volume. The work can be split evenly among more than one CPUs when they available, for example in 

modern multi-core computers. Its full scalability ensures fast image segmentation and allowing real time user interaction, even on a 
standard desktop workstation. The computational core of our algorithm requires solutions f of 

the form:   

where, L is  the Laplacian (spring) matrix of the graph, D is the 

diagonal degree (mass) matrix, and f is an eigenvector -- providing a 

map from the the pixels to the real numbers [see above for an 

example]. If we visualize the graph as a spring and mass system – 

with weak or strong springs connecting neighboring pixels – the 

eigenvectors can be thought of as the physical modes of vibration for 

the system. As eigenvectors are global functions of the graph 

traditional computational methods are impractical for image data.    

The weighted graph is constructed 
by testing for strong edges between 

adjacent pixels.    

LEFT: the phase image 

localizes the probable 

boundaries in the image. 

RIGHT: the magnitude 

image depicts the edge 

energy at a putative 

boundary taken over 

scale and orientation. 
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