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Preface 

i 

Geometry is full of visual imagination and concrete intuition. Such imagination and intuition 
is of great value not only for the research worker, but also for anyone who wishes to study and 
appreciate the results in geometry. 

In this thesis, a unified geometric approach is presented for graph partitioning - a fundamental 
problem in computer science that has important applications in numerical analysis, VLSI design, 
computational geometry, complexity theory, and other fields. The main ingredient in obtaining 
this unified approach is a novel geometrical characterization of graphs that have small separators, 
where a separator of a graph is a relatively small subset of vertices whose removal divides the rest 
of the graph into two disconnected pieces of approximately equal size. 

The characterization is based on elementary geometric concepts such as points, balls, cubes, 
and spheres. More specifically, a new class of geometric graphs, overlap graphs, is proposed. This 
class has the following properties: 

1. In two dimensions, planar graphs are special cases of overlap graphs. 
2. In d dimensions (d > 2), any finite subgraph of the infinite d-dimensional grid is 

an overlap graph. 
3. Every overlap graph of n vertices in d dimensions has an 0(n(d~1Wd) separator. 

At the time of this writing, this is the first time that a class of graphs has been proposed with 
these three natural properties. The proof that planar graphs are special cases of overlap graphs 
relies on recent deep theorems by Andreev and Thurston characterizing all planar graphs in a 
geometric fashion. A consequence is a new geometric proof of a classical theorem of Lipton and 
Tarjan that every planar graph has an O(0i)-separator. This is another beautiful illustration of 
the use of geometry in understanding combinatorial concepts. 

Moreover, the class of overlap graphs in d dimensions includes as a special case the class 
of fc-nearest neighborhood graphs - an important class of graphs from computational geometry, 
statistical analysis, and image understanding. Therefore, I am able to give the first proof that all 
fc-nearest neighborhood graphs of n points in d dimensions have 0(&3n~3-)-separators. It is worth-
while to mention that the above separator bound for fc-nearest neighborhood graphs is also optimal 
in terms of k. The overlap graph also contains various other classes of graphs defined geometrically, 
including sphere packing graphs and graphs which can be drawn with finite resolution. 

In addition, the overlap graph includes (almost) all graphs associated with finite element and 
finite difference methods in numerical analysis and scientific computing. Graphs from finite element 
and finite difference methods are defined geometrically. They are in general meshes of elements in 
a fixed dimensions (typically 2, 3 or 4 dimensions), that are well shaped, i.e., with bounded aspect-
ratio and/or without any small angle nor obtuse angle. Therefore, the new separator result can be 
used not only in Nested Dissection for generating an almost optimal elimination ordering for the 
sparse Cholesky factorization but also for devising efficient sequential and parallel algorithms for 
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mapping sparse matrices onto various distributed processor/memories parallel systems to reduce 
communication cost and to achieve load balance. 

Furthermore, all the arguments are based on geometric properties of embedding. The separator 
bounds come with randomized linear time and processor-efficient randomized NC algorithms. 

Graph partitioning is a fundamental subroutine in applying divide and conquer paradigm for 
developing efficient sequential and parallel algorithms for various problems in computer science and 
scientific computing. Using the new separator result, algorithms are developed for solving several 
problems in computational geometry, that are more efficient than the multi-dimensional divide and 
conquer algorithms of Bentley. These new results on separators lead to a new way to design efficient 
parallel algorithms for geometric problems in fixed dimensions. 
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Chapter 1 

Introduction 

In the past three decades, computer scientists have identified several algorithmic paradigms -
general methods that are useful to design efficient algorithms not just for one or two problems, but 
for a wide variety of problems. Some of those paradigms such as dynamic programming, divide 
and conquer, branch and bound, et cetera, have been described in standard university text books 
(Aho, Hopcroft and Ullman [2], Knuth [54], Cormen, Leiserson and Rivest [18]). These general 
methods are usually very simple and intuitive at a high level, but they yield a large number of 
counterintuitive results that are fascinating from a purely mathematical viewpoint. For example, 
using divide and conquer one can multiply two matrices, two polynomials, or two integers faster 
than the "ordinary" high school algorithms (Strassen [81]; Schonhage and Strassen [77, 2]); one can 
solve a large classes of linear systems in 0(n1-5) arithmetic operations (George [35]; Lipton, Rose, 
and Tarjan [59]); one can sort optimally in 0(nlog n) time (Knuth [54]; Batcher [6]); and one can 
solve various geometry problems in almost linear time (Bentley [8]). 

Despite the simplicity and generality on the high level of these methods, the details of each 
application may be very different. They depend crucially on the structure of each individual 
problem. For instance, each example above (namely sorting, matrix multiplying, linear system 
solving, and geometry computing) has its own distinct way of dividing a problem when using 
divide and conquer. How to systematically apply a general paradigm to a particular application 
is thus a major issue for algorithm design. To some extent, those algorithmic paradigms are too 
general to be discussed precisely. As noted by Bentley [8], the generality, ironically, is quite an 
obstacle to the systematic application of those paradigms. 

In this thesis, I take a "mixed approach" by examining general paradigms within some well 
defined application domains. A more "middle of the road" paradigm is presented that can be 
precisely specified and yet can also be used to solve many problems in its domain of applicability. 
The general paradigm I will study is divide and conquer - one of the most widely used problem 
solving techniques [2]. The application domains I will mainly focus on are graph problems, especially 
those with important applications in numerical analysis and computational geometry. 

At the heart of this paradigm is a notion of a small separator, roughly speaking, a relatively 
small set of vertices or edges whose removal divides the rest of the graph into two disconnected 
pieces of approximately equal size. An important contribution of this thesis is a novel geometric 
characterization of graphs with small separators. By taking advantage of the underlying geometric 
structure, I also develop an efficient algorithm for finding such a small separator. 

1 
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The separator results come with some new applications, epsecially in numerical analysis and 
computational geometry. In numerical analysis, the new separator result can be used not only in 
Nested Dissection for generating an almost optimal elimination ordering for the sparse Cholesky 
factorization but also for devising efficient sequential and parallel algorithms for mapping sparse 
matrices onto various distributed processor/memories parallel systems to reduce communication 
cost and to achieve load balance [59, 39, 72, 35, 36, 42]. In computational geometry, a separator 
based divide and conquer paradigm can be developed and used to solve several geometry problems. 
This paradigm outperforms a commonly used one in computational geometry, the multi-dimensional 
divide and conquer of Bentley [8], on various applications. It provides a new way to design efficient 
parallel algorithms for geometry problems in fixed dimensions. 

Divide and conquer 

Divide and conquer solves a problem by partitioning it into a set of independent subproblems, 
finding solutions for the subproblems recursively, and then combining the solutions for the subprob-
lems into a solution for the whole. In order to apply divide and conquer efficiently, it is necessary 
that all subproblems are of the same type as the original one, but substantially smaller. The cost 
of combining solutions of subproblems should also be low. There is, in general, a trade-off between 
the size of the subproblems and the cost of combining. 

Associated with each application of divide and conquer is a tree, a partition-tree, whose root 
represents the whole problem, the children of the root denote the top level subproblems, and other 
nodes denote the subproblems which are recursively defined in a top-down fashion during the pro-
cess of divide and conquer. It is interesting to point out that, in contrast to the way that the 
partition tree is defined, the computation in a divide and conquer algorithm is usually performed 
in a bottom-up fashion - computation associated with the leaves is first performed, then the parents 
of leaves and so on till the root is reached. This is where parallelism can be exploited: computation 
at each level of a partition tree can be performed in parallel. The height of the partition tree 
together with the parallel time of combining solutions of subproblems thus represents the parallel 
time complexity of a divide and conquer algorithm. Divide and conquer is an effective paradigm 
not only for sequential but also for parallel computation [37, 68, 73]. 

Graph partition and small separators 

When specialized to graph problems, divide and conquer partitions the whole problem by delet-
ing a subset of vertices or edges. The subproblems are those associated with connected components 
in the resulting graph. The process of deleting edges and vertices is called graph partition, and the 
subset of vertices and edges removed are respectively called a vertex- and an edge-separator. 

Usually, the cost of combining is determined by the size of separators, i.e., the number of 
vertices or edges removed. The depth of a partition tree depends on the quality of separators used 
in divide and conquer. Therefore, to achieve high efficiency, the size of subproblems and size of 
separators need to be balanced. This motivates the following definition: 

Definition 1.1 (Separators1) A subset of vertices C of a graph G with n vertices is an f(n)-

'In this thesis, we aie mainly concern with vertex separators. Edge separators can be defined similarly. 
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separator that ^-splits if \C\ < / (n) and the vertices ofG — C can be partitioned into two sets A 
and B such that \A\, \B\ < 6n and there is no edge between A and B, where f is a positive function 
and 0 < S < 1 (See Figure 1.1). 

Figure 1.1: Separators 

For simplicity, by saying a graph G has a small separator, we mean that there is a constant 
S and a sublinear function / , such that G has an /(n)-separator that ^-splits. We say a class of 
graphs has an f(n)-separator theorem if there exist constants 6 < 1 and /? > 0 such that every 
graph in the class has a /3/(n)-separator that ^-splits. 

Small separator results for a family of graphs closed under the subgraph operation immedi-
ately leads to divide and conquer recursive algorithms for a variety of applications. In general, the 
efficiency of such algorithms depends on a 6 bounded away from 1 and an / (n) that grows slowly 
(e.g., /(n) = na for some constant 0 < a < 1). 

Previous results on separators 

Clearly, not every graph has a small separator. An example is the complete graph of n vertices. 
One may quickly observe that the complete graph has n(n~x) edges, and conjecture that all "sparse" 
graphs, or more specifically, all graphs with bounded degree have small separators. 

A beautiful construction of Thompson2 [85] refutes such a conjecture. Using an information 
transfer argument, he showed that each network which is capable of computing the discrete Fourier 
transform on N elements in T steps has no separator of size £l(N/T). His result implies that 
neither butterfly graphs, nor shuffle-exchange graphs, nor hypercube graphs (see Figure 1.2) have 
a separator of size o(ra/(logn)). 

Then which families of graphs do have small separators? 
Two of the most well-known families of graphs that have small separators are trees and planar 

graphs. It is known that a tree has a single vertex separator that 2/3-splits. Lipton and Tarjan 
[60] proved that every planar graph has a \/8ra-separator that 2/3-splits. Their result improved an 
earlier one by Peter Ungar [90]. Some extensions of their work have been made [21, 64, 31, 33], and 
separator theorems have also been obtained for graphs with bounded genus [38, 46] and graphs with 
bounded excluded minor [5]. In particular, Gilbert, Hutchinson, and Tarjan showed that all graphs 

2 As a matter of fact, an earlier result of Erdos, Graham, and Szemeredi [24] has shown that for c a large enough 
constant, almost all graphs of en edges cannot be separated into small components without removing H(n) vertices. 
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Figure 1.2: Hypercube and Butterfly 

with genus bounded by g have an <9(^n)-separator, and Alon, Seymour, and Thomas proved that 
all graphs with an excluded minor isomorphic to the to-clique have an 0(ft3/2-v/ra)-separator. 

Interestingly, all characterizations above are combinatorial as well as their proofs! 

Classical applications of separator results 

Perhaps, the most classical application of small separator results is Nested Dissection - a 
widely technique for solving a large classes of sparse linear systems. This approach was pioneered 
by Alan George [35] who designed the first 0(n1,5)-time nested dissection algorithm for linear 
systems on regular grids using the fact that the y/n X y/n grid has a -^/n-separator. His result 
was extended to planar linear systems by Lipton, Rose, and Tarjan [59]. Gilbert and Tarjan [39] 
examined several variants of the nested dissection algorithms, and Pan and Reif [72] demonstrated 
that nested dissection can be implemented efficiently in parallel. 

Small separator results have found fruitful applications in VLSI design (Leiserson [56]; Leighton 
[55]; Valiant [92]) and efficient message routing (Fredrickson and Janardan [27]). They have also 
been used in proving several complexity-theoretic results (Paterson [71]; Lipton and Tarjan [61]; Li 
[57]; Teng[82]), and certainly have been used to design efficient graph algorithms such as parallel 
construction of breadth-first-search trees (Pan and Reif [72]) and depth-first-search trees (Aggar-
wal, Anderson, and Kao [1]; Kao [51]; Smith [79]; He and Yesha [45]), testing graph isomorphism 
(Gazit [32]), parallel evaluating expressions (Gazit, Miller, and Teng [34]; Miller and Teng [65]), 
and approximating NP-complete problems (Lipton and Tarjan [61]). 

A new challenge 

The development of computational geometry and numerical analysis calls for deeper under-
standing of the separator property for graphs embedded in fixed dimensional spaces, especially in 2 
and 3 dimensions. Although the planar separator theorem is applicable to many interesting families 
of graphs embedded in 2-space, several natural classes of graphs in 2-space, including the class of 
fc-nearest neighborhood graphs, are neither planar, nor have bounded genus, nor have bounded 
excluded minor. In general, none of the above separator theorems are useful for graphs in 3-space. 

Let us first look at some simple examples. Figure 1.3 shows a 2 X m X m grid in 3 dimensions. 
It is not hard to see that this graph has a separator of size 2y/n that 1/2-splits, where n = m2. But 
it has genus Sl(y/n) and a minor isomorphic to the y'ra-clique. To see this, we identify vertices at 
the top layer by row and the bottom layer by column. The resulting graph is a complete bipartite 
graph with y/n vertices on each side. Therefore, the 2 X y/n X y/n grid has genus at least Sl(y/n) and 
a minor isomorphic to the y/n-clique. Thus none of the separator results in the previous section 



Figure 1.3: The 2 X m X m grid 

can be directly applied to obtain a small separator. 
Similar problems also occur in 2-dimensions. If we shift the top layer of the above graph to 

right by 1/2 unit and to front by 1/2 unit, and project the top layer to the bottom one, we then 
obtain a graph shown in Figure 1.4. 

OCT 
STS 
<s:s s:sp 
sî r 

E 

sr ST St si 
ST 

Figure 1.4: A subgraph of a 12-nearest neighborhood graph in 2-space 

This graph is a subgraph of a 12-nearest neighborhood graph. Clearly, it has an O(y'ra)-
separator that 1/2-splits. But it also has genus il{y/n) and a minor isomorphic to the ^/n-clique, 
because this graph, combinatorially, is the same graph as the 2 X y/n X y/n grid graph. 

Motivated by the potential application of separator results in numerical analysis, especially in 
domain decomposition and the finite element method, several groups of researchers (Vavasis [94]; 
Miller and Thurston [67]; Miller and Vavasis [69]) have proposed classes of graphs that can be 
embedded in d dimensions and that have 0(n~f") separators. For the applications mentioned in 
the last section, d = 2 and d = 3 are the interesting cases, in which case the bounds are Ofo1/2) 
and 0(n2/3) respectively. 

All of those earlier classes of graphs have the disadvantage that, when specialized to two di-
mensions, they do not contain all planar graphs. This is a serious drawback because the earliest 
and best-known separator result is Lipton and Tarjan's theorem [60] that all planar graphs have 
0{nll2) separators. As a matter of fact, those classes do not even contain any graph with un-
bounded degree and consequently they do not contain simple geometric graphs such as A;-nearest 
neighborhood graphs. Moreover, the characterizations of those classes are quite complicated. 

This thesis 

In this thesis, a unified geometric approach is presented for graph separators. A new class of 
geometric graphs, overlap graphs, is proposed. This class is defined based on elementary geometric 
concepts such as points, balls, cubes, and spheres, and it has the following properties: 

1. In two dimensions, planar graphs are special cases of overlap graphs. 

2. In d dimensions, a finite subgraph of the infinite d-dimensional grid graph is an overlap graph. 

3. Such a graph of n vertices in (^-dimensions has an 0{n~^r) separator. 
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To my knowledge, this is the first time that a class of graphs has been proposed with these 
three very natural properties. The proof that planar graphs are special cases of overlap graphs 
relies on recent deep theorems by Andreev and Thurston characterizing all planar graphs in a novel 
geometric fashion. A consequence is a new geometric proof of a classical theorem of Lipton and 
Tarjan that all planar graphs have an (^(y^-separator. This is another beautiful illustration of 
the use of geometry in understanding combinatorial concepts. 

Moreover, the class of overlap graphs in d-space includes as a special case the class of A:-nearest 
neighborhood graphs. Therefore, each fc-nearest neighborhood graph of n points in d-space has an 
O(fcan"ir)-separator. It is worthwhile to mention that the above separator bound is also optimal 
in terms of k. In addition, overlap graphs include some earlier classes of graphs associated with 
the finite element method, such as simplex graphs with bounded aspect-ratio (Miller and Thurston 
[67]) and density graphs (Miller and Vavasis [69]). It also contains various other classes of graphs 
defined geometrically, including sphere packing graphs and graphs that can be drawn with finite 
resolution. All the arguments are based on geometric properties of embedding. The separator 
bounds come with randomized linear-time and randomized NC algorithms. 

This thesis is organized as follows: Chapter 2 shows examples of some classes of geometric 
graphs. The notion of a k-neighborhood system is introduced in chapter 3, along with some of its 
basic properties. In chapter 4, three classes of graphs are defined based on neighborhood systems. 
They are respectively called intersection graphs, dilation graphs, and overlap graphs. Each type 
starts with a set of balls (one per vertices) and extracts a graph from these. I will show that 
intersection graphs and overlap graphs are "sparse" while the class of dilation graphs contains 
complete graphs as special cases. I will also show that the class of overlap graphs contains as 
special cases all planar graphs, all ^-nearest neighborhood graphs, and some earlier classes of 
graphs associated with domain decomposition and finite element methods. In chapter 5, a notion 
of a sphere separator for neighborhood systems is introduced. Two cost functions associated with 
a sphere separator: the weighted surface area and the intersection number is discussed. It is shown 
that the intersection number is closely related with the size of separators for intersection graphs. 
Also presented in this chapter are the continuous separator theorem of Miller-Thurston [67] and 
an algorithm for computing a sphere separator with a low cost. In chapter 6, the main separator 
results of this thesis are presented and proved. A matching lowerbound on the size of separator 
of overlap graphs is also given. In chapter 7, the notion of neighborhood systems is generalized 
from Euclidean space to a more general family of metric spaces known as normed linear spaces or 
Minkowski spaces. All the earlier separator results will be generalized to intersection graphs and 
overlap graphs in the more general setting. In chapter 8, some complexity-theoretic results about 
the structure of center points and point divisions are presented. Efficient sequential and parallel 
algorithms are given for computing center points in fixed dimensions. In chapter 9, a divide and 
conquer paradigm based on the new separator results is presented and used in designing efficient 
algorithms for various geometry problems in fixed dimensions. In chapter 10, I will bound the 
number of random bits required in the randomized algorithm for computing a small separator of an 
overlap graph, based on which I will derive a deterministic polynomial time algorithm for computing 
a small separator. Finally, I will conclude this thesis by listing a set of open questions. 



Chapter 2 

Some Simple Geometric Graphs 

Geometric graphs, as the name suggests, are those which are defined by the relation of a set of 
elementary geometric entities such as points, lines, hyperplanes, spheres, cubes, etc. Often they 
are naturally defined. They have rich structure and find importance in various branches of science 
and art. Their simple geometric character makes them easy to visualize and reason about. 

2.1 Grid graphs in d dimensions 

Perhaps, the simplest class of such graphs is the class of grid graphs. They are the underlying 
graphs for the finite difference method in numerical analysis. 

To construct a d-dimensional m X • • • x n grid graph, we take as vertices those points {x\,..., xj) 
of IRd all of whose coordinates are nonnegative integers with £,• < m for all 1 < i < d, and join each 
point by an undirected line segment to each point which is a unit distance away. These connecting 
segments, which represent the edges of the grid graph, run parallel to one of the coordinate axes 
of ntd. Grid graphs in 1, 2, and 3 dimensions are illustrated in Figure 2.1. 

Figure 2.1: Grid graphs in 1, 2, and 3 dimensions 

It is not hard to see that a d-dimensional mx •••x m grid graph has an n ~5~ -separator that 
1/2-splits, where n — md. To split the graph evenly, we just choose an i : 1 < i < d, and remove 
all points with xt- = fra/2]. It is also not hard to see that the above separator size is tight for grid 
graphs. 

7 
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2.2 Nearest neighborhood graphs 
Another interesting class is the nearest neighborhood graphs - an important class of graphs from 
computational geometry. 

Let P = {pi , . . . ,pn} be a set of n points in IR''. For each p,- € P, let N(pi) be a closest 
neighbor of p in P , where ties are broken arbitrarily. Similarly, for any integer k, let Nk(pi) be the 
set of k nearest neighbors of p,- in P; here too ties are broken arbitrarily. 

Definition 2.1 A fc-nearest neighborhood graph of P = {pi , . . . ,pn} in JR.d, is a graph with 
vertices V = {1, ...,ra}, and edges E, 

E = {(i,j)\Pi € Nk(pj) or pi G Nk(Pi)}. 

Notice that each d-dimensional grid graph is basically a 2d-nearest neighborhood graph defined 
by the set of grid points. The only exceptions occur on the boundary. 

2.3 Sphere packing graphs 

We can also define graphs based on a set of spheres rather than points, where each sphere S has a 
center p and a radius r, and S is the set of points in TR? whose Euclidean distance away from p is 
r. A sphere partitions lRd into three subsets, ext(S), int(5), and S itself, respectively, those points 
in the exterior of 5, in the interior of S, and on 5. 

Let a sphere packing in d dimensions (Conway and Slone [19]) be a set of spheres having 
disjoint interiors. Each sphere naturally packing defines a graph, called its sphere packing graph, 
where each vertex represents a sphere; There is an undirected edge connecting two vertices if their 
corresponding spheres have a common point. Figure 2.2 shows an example of sphere packing graphs 
in two dimensions. 

Figure 2.2: A sphere packing graph 
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2.4 Graphs that can be drawn in a civilized manner 
Sometimes, a geometric graph is not directly given by points and segments in a space. Instead it 
can be graph obtained from a drawing. For example, planar graphs can be viewed this way: they 
are graphs which can be drawn in 2-space with no two edges crossing. Other graphs may be those 
that can be drawn in a predefined resolution - in a "civilized manner". 

For each pair of positive reals r > 0 and s > 0, a graph G can be drawn in JR.d in an (r, s)-
civilized manner if its vertices can be embedded in IRd so that 

1. The length of each edge is < r. 

2. The distance between any two points in at least s. 

This class of graphs was originated by Peter Doyle and Laurie Snell [22]. Also see Vavasis [94]. 

2.5 Graphs of simplicial complex with bounded aspect-ratio 
This section presents a class of graphs motivated by the finite element method [80] - a collection of 
numerical techniques for approximating a continuous problem by finite structures. To approximate 
a continuous function, the finite element method subdivides the domain (a subset of IR*') into a 
mesh of polyhedral elements (Figure 2.3), and then approximates the continuous function by a 
piecewise polynomial on the elements. 

Figure 2.3: Airplane wing (Barth and Jespersen) 

Each element is a d-dimensional simplex which is the convex hull of (d+1) affinely independent 
points in IR/*, e.g., a triangle in 2 dimensions and a tetrahedra in 3 dimensions (Figure 2.4). A 
mesh of ef-dimensional simplices is called a d-dimensional simplicial complex which is a collection 
of d-dimensional simplices closed under subsimplex and intersection [80, 9, 67] (see Figure 2.3). 

Associated with each simplicial complex K is natural graph, the 1-skeleton of K. For example, 
the 1-skeleton of each 2-dimensional simplicial complex is a planar graph. Conversely, every planar 
graph can be embedded in the plane such that each edge is mapped to a straight line segment (Fary 
[25]; Tutte [86, 87]; Thomassen [84]; Fraysseix, Pach, and Pollack [26]). 

To properly approximate a continuous function, in addition to the conditions that a mesh must 
conform to the boundaries of the region and be fine enough, each individual element of the mesh 
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A 
Figure 2.4: Simplices in 2 and 3 dimensions 

must be well shaped, i.e., they must have bounded aspect ratio1. The aspect ratio is defined as 
follows. 

Let the diameter diameter(5) of a d-simplex 5" be the maximum distance between any pair of 
points in S. Define the aspect-ratio to be 

_ diameter(5) 
° ~ ^volume(£)' 

where volume(5) denotes the d-dimensional volume of S. An example of a simplicial complex with 
bounded aspect ratio is illustrated in Figure 2.5. Another one is shown in Figure 2.3. 

Figure 2.5: Lake Superior (Joe) 

'The condition of bounded aspect ratio is also closely related with some other well shaped conditions of an element, 
namely, the no small angle condition and the no obtuse angle condition (Bern, Eppstein, and Gilbert [9]) 



Chapter 3 

Neighborhood Systems 

Although they appear very different, graphs defined in Chapter 2 have a lot in common. These 
similarities motivate a unified definition, where each example class can be shown as a special case. 
The general definition allows us to study various graph-theoretical properties of those graphs as 
a whole. Especially, it enables us to develop a unified method to prove small separator theorems. 
The basic notion behind the general definition is neighborhood systems. 

3.1 Definitions 
A neighborhood of a given point p € IRd is a closed compact set containing p (p is called the 
center of its neighborhood). The type of neighborhood concerned in this chapter is the Euclidean 
neighborhood which is a closed ball of certain radius centered at p. More general neighborhoods 
will be discussed in Chapter 7. 

A neighborhood system E = {B\,...,Bn} is a finite collection of neighborhoods. Let p,- be 
the center of JB,- (1 < i < n). P = {pi,.. . ,pn} is called centers of E. For any integer k, E is a 
k-neighborhood system if for all 1 < i < n, the interior of B{ contains no more than k points from 
P. A 2-neighborhood system in two dimensions is illustrated in Figure 3.1. 

Figure 3.1: A 2-neighborhood system 

The following notation will be used throughout the thesis. For each positive real a, suppose 
B is a ball of radius r in WLd, then a • B denotes the ball with the same center as B but radius ar. 

11 
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d 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Td 
2 
6 

12 
24-25 
40-46 
72-82 

126-140 
240 

306-380 
500-595 
582-915 
840-1416 

1130-2233 
1582-3492 
2564-5431 
4320-8313 
5346-12215 
7398-17877 

10668-25901 
17400-37974 
27720-56852 
49896-86537 
93150-128096 

196560 

Figure 3.2: Range of possible kissing numbers in fixed dimensions 

3.2 Kissing numbers 
It is handy to precisely specify the constant term in the separator theorem. To this end, I will use 
a concept called the kissing number in d dimensions, denoted by r j , which is the maximum number 
of nonoverlapping unit balls in IRd that can be arranged so that they all touch a central unit ball 
[19]. It is easy to see that ri = 2 and T<L = 6 (see Figure 3.3 for T^). A little imagination or even 
by looking at the arrangement of apples in a supermarket, will convince you that T3 > 12 (also see 
Figure 3.3). But is 12 is the precise number? Can it be 13? Do not think this is an easy problem -
even Isaac Newton and David Gregory disagreed. Back in 1694, Newton believed the answer was 
12, while Gregory thought that 13 might be possible. 

The correct answer to this question is now known to be 12. Various proofs appeared in the 
literature (For citations, we refer readers to [19]). The kissing number becomes more difficult to 
evaluate in higher dimensions. The best bounds currently known on Td, are shown in Figure 3.2. 
It is quite surprising that we know the kissing numbers in 8 and 24 dimensions but no of other 
dimensions above 3, partly, because the optimal arrangement in 8 and 24 dimensions is unique [19]. 

Although there is no explicit formula known about kissing numbers, rj can be bounded from 
above and below by the following inequalities. 

20.2075..d(l+o(l)) < r , < 2°-401d(1+°(1)) 
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Figure 3.3: Kissing arrangements in 2 dimensions and 3 dimensions 

The first inequality was given by Kabatiansky and Levenshtein [49] and the second one by 
Wyner [96]. 

Figure 3.4: rd = Ad(l) 

For each positive real 6, define Ad(S) to be the maximum number of points that can be arranged 
on a unit (d — l)-sphere (the boundary of a unit d-ball), such that the distance between each pair of 
points is at least 6. As shown in Figure 3.4, if A, B, and C are unit balls such that A and B touch 
C at points p and q, respectively, then \\p — q\\ > 1 if and only if A and B are not overlapping. 
Hence, 

Lemma 3.1 i4<f(l) = rd. 

3.3 Two basic properties of neighborhood systems 
Suppose E = {Bi,...,Bn} is a neighborhood system in d dimensions. For each p G JR.d, define 
density=(p) to be the number of neighborhoods in E that contain p. 

The following lemma bounds the maximum possible density of a ^-neighborhood system. 

Lemma 3.2 (Density Lemma) For each k-neighborhood system E = {B\,..., Bn} in d dimen-
sions, for each p G flld, density={p) < Tdk. 

Proof: We first prove the lemma for the case when k = 1, namely, no ball contains the center of 
other balls in its interior. 

Without loss of generality, let {Bi,...,Bt} be the set of all balls that contain p. Further, 
assume p is on the boundary of all balls Bi,...,Bt (See Figure 3.5), for otherwise, B{ can be 
replaced by a ball C; centered at p,- with radius | |p,- — p\ \ and the assumption of the Lemma is still 
satisfied because C,- C B{. 
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Figure 3.5: The set of balls that touch p 

Let 6 = min{||p — p,|| : 0 < i < t}. By proper linear dilation, assume 6 = 1. Let Sp be the 
sphere centered at p with radius 6 = 1. Let qi be the intersection of the ray ppi with the sphere Sp. 
We claim that for each pair i, j € {1,... , J}, ||g; — qj\\ > 6. 

Figure 3.6: | |« - g,-|| > | | p - « | | 

Without loss of generality, assume \\p - p,|| > \\p — pj\\. Let s be a point on the ray ppi such 
that | | p - . s | | = | |p-PiH (see Figure 3.6). It follows | | p - p ; | | = | | p - « | | + | | s -p , - | | . 

By the triangle inequality, we have ||s - p,| | + ||s — pj | | > ||p, — Pj| | . 
Because pj £ J3,-, and the radius of B{ is ||p — p,||, we have ||p — p,-|| < ||p,- — Pj||. Thus 

l l p - - l l < l l « - P i l | . 
By the similarity of triangles Apg,-̂ - and Apspj, we have ||g,- — gj|| > ||p — g,|| = 6. By 

Lemma 3.1, i < ry, completing the proof of the lemma when k = 1. 
We now prove the lemma for any k > 1. Without loss of generality, assume B\,...,Bt contain 

p. Define a subset Q of {p\,..., pt) by the following procedure. Initially, let P = {pi , . . . , pt} and 
Q = 0. 

while P ^ 0 
1. Suppose q is the point in P with the largest \\q — p| |, let Q = Q U {<?}; 
2. Let P = P - int(f?,j), (where Bq stands for the closed ball centered at q). 

Because no ball contains more than k points from {pi,-..,Pt} in its interior, we have m = 
\Q\>\t/k-\. 
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We now show that for all q G Q, int(5,) n Q = {q}. Suppose Q = {qi,...,qm} such that for 
all t < j , qi is put Q in the above procedure before qj. Notice that for all j > i, qj £ int(J3g,). Also 
because ||g,- - qj\\ > ||g,- -p \ \ > \\qj -p\\, we have for all i < j , qi £ iat(Bqj). So int(i?,) f\Q = {q}. 
Thus m <Td which implies t < Tdk. Q 

The following lemma gives an upper bound on the number of balls in a neighborhood system 
which intersect a given ball. 

Lemma 3.3 (Ball Intersection I) Suppose H = {B\,...,Bn} is a k-neighborhood system in d 
dimensions. Then for each ball B G JRd (with center p and radius r), and for each a, 

\{i : Bi n B $ 0 and p{; £ a . J?}| < Ad(^^-)k, 

where p,- is the center of Bi (1 < i < n). 

Proof: This lemma can be proved in a fashion similar to the Density Lemma. So, I present a high 
level argument. 

Again, we first prove the lemma in the case when k = 1. Without loss of generality, assume 
B\,..., Bt is the set of all balls with centers not in a • B that intersect B. Also, by proper dilation, 
assume r = 1. Let S = min{||p - p,|| : 0 < i < t}. We know S > or. By an elementary geometrical 
argument, it can be shown that the set of balls B\,...,Bt induces a set of balls C\,...,Ct with the 
following properties: 

1. The center o,- of C; is on the sphere of radius 6 centered at p. 

2. Ci kisses B; and 

3. {Ci , . . . , Ct} forms a 1-neighborhood system. 
For each i, let qi denote the common point of C,- and B. By a simple geometrical argument, 

we can show that for each pair 1 < i,j < t, the distance between qi and qj is at least s^-, and 
hence t < Adi2^-). So the lemma holds when k = 1. 

Using a similar construction as in the proof of Lemma 3.2, we can prove the lemma for all 
positive integer k > 1. C 

Similarly, 

Lemma 3.4 (Ball Intersection II) Suppose E = {Bi,...,Bn} is a k-neighborhood system in d 
dimensions. Then for each ball B £Wid (with center p and radius r), 

\{i: Bi D B # 0, n > r, and Pi € 2 • B}\ < Ad(^)k, 

where p,- is the center and r,- the radius of Bi (1 < i < n). 

The following is an interesting consequence of the Density Lemma. 

Corollary 3.5 The degree of all k-nearest neighborhood graphs in JR.d is bounded above by Tdk and 
this bound is tight. 

Proof: For each point p,- in a given set P, let Bi be the largest ball centered at p,- such that the 
interior of J?,- contains no more than k points from P. Notice that if (pi,Pj) is an edge in a ^-nearest 
neighborhood graph of P, then either p,- G Bj or pj G Bi. By Lemma 3.2, we have the degree of 
fc-nearest neighborhood graphs is bounded above by Tdk. a 
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3.4 Neighborhood systems with bounded density 
Suppose E = {B\,...,Bn} is a neighborhood system in d dimensions. Define the density of E, 
denoted by density(S), to be the maximum density over all points in IRd. 

By the Density Lemma, each ^-neighborhood system in d dimensions has density bounded by 
Tdk. However, as shown in Figure 3.7, there is a neighborhood system with density equal to 2, 
which has a ball whose interior contains n centers. 

Figure 3.7: A neighborhood system whose density is 2 

Also, by the Density Lemma, if a d-dimensional neighborhood system E = {B\,.. .,Bn} can 
be partitioned into g disjointed fc-neighborhood systems S i , . . . , S 3 , then density(E) < Tdgk. It is 
interesting to know whether the converse of the above statement is true, namely, whether each 
neighborhood system with density fi can be partitioned into O(fi) 1-neighborhood systems. Al-
thought, using the following lemma (Lemma 3.6), we can show that each neighborhood system with 
density fi can be partitioned into O (fi + ^—l°f"/ _xw 1-neighborhood systems. 

Lemma 3.6 (Ball Intersection) For each positive integer fi, for each d-dimensional neighbor-
hood system E = {B\,..., Bn} with density(E) < fi, for each d-dimensional ball B with radius r, 
\{i: Bi n B £ 0 and r,- > r}\ < 3dfi. 

Proof: Without loss of generality, let B\,...,Bt be the set of all balls in S of radius at least r, 
that intersect B. For each i: 1 < i < t, if p,-, the center of B{, is in 2 • B, let B\ be the ball of radius 
r centered at pi\ if p,- is not in 2 • B, let p(- be the point common of the ray ppi and the boundary of 
2 • B, and let B\ be the ball centered at p\ and of radius r. In either case, B\ € Bi and B\ intersects 
J3, and if B{ is replaced by J5,', the density of the resulting neighborhood system does not increase. 
Therefore, without loss of generality, assume for all i : 1 < i < t, Bi has radius r and with center 
Pi € 2 • B. Therefore, each ball Bi (1 < i < t), is contained in the ball 3 • B. Because the density 
of the neighborhood system is bounded by ft, 

t 
y]volume(i?,) < ^volume(3 • B), 
«=i 

which implies t < 3dfi. • 



Chapter 4 

Overlap Graphs 

In this chapter, the class of overlap graphs are defined based on neighborhood systems. The goal 
is to obtain a geometric characterization of graphs with small separators. In addition, simplicity 
and generality are also the main objectives. 

4.1 Graphs over neighborhood systems 
Three classes of graphs are defined based on neighborhood systems. Each class defines the same 
set of vertices when given a neighborhood system, i.e., one vertex per ball. The only difference is 
the rule of determining when to put an edge between two neighborhoods. 

Given a neighborhood system E = {B\,..., Bn}, the simplest rule to decide edges is probably to 
connect two neighborhoods whenever they intersect. The graph so defined is called the intersection 
graph of E. The intersection graph of a 2-neighborhood system in 2-dimension is illustrated in 
Figure 4.1. 

Figure 4.1: An intersection graph 

An alternative rule is to connect two neighborhoods B{ and Bj if for a predefined positive real 
a > 1, the pair of balls (a • B{) and (a • Bj) have a common point (see Figure 4.2 for the rule). The 
resulting graph is called the a-dilation graph of E. Clearly, each intersection graph is the 1-dilation 
graph of its neighborhood system. 

A minor modification of the rule for dilation graphs yields overlap graphs. The new rule 
connects two neighborhoods B{ and Bj by an edge whenever the a dilation of the smaller ball 

17 
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Figure 4.2: Rule for deciding edges in dilation graphs 

intersects the larger one (see Figure 4.3), or equivalently, if (5,n(a-Bj) £ 0) and ((a-Bi)f\Bj ^ 0). 
The graph so defined is called the a-overlap graph of E. 

Figure 4.3: How to decide an edge in an overlap graph 

4.2 Inductivity of overlap graphs 
The first question one might ask is whether an overlap graph is "sparse" (e.g., having a linear 
number of edges). If the maximum degree of overlap graphs were bounded, then the number of 
edges would also be bounded. However, it is not hard to see that some 1-intersection graphs may 
have unbounded maximum degree. For example, each star graph is isomorphic to the intersection 
graph of some 1-neighborhood system (see Figure 4.4). 

Figure 4.4: Intersection graph yields star graph 

For any integer 6, a graph is 6-inductive if its vertices can be numbered such that each vertex 
has at most 6 edges to higher numbered vertices. Clearly, a ^-inductive graph with n vertices has 
at most (6 • n) edges. 
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For example, every tree is 1-inductive and each planar graph is 5-inductive. To see the later 
fact, observe that each planar graph has at least one vertex of degree less than 6 (by Eular's 
formula). So a 5-inductive numbering can be obtained by assigning the smallest number to such 
a vertex and inductively numbering other vertices. The following lemma will be used to show the 
intersection graph of a Ar-neighborhood system is 2i4j(l/2)-inductive. 

Lemma 4.1 Let S = {Bi,...,Bn} be a d-dimensional k-neighborhood system. Each ball in E 
intersects at most 2Ad(l/2) balls in E of larger or equal radius1. 

Proof: Let P = {pi , . . . ,pn} denote the set of centers of E. Let T> be the set of all balls in E with 
the same or larger radius, that intersect B{. Partition T> into two subsets T> = Ty U I> , where 

l i x ) = {Bi€T>:Pi^(2-B1)} 
l f } = {Bi^T>:Pie(2-B1)} 

By Lemma 3.3, | r ^ | < Ad(l/2), and by lemma 3.4, | r£ } | < Ad(l/2). O 
Consequently, 

Theorem 4.2 The intersection graph of a d-dimensional k-neighborhood system is 2Ad(l/2)k-
inductive. 

Theorem 4.3 For each d, there is a constant cd that only depends on d such that the a-overlap 
graph of a d-dimensional k-neighborhood system is (cdadk)-inductive. 

Proof: Suppose E = {Bi,..., Bn} is a ^-neighborhood system with centers P = {pi , . . . ,pn}. Let 
r,- be the radius of B{. For each i, let r>or(i) = {Bj : rj > r,- & Bj C\ (a • Bi) ^ 0} 

The theorem follows from the claim that | r>a(i) | < 0(adk). To prove the claim, partition 
r > a ( 0 into two subsets, 

r&(0 = {Bjer^w-.pjtiia + y.Bi)} 
r ^ ( 0 = {£; e r> a(i) : P i€ ((«+ i) •£,•)} 

By Lemma 3.3, we have | r ^ ( i ) | < Ad(l/(a + 1)). 
Without loss of generality, assume that the radius of each ball in I>,£(i) is r,-. For otherwise, we 

just shrink each balls in T^l(i) to one of radius r,-, and the resulting ball still intersects a-Bi because 
its center is in (a + 1) • B{. Moreover the shrinking operation preserves the A:-neighborhoodness. It 
follows that all balls in T>2(0 are completely contained in the ball B of radius (a + 2)r,- centered at 
Pi. It follows from the Density Lemma, the total volume of balls in T^^i) is bounded from above 
by Tdk times the volume of B, and hence, 

Td\T^l(i)\Vdrf < rdkVd(a + 2)drf, 

which implies |I>,£(i)| < rdk(a + 2)d, completing the proof of the claim from which follows the 
lemma. Q 

Similarly, 

Theorem 4.4 For each d, there is a constant cd, such that the a-overlap of a neighborhood system 
with density ft is 0(cdadfi)-inductive. 

'This bound is not quite tight. I believe the real bound is Ad(l/2) + TJ. 
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4.3 W h y overlap graphs 
One of the most valuable aspects of the class of overlap graphs is that it enables us to give an 
unified geometric characterization of graphs with the small separator property. This class has a 
simple definition, yet it contains not only many of naturally defined geometric classes, including 
grid graphs, sphere packing graphs, A;-nearest neighborhood graphs, and graphs associated with 
finite element methods, as special cases, but also some combinatorially defined graph classes, most 
notably, the class of planar graphs, as a special case. Furthermore, each graph in this class has a 
small separator (see Chapter 6). 

4.3.1 Geometric embedding 

To precisely define what we mean that the class of overlap graphs contains another class as a 
special cases, we introduce a notion of geometric embedding of a graph. An embedding of a graph 
G = (V, E) in IRd is a mapping IT : V —*• Htd. Naturally, an edge (v, u) is mapped to the line segment 
(7r(u),7r(u)). A graph G = (V, E) is k-embeddable in JR,d if there is an embedding w of G such that 
for all (u,u) G E, Buf)Bv ^ 0, where Bu is the largest ball centered at 7r(«), that contains no more 
than k points from {ir(w): w G V} in its interior. Similarly, G = (V, E) is (a, k)-embeddablein IRd if 
there is an embedding •K of G such that for all (u,v) e E, (Bun(a-Bv) ^ 0) and ((a-Bu)(~\Bv ^ 0)}. 

We say a grah G\ is a spanning graph of another graph G?, if G\ can be obtained from Gi by 
deleting edges. So, a graph G is (a, fc)-embeddable if it is a spanning subgraph of the a-overlap 
graph of a ^-neighborhood system. 

Notice that the small separator property is preserved under spanning subgraphs. 

4.3.2 W h y they are special cases 

Grid graphs 

For each point (ii,...,ij) where 0 < ij < n, let -0(tl ,...,.d) be the ball centered at (ii,...,id) of 
radius 1. Clearly, E = {£(ti,...,,d) : 0 < ij < n, 1 < i < d} is a 1-neighborhood system and the grid 
graph is the intersection graph of E. Therefore, the d-dimensional mx ••• x m grid graph is the 
intersection graph of a 1-neighborhood system in d-space. 

Sphere packing graphs 

Since each sphere in a sphere packing shares no common interior point with other spheres, the 
set of all balls associated with spheres forms a 1-neighborhood system and therefore, each sphere 
packing graph in d-space is the intersection graph of a 1-neighborhood system in d-space. 

Planar graphs 

The proof that planar graphs are special case of overlap graphs relies on the following recent deep 
theorem of Andreev and Thurston [3, 4, 83] characterizing all planar graphs in a novel geometric 
fashion. 

Theorem 4.5 (Andreev and Thurston) Each triangulate planar graph G is isomorphic to a 
2-dimensional sphere packing graph. 
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Consequently, 

Corollary 4.6 Every planar graph is 1-embeddable in 2-space. D 

The fc-nearest neighborhood graphs 

Given a set of points in JR,d, let B{ be the largest ball centered at pi, whose interior contains no 
more than k points from P. By the definition of fc-nearest neighborhood graph, there is an edge 
between balls Bi and Bj only if either pi is in Bj or pj is in Bi and hence the line segment between 
Pi and pj is completely covered in Bi U Bj. Therefore, Each fc-nearest neighborhood graph in d 
dimensions is &-embeddable in d-space. 

Graph that can be drawn in a civilized manner 

Let 7r be a (r, s)-civilized drawing of G in IR'i, namely, it maps each vertex v of G to the point n(v). 
Let Bv be the ball centered at TT(V) with radius s. Clearly, E = {Bv : v € G} is a 1-neighborhood 
system. For each edge (u,v) € G, \\TT(U) - 7r(v)|| < r = (^)s. Thus, (r/s) • Bu contains n(v), and 
therefore, if a graph G can be drawn in IRd in a (r, s)-civilized manner, then it is (r/s, l)-embeddable 
in d-space. 

Density graphs 

The following class of graphs is defined by Miller and Vavasis [69]. 
Let G be an undirected graph and let IT be an embedding of its nodes in IRd. We say z is an 

embedding of density a if the following inequality holds for all vertices v in G. Let u be the closest 
node to v. Let w be the farthest node from v that is connected to v by an edge. Then 

| | i r ( t i ; ) - y ( p ) | | < a 

| | j r («)- j r ( t ; ) | | -

In general, G is a density graph if there exist a 7r and a > 0 such that IT is an embedding of 
density a. 

Simply from the definition, each d-dimensional a-density graph is ( a , l)-embeddable in d-space. 

4.4 Why not dilation graphs 
During this research, after showing that all intersection graphs have small separators, we tried to prove that 
all dilation graphs also have small separators. As a matter of fact, we did once find "such a proof (not 
surprisingly dilation graphs were called overlap graphs at that time). After a couple of months of enjoyment, 
we found the following counter-example. Geometric intuition, sometimes can be misleading! But fortunately, 
our work was not wasted. After regrouping our thoughts, we defined the new class of overlap graphs, and 
happily found that our old proof, the one which was wrong, was in fact a correct proof for the new class. 

Lemma 4.7 For each a > 1, there is a 1-neighborhood system in d-dimensions whose a-dilation graph is a 
complete graph. 
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Proof: Let us first consider d — 1. Let P = {po, ...,pn-i} where po = 0, p* = a' , 1 < i < n — 1. Let Bi be 
the 1-dimensional ball centered at p,- with radius a* — a ' - 1 for 1 < t < n — 1 and BQ be the ball with center 
po and radius a. It is easy to check that S = {Bo, B\,..., Bn-i} forms a 1-neighborhood system. 

To show the a-dilation graph of 2 is a complete graph, we need to prove for all 0 < i < j < n — 1, a • Bi 
intersects a- Bj. Notice that the radius of a • Bj is a(aJ — a J _ 1 ) = a J (a — 1) > aJ . The last inequality is 
true because we assume a > 1. But the distance between po and pj is aJ , so a • Bj contains po, and thus all 
points from {po>Pi, • • . , p ; _ i } . Clearly, this construction can be easily embedded in any dimension. • 

Therefore, although an overlap graph is always "sparse", a dilation graph can be very "dense". However, 
the dilation graphs over the following "balanced" neighborhood systems enjoy many properties (such as 
sparsity and small separator properties) of overlap graphs. This fact will be used to design efficient algorithm 
for constructing an intersection graph given its neighborhood system (See Chapter 9). 

A neighborhood system S = {B\,..., B„) is fi-balancedtoi some positive real /? > 1, if for all 1 < i,j < 
n, 

J. radius(B<) 
/? - radius(iBi) - p 

Lemma 4.8 For all a,P > 1, if G is an a-dilation graph over a (3-balanced neighborhood system, then 
maximum degree of G is bounded from above by 0(ad/3dk). 

Proof: Suppose E = {B\,..., Bn} is a /^-balanced neighborhood system with centers P = {pi , . . . , p n } . Let 
r,- be the radius of Bi. Let r = min,- r,- and r' = max.- r,-. 

Suppose B is a ball with radius 3ar' centered at p,-. Let T be the set of all balls from H which is the 
neighbor of £,- in the dilation graph G of 2 . It is not hard to see that each ball in Y is completely contained 
in B. By Density Lemma, the total volume of balls from T is bounded from above by rjfc times the volume 
of B. Notice that the total volume of balls in T is at least |7|Vdrd. So 

\l\Vdrd < TdkVd(3ar')d, 

which implies that \y\ < r<j(3a/?)dfc. D 



Chapter 5 

Sphere Separators 

Each (d — l)-sphere S separates int(5) from ext(S): any segment connecting a point in int(S) and 
one in ext(S) must intersect S. In analogue to vertex separators in graph theory, S is called a 
sphere separator in d-space. More specifically, for a set of points P = {pi,..-,pn} in IR? and a 
constant 0 < 6 < 1, S 6-splits P if both |int(5) n P\ < 6n and |ext(5) n P\ < 6n. 

Each vertex separator of graph has a cost, e.g., the number of vertices in the separator, and 
most applications require separators with a small cost. In the same spirit, we will assign cost to 
sphere separators. The usefulness of sphere separators with a small cost will be demonstrated in 
Chapter 9. One of the goals of this chapter is to investigate the relationship between the cost of 
sphere separators and the size of vertex separators of overlap graphs and intersection graphs. 

5.1 Surface area of a sphere 
A natural cost is the surface area of a sphere. The surface area can be either weighted or unweighted. 
The unweighted area of a sphere in d-space is given by 

27rrf/V-1 

T(d/2) 

(see [40] pp 68), where 
T(x) = / eHx~ldt, for x > 0 

Jo 
is the gamma-function. The gamma-function satisfies 

r(ra) = (n — 1)! for all positive integer n. 

In the weighted case, there is a real valued nonnegative function f(x) defined on JR.d such that 
fk is integrable for all k = 1,2,3,.... Such an / is called a density function. The surface area of a 
(d— l)-dimensional sphere S is then given by 

Are a / (5)= / (f(v))d-\dv)d-* 

Also defined is the total volume of the function / , denoted by Total-Volume(/), which is given 
by 

23 
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Total-Volume(/) = / (f(v))d(dv)d 

Notice that the unweighted surface area is just the special case when / = 1 at all points in JR.d. 

5.2 Density functions on a unit sphere 
Density function can also be defined on the surface of a sphere. To be consistent with the discussion 
of subsequent sections, we focus on the unit d-sphere. Suppose Ud is a unit d-sphere in IRd+1 and 
/ is a real valued nonnegative function defined on the surface of Ud such that fk is integrable for 
all k = 1,2,3,.... We call / a density function of Ud- The total volume of / is defined to be 

Total-Volume(/) = / (f(v))d(dv)d 

Jveud 

A great sphere of Ud is the intersection of Ud with a hyperplane passing through the center of 
Ud. The weighted area of a great sphere GS of Ud is given by 

Area/(G5) = / (/(*))<<-W"1 
JveGS 

Let avg(/) be the average area over all great spheres of Ud- The following proposition1 follows 
simply from the Holder's inequality [43]. 

Proposition 5.1 Suppose f is a density function on a unit d-sphere Ud, then 

avg(/) = Ad-i ((Total-VolumeC/))^1) , 

where Ad stands for the surface area of Ud • 

Proof: Each great sphere GS can be uniquely identified with the pair of points PGS and qGS on 
Ud which lay on the normal to GS. (see Figure 5.1 for an example in 2 dimensions). 

Figure 5.1: GC and its PGS, QGS 

For each x € Ud, let GS(x) be the great sphere associated with x. We can write avg(/) as: 

1A more complicated pioof of this proposition was given in [67] which made use of the Cauchy-Schwartz inequality 
- a special case of the Holder inequality. A proof based on Holder inequality first appeared in a full version of [69]. 
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= Ad-i ((Total-VolumeC/))^) , 

The second equality follows from the observation that for each point z on Ud, the set of point 
{ I : J G GS(X)} forms a great sphere. By choosing g = f1-1, h = 1, p = -^i and q = d, the next 
inequality follows from the Holder inequality which states (see [43]): 

Holder Inequality: 
Suppose g and h are functions suitably integrable on a measurable set P and for positive 
real numbers p,q such that 1/p + 1/q = 1. Then the following inequality holds 

/,u-« *(/,')'•(/,")*• 

5.3 Intersection number 
Suppose E = {B\,..., Bn} is a neighborhood system in d-space. Each (d — l)-dimensional sphere 
S partitions E into three subsets (see Figure 5.2) 

• Ej: those that are completely in the interior of S; 

• EE'. those that are completely in the exterior of 5; 

• EQ: those that intersect S. 

Figure 5.2: A sphere separator 
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The cardinality of Eo is an important cost of S. This number is called the intersection number 
of 5, denoted by IE(S). 

Notice that the removal of Eo splits S into two subsets: E/ and EJS, such that no ball in E/ 
intersects any ball in E E and vice versa. To see this, assume that there is a Bi € E/ intersects 
Bj € EE- It follows that the line segment between p,- and pj, the centers of B{ and Bj, respectively, 
is complete covered by Bi U Bj. Since p,- is in the interior of S and pj the exterior, the line segment 
between p,- and pj must intersect S. So either B{ or Bj intersects S, contradicting the assumption 
that neither Bi € Eo nor Bj € Eo. In analogy to separators in graph theory, Eo can be viewed as 
a separator of E. 

The follow lemma gives a simple a bijection between separators of a neighborhood system E 
and separators of the intersection graph of E. 

Lemma 5.2 If S is a sphere that 6-splits the centers of a neighborhood system E, then Eo defined 
above is an iz(S)-separator that 6-splits the intersection graph ofE. • 

Now the question of whether the intersection graph of a neighborhood system E has a small 
separator can be reduced to the one of whether E has a sphere separator S with a low intersection 
number. The reduction is straightforward but it opens up a new geometric approach to study graph 
separators. As a part of the main separator results, I will prove the following theorem which is 
interesting on its own right. 

Theorem 5.3 (Sphere Separator Theorem) For each neighborhood system E = {B\,.. .,Bn} 
of density \i, there is a sphere S with intersection number 0(fi?n~T~) that ^^-splits E. 

As a matter of fact, I will prove the main separator theorem by relating the intersection number 
to the surface area of some properly selected density function, and using the continuous separator 
theorem of Miller and Thurston (see Section 5.5). 

5.4 Why spheres but not hyperplanes 
Perhaps the simplest way to split a set of points in d-space is to use a (d— l)-dimensional hyperplane. 
Like a (d — l)-dimensional sphere, a (d — l)-dimensional hyperplane H partitions IRd into three 
subsets, H+, those that are above H, H~, those below H, and H itself. For a set of points 
P = {pi , . . . ,p„} in Htd and a constant 0 < 6 < 1, H 6-splits P if both \H+ nP\<6n and \H~ n P\ 
< 6n. The smallest such 6 is called the splitting ratio of H. 

Suppose E = {B\,..., Bn} is a neighborhood system in d-space. For each (d — l)-dimensional 
hyperplane H, let f={H) denote the number of neighborhoods of E that intersects H. Similar to 
Lemma 5.2 

Lemma 5.4 If H is a hyperplane separator that 6-splits the centers of a neighborhood system E, 
then H induces an is(H)-separator that 6-splits the intersection graph o/E. 

It seems that hyperplanes enjoy the same basic properties of spheres. This is not surprising, 
because from conformal mapping viewpoint, a (d— l)-dimensional hyperplane is just a degenerated 
(d — l)-sphere. Then why don't we use hyperplane as separators? 
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Figure 5.3: Why not hyperplane separators 

One problem with hyperplanes as separators is that there is a 1-neighborhood system such 
that no hyperplane with intersection number o(n) has a constant splitting ratio. Such an example 
is given in Figure 5.3. 

However, by Theorem 5.3, the above neighborhood system should have a sphere separator with 
intersection number 0{nlldn~s~) that g±i-splits E. A sphere separator 1/2-splitting E is illustrated 
in Figure 5.4, whose intersection number is 0(n~^~). 

A Sphere Separator 

Figure 5.4: Why sphere separators 

5.5 Center points and a continuous separator theorem 
It is not hard to compute a sphere which evenly splits a set P of n points in d-space. One can start 
with any point in TR? as a center, and grow a sphere till it contains at least frc/2] points from P. 
However, chances are such a sphere intersects too many balls in the given neighborhood system. 
To prove each neighborhood system with density /z has a sphere separator of intersection number 
0(fi1^dn^3~), I will show that there is a set of infinite (or finite) sphere separators, whose average 
intersection number is 0(y,lldn~^r). This type of averaging argument was inspired by Proposition 
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5.1 and first used by Miller and Thurston [67]. 

5.5.1 Conformal maps and stereographic projections 

To use Proposition 5.1 to construct a set of infinite sphere separators, we map points of IR'' onto 
the unit d-sphere Ud in lRd+1 centered at the origin o. Notice that the density function / is mapped 
to a new density function / ' on Ud in order to ensure 

Total-Volume(/) = Total-Volume(/'). 

To preserve the density function in every dimensional simultaneously, the map is required to 
be conformal in the sense that it preserves angles [47, 23, 83]. Clearly, rigid motions and dilations 
are conformal maps. Another conformal map is the stereographic projection which maps lRd plus 
infinity onto Ud [47, 67]. The composition of any two conformal is also conformal, so we can apply 
a sequence of conformal maps to obtain a desirable conformal map. 

The conformal map has another nice property: the pre-image of each great sphere GS of Ud 
itself is a (d — l)-sphere in JR.d. Moreover, the interior and the exterior of the pre-image sphere are 
mapped to the two hemispheres of Ud defined by GS, respectively. 

It simply follows from Proposition 5.1 that 

Lemma 5.5 Suppose f is a density function ofWid and it is a conformal map from WLd to Ud- Let 

SS(TT) = {S : S is a pre-image of some great sphere GS, i.e., GS = TC-S1)} 

and avgv(f) be the average area over all spheres in SS(n). Then, 

avgjr(/) = Ad-x ((Total-Volume(/))^) . 

Suppose P = {pi , . . . , pn} is a set of points in JR,d and Q = {91, . . . , qn} is the set of points on 
Ud such that qi is the image of p,- (1 < i < n) for a conformal map n from IRd to Ud- It follows from 
the above discussion of conformal map that for each great sphere GS of Ud,il"S is the pre-image 
of GS, then S ^-splits P iff GS ^-splits Q. 

Therefore, to ensure that each sphere of SS(TT) ^-splits P for some constant 0 < 6 < 1, the 
conformal map n need to satisfy the condition that all hyperplanes passing o 5-split Q. A useful 
concept in constructing such a conformal map is a notion of a center point. 

5.5.2 Center points 

Suppose P is a finite set of points in Md. For each 0 < a < 1, a point c € IRd is an a-center point 
of P if every hyperplane containing c a-splits P. Each j^-center points is called a center points of 
P, and the set of all center points is denoted by center(P). The balanced separation property of a 
center point makes it very useful for designing efficient divide and conquer algorithms, especially in 
computational geometry [97, 66, 68], decision theory [53], and numerical analysis [67, 68, 69, 59]. 

Given a set of points P C Hld, the question of whether P has a center point is always affirmative. 
It follows from Helly's Theorem: 
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Theorem 5.6 (Helly's Theorem) Suppose K is a family of at least d+1 convex sets in TR.d, and 
K. is finite or each member of K is compact. Then if each d+1 members of K. have a common 
point, there is a point common to all members of K. 

Lemma 5.7 (Center Points) For each set P C M.d, center(P) ^ 0. 

Proof2: Let HS be the set of all open half-spaces in M.d which contain more than L^rl-PlJ points 
of P. We want to show that 

center(P) = f| h ^ 0. 
heHS 

By Helly's theorem, it is sufficient to show that for each hi,. ..,hd+i € HS, f)f+* hi ^ 0. 
Note that 

d+1 d+1 d+1 
f] hi = m* - Q (m.d -hi)DP-\J (Md - hi) 
i = l i = l t = l 

Note also 

d+i d+i 1 

| (J((lR.d-/>.-)nP)| <"£\md-hi)nP)\ < (d+ IK-Tii-I^ll < \P\ 

Hence, P - \Jd+* (lRd - h{) ± 0. D 

5.5.3 A continuous separator theorem 
In [67], Miller and Thurston prove the following result: 

Lemma 5.8 Suppose P is a set of points in TELd. Then there is a conformal map TT such that o is 
a (d + l)-dimensional center point ofQ, the image of P. 

Proof: Such a conformal map can be obtained by first applying the stereographic projection and 
then conformally moving a centerpoint to the origin o. In fact, a center point can be moved to 
o by one rotation followed by a dilation. For details of the proof, we refer readers to Miller and 
Thurston [67]. • 

From the above lemma and Proposition 5.1, Miller and Thurston derived the following contin-
uous separator theorem when weighted surface area is used as the cost function of a sphere. 

Theorem 5.9 (Miller and Thurston) Suppose f is a density function on JR.d and P a set of n 
distinct points in JR.d. Then there is a sphere S which (d£±)-splits P such that 

Area/(5) = O ((Total-Volume(/))V) 

2 We present this proof for the sake of completeness. The similar proofs can be found in many previous works, e.g. 
[20]. 
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5.6 An algorithm for computing a sphere separator 
The above discussion and the proof of Miller and Thurston [67] suggest the following randomized 
algorithm for computing a sphere separator with a small area. 

ALGORITHM Sphere Separator 
1. Compute a conformal map it from lRd to Ud, such that the origin o is a center point of 

HP); 
2. Randomly choose a great sphere GS of Ud\ 
3. Using the inverse of 7r, map GS back to d-space to get a (d — l)-sphere S. 

Because o is a center point of 7r(P) in (d + l)-space, the sphere S jj~splits P. Moreover, as 
proved in the continuous separator theorem, with probability 1/2, S has area 

(Total-Volume(f))i51. 

The step 2 above uses a random number generator which uniformly generates a real number 
from [0,1] (Knuth [54]; Hammersley and Handscomb [41]). In Chapter 10, I will show that this 
requirement can be relaxed when applying to neighborhood systems. 

The run time of the above algorithm crucially depends on the time needed to compute a center 
point in (d + l)-space. All other steps of the algorithm can be performed in 0(n) time, and in 
constant time using 0(n) processors. 

Unfortunately, no linear time or even n • polylog(n) time algorithm is known to compute a 
center point in (f-space (d > 2). However, I will show in Chapter 8 that a ( ^ j + e)-center point 
(with very small e) can be computed in random constant time in parallel and deterministic linear 
time sequentially. Therefore, 

Theorem 5.10 Suppose f is a density function on JR,d and P is a set ofn points in TR,d. Then 
a (4±ffi-)-splitting sphere S of P of area 

Area,(S) = O ((Total-Volume(/))i5i) 

can be computed in deterministic linear time, and in random constant time using 0(n) processors, 
where -^3 < € < !• 
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Separator Theorems 

Now that we have built our tool kit, we need to use it to prove that intersection graphs and overlap 
graphs have small separators. 

6.1 Separating intersection graphs 

We first start with the simpler class, the intersection graph, and hope to develop some background 
and intuition to handle the more general one. The following is the main theorem of this section. 

Theorem 6.1 (Intersection graphs) IfG is the intersection graph of a d-dimensional neighbor-
hood system with density //, then G has an 0(n?n~7r)-separator that (^^)-splits. 

Moreover, the bound in Theorem 6.1 is best possible in term of n, and y. (see section 6.3). 

6.1.1 The initial idea 

In order to use Theorem 5.9 to prove Theorem 6.1, we need to come up with a density function / 
and show that Total-volume(/) = 0(^a=» n). Then by the continuous separator theorem, there is 
a sphere separator S with weighted surface area 0(/z3n~5~) gtj-splitting the centers of the given 
neighborhood system. However, not all density functions have the property that a vertex separator 
can be deduced from a sphere separator, whose size is linear in the area of the sphere separator. 

So we need to select a density function with special care. Not only should the total volume 
be linearly bounded by n, but also the density function should be faithful to the underlying graph 
in the sense that the area of a sphere separator is linearly related with size of a vertex separator. 
In other words, we have to construct a density function / which encodes the separator property of 
the underlying graph. 

By Lemma 5.2, each sphere separator S induces a vertex separator whose size is bounded 
by the intersection number of S. In the following sections, we will construct a density function 
which approximates the intersection number, and prove that the total volume of this function is 
O(n^n). 

31 
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Figure 6.1: Influential area of a kingdom and its density 

6.1.2 Local density functions 

To visualize the intersection number of a sphere in 2-space, imagine we are riding a circle (1-sphere) 
in a hypothetical world which has n kingdoms. Geographically, each kingdom has the shape of a 
disk, and kingdoms may share land among themselves. Land which is not claimed by any kingdom 
is public and is free to drive on. The cost of such a drive is the total number of kingdoms we have 
visited. 

If we view the density function as the inverse of the speed of driving, then the weighted length 
of a circle represents the total time it takes to drive along the circle. The goal is thus to assign a 
speed at each point so that the total time of a drive is linearly related with the number of kingdoms 
been visited. 

One way to achieve this goal is to spend at least one hour but no more than two hours in a 
kingdom, so the total time of a drive is at least the number of kingdoms being visited, but no more 
than the twice of that number. In order not to spend any time in the public area, we will drive at 
infinity speed there, i.e., with zero density. In general, the larger the kingdom, the fast the speed 
in it - we will drive at a speed proportional to the radius of a kingdom. 

But there is a serious problem with the above suggestion: Suppose a drive just touches kingdom 
or barely crosses one, how can we manage to spend a decent period of time there? (Shall we stop 
for coffee to kill time?). One solution is to make the density larger when closer to the boundary of 
a kingdom. However, this still does not put any charge on just touching a kingdom. 

The solution we are now proposing it to think that each kingdom has an influential area which 
has radius twice as big as that of the kingdom itself. Using the notation of neighborhoods, 2 • 2?,-
is the influential area of £,-. Rather than assign a density within B{ itself, we assign a uniform 
density function within 2 • B{ for each kingdom i?,-, which is inversely propositional to the radius 
of B{ (See Figure 6.1). 

To justify the intuition, we now show that if the circle passes a kingdom i?,-, then the length 
of the curve within 2 • B{ is bounded from below by a constant times the radius of B{ - it takes 
some constant fraction of an hour to cross the influential area of each kingdom. Formally, 

Lemma 6.2 Suppose B is a ball in d-space with radius r and S a (d— l)-sphere of radius at least 
2r. If S intersects B, then area of S n (2 • B) is at least ( 2 r ) Vd-ii where Vd-\ is the volume 
of a unit (d — l)-dimensional ball. 

Proof: First, consider the case when the center of B is in the exterior of S. Assume S is a sphere 
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that has smallest common area with 2 • B satisfying the condition of the lemma. The optimality 
of S implies that the radius of S is equal to 2r. For otherwise, the sphere S', which has radius 2r 
and the same center as S, would have smaller common area with 2 • B. Because the center of B is 
in the exterior of 5, the optimality of S also implies that S touches B (see Figure 6.2), 

Figure 6.2: The common area of S and 2 • B. 

The points common to S and the boundary of 2 • B is a (d — 2)-sphere, denoted by C. Notice 
that the (d - 2)-dimensional volume of C is smaller than the area of S f~l 2 • B (see 6.2 for the 
2-dimensional case where the length of uv is less than the length of the arc uv). 

Let uv be a diameter of C, Figure 6.2 shows that the length of uv is y/lr. So the volume of C 
is least {^rY<-xVd-i. 

Similarly, if the center of B is in the interior of S, then the common area of S with 2 • B is at 
least (y/3r)d-lVd-i. • 

Now that we have solved the problem of barely crossing a kingdom, but may be at the cost of 
the problem when the circle marginally missing a kingdom. Did we overcharge ourselves? 

We will show later, this is not quite a problem, thanks to the nice properties of neighborhood 
systems, and the Big-0 notation. 

To formally summarize the above discussion, let r; be the radius of B{ and let 7; = 2r,-, define 

f.(x)=f 1/7* if l | x -p , | | < 7,-JtKx)~y 0 otherwise 

Intuitively, /,• sets up a cost on each (d- l)-sphere S such that the closer S is to B{, the larger 
Bi contributes to the surface area of S. The function /,• is called the local density function of J?,-. 

6.1.3 Putting local density functions together 

Now we need to construct a global density function from the local ones. The simplest way may be 
to take the sum, i.e., / = £)i /«• But is the sum really a good choice? To gain more insight, let 
us calculate the total volume in the following extreme case when H contains n identical balls. In 
this case, the intersection graph of E is the complete graph with n vertices and the total volume 
of the sum function is ndVd, which is clearly too big for our applications because no sphere has 
intersection number more than n. So / = £,• /,• is not an optimal choice, although the following 
lemma can be proved: 
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Lemma 6.3 Let E = {B\,. . . , £„} be a d-dimensional neighborhood system with density p. If ft 
is defined as above and f = £,- /,-, then Total-Volume(/) = 0(pdn). 

Notice that when p is a constant, the above lemma yields a weaker version of Theorem 6.1. 

6.1.4 Using norms: Vavasis's idea 

Suppose ai,...,an are n real numbers. For each positive integer p, the Lp norm of <zi,...,an, 
denoted as Lp(ai,...,an), is given by 

i/p 

£P(a1,...,an)=fx>lP) "• 
The following lemma states the relationship between different norms. 

Lemma 6.4 Leta\,...,an be n reals. Ifp< q, then Lp(ai,...,an) > Lg(a\,...,an). 

Proof: See Hardy, Littlewood and Polya [43] (pp 26 and pp 144). D 
The density function1 of the intersection graph G is then defined to be the Ld-i norm of 

/ i , - - - , / n , i.e., 

/(*) = £*_!(/!,. ..,/„) = ^£(M'))d-1) 
i 3=r 

Note that the Ld norm is not a good choice as a global function because its total volume is 
Vdn for all neighborhood systems,. 

6.1.5 Relating to the intersection number 

Lemma 6.5 Suppose E = {B\,.. .,Bn} be a d-dimensional neighborhood system with density p,. 
Let A , . . . , / n be local density functions defined above and let f = Ld-i(fi,..., fn). For each (d— 1) 
-sphere S, 

d-i 
cB(S) < 3<V + ( ^ j ^ • A r e a / ( 5 ) 

Proof: Let C be indices of neighborhoods in E which intersect S. C can be partitioned into two 
subsets C = C\ U C2, where 

d = {i€C : fi > radius(5)} 
Ci = C — C\ 

By Lemma 3.6, \C\\ < 3dp, and by the definition of area, we have 

A r e a / ( 5 ) = / Y,fi{v)d-\dv)d-*>Y,l !i{v)f-\dvf\ 

'In the construction of Miller and Vavasis for density graph, the cost function is defined to be the Li norm of the 
functions defined over each vertices. 
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By the definition of C2, for each i € C2, S has a common point with B{. Further, radius(S) > 
7,-. So, by lemma 6.2, the area of S n (2 • B{) is at least ( 4 7i) Vd-i-

Therefore, 

/ 6 S ( / . ( « ) ) d - 1 W i - 1 > Area(An(2.JB,)) ( ^ ) " ' ' > f ^ ) ^ 

Hence, 

Area/(5) > W /<(«))''-W-1 > \C2\ (^] Vd.u 

which implies \C2\ < (^f-) ~ -^Costf(S). 

6.1.6 Some basic lemmas 

The following set of lemmas will be used in the next section. The proofs we present here are given 
by Vavasis [95]. 

Lemma 6.6 Let a\,.. .,an be nonnegative numbers, and suppose p > 1. Then 

p - i l 

Proof: Define the function 

n \ P 
Da< ^p 
t=l / 

n 

Z)a«-
1=1 

/ » 
E«i 

\i=«-

<f>(xU...,Xn)= \52Xi) • 

We notice that 

Let (i) be the vector in IRn given by: 

(i) = (0 , . . . , 0, a,-, a , + i , . . . , an). 

Then 

^(ax, . . . ,an) = <K( l ) ) -# (n + l)) 

= £w(0)-#(»'+i))] 
1=1 

= S y ^7(0,---,0,«,at+1,...,an) 
n /-a; / n 

,=1 j° \ j=i+i 

p - i 
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( n V"1 
< pYlai- la«+ X) ajJ 

„ /„ y-1 

Lemma 6.7 Lei ,..,m_i,mo,mi,m2,... 6e a doubly infinite sequence of nonnegative numbers 
such that each mt- is bounded above by 6 and such that at most a finite number of mi's are nonzero. 
Let d>2 be an integer. Then 

d 

£ mk2-k^) < cd6^ J2 mk2-kd 

\k=—oo / k=—oo 

where cd is a positive number depending on d. 

Proof: Since at most a finite number of the mk are nonzero, then we can apply the preceding 
lemma because the above sums are actually finite. Applying the lemma, we see that 

d . . _ 1 _ 

d 2=T . c o / oo \ 3=T 

£ mk2-k^)\ < jtjE rnk2-«W. ^ m ^ " 1 ) 
\^k=-oo J k=-oo \j=fc > 

j oo / oo 

- ih. £ m^-h(d-1)- E0-2-*"-1) 
A:=-oo \i=fc > 

l 
d - l 

oo 

< cd0*=t £ mfc2-^-1).2-fc 

fc=—oo 
oo 

< cd6tt £ mfc2-w. 
k=—oo 

6.1.7 Bound the total volume 
Lemma 6.8 Suppose E = {J?i,...,5n} 6e a d-dimensional neighborhood system with density fi. 
If h»• • • > fn and f are defined as above, then 

Total-Cost(/) = O(n^n). 

Proof: Let Vd be the volume of a unit ball in IRd. Clearly, fxeRd(fi(x))d(dx)d = Vd. 
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Consequently, letting 

g(x) = Ld(f1,...,fn)=^(fi(x))dy, 

we have 

/ (g(x))d(dx)d = Vdn 

Therefore, Lemma 6.8 follows immediately from the following lemma. D 

Lemma 6.9 For all x € W1, (g(x))d < (f(x))d < cd2d(6dfi)^ . (g(x))d. 

Proof: The first inequality follows immediately from the definitions of / and g, and Lemma 6.4. 
For the second inequality, we focus on a particular point p G TR?. Notices that if g(p) = 0, 

then, f(p) = 0 as well. The inequality follows. Now, assume g(p) > 0 and define 

Mi = [i e {1, ...,n} : 2"' < /,(p) < 2"'+x} 

for all / : -co < / < oo. 
Because that U_oo</<oo- /̂ = {* : /«'(p) i1 0} a n d M/'s are pairwise disjoint, each indices 

* : fi(p) i1 0 occurs in exactly one of M/'s. Let m/ = \M\\. We claim ra\ < 6dfi. 
We now prove the claim. For each i G Mi, by the definition of Mi and /,-, 2 ' - 1 < 7; < 2', where 

7,- = Ti. Let B be a ball centered at p with radius 2' + 2 ' - 1 . Since \\p — p,| | < 7,-, it follows B( C B. 
Because the neighborhood system has density fi, we have 

M .vo l (5 )> ^ v o l ^ ) 
jeMi 

Let Vd(r) be the volume of a ball in IRj of radius r. Because for all j € Mi, vo\(Bj) > Vd{2l~2), 

ti.Vd{2l + 2l-l)>\Ml\Vd{2l-'i), 

which implies \Mi\ < 6dfi, completing the proof of the claim. 
Now, we have 

d 
•3=1 

(f(p))d = £ £ Mp){d-1] 

\;=-oo ieMi j 
I 00 ^ 

< £ mi(^'+1)d-1 

d 
I 00 \ d~=T 

d 
•3=1 

< 2d £ m,(2-') 
V=-oo 

-l\d-l 

where mi < 6d[i. 
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Setting 0 = 6d/i and applying Lemma 6.7, we obtain 

f(p)d < cd2d(6d^ £ m,2--w 
/=-o 

This summation is a lower bound on g(p)d because for each i € Mi, fi(p)d > 2~ld. This 
concludes the proof of the lemma. D 

Consequently, there exists a (|±i)-splitting sphere S of P with Area/(5) = O (6f/i3n~i""J, 
where f = 2d~lVd. Theorem 6.1 follows from Lemmas 6.8, 6.5, and Theorem 5.9. 

6.2 Separating overlap graphs 
We now prove the following separator theorem of overlap graphs. The intuition and the method is 
basically the same as that for Theorem 6.1. The only things remaining are the technical details. 

Theorem 6.10 (Overlap graphs) / / G is the a-overlap graph of a neighborhood system with 
density fi in d-space, then G has an 0(afj.dn~f~)-separator that (d{Q)-splits. 

6.2.1 A density function for overlap graphs 

The first step to prove Theorem 6.10 is to construct a density function. Again, we first define a 
local density function for each neighborhood, and then use the Z<*_i norm as the global density 
function. 

Suppose E = {B\,..., Bn} be a neighborhood system of density fi. Let P = {pi,... ,pn} be 
the centers of S and rt- the radius of B{. Let 7; = 2ar,-. Define /,• as 

t.ix\ _ / l/7i if x G (2a) • B{, i.e., \\x - p{\\ < 7,-
J*KX) ~ \ 0 otherwise 

The global density function is then defined to be f(x) = £(p_i)(/i, . • -,/n)-

6.2.2 The total volume 

Lemma 6.11 For each neighborhood system E = {B\,..., Bn} of density fi in T&d, if / 1 , . . . , /„ 
and f are defined as above, then 

Total-Volume(/) = O(a^fi^n). 

Proof: Let Vd be the volume of a unit ball in JRd. Clearly, fxend(fi(x))d(dx)d = Vd. 
Consequently, letting 

we have 

9{x) = Ld(f1,...,fn)=(f;(fi(x))dy, 

f (g(x))d(dx)d = Vdn 
JxPRd ceRd 

Therefore, Lemma 6.11 follows immediately from the following lemma. 
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Lemma 6.12 For all x € JR?, (g(x))d < (f(x))d < cd2d(6dadfi)^ • (g(x))d. 

Proof: The first inequality follows immediately from the definitions of / and g and Lemma 6.4. 
For the second inequality, we focus on a particular point p € IRd. Notices that if g(p) = 0, 

then, f(p) = 0 as well. The inequality follows. 
Now, assume g(p) > 0. 
Define 

Mi = {i G {1, ...,n} : 2"' < fi(p) < 2"'+1} 

for all / : —oo < / < oo. 
Because that U-OQ^KOOMJ = {i : fi(p) ^ 0} and Mj's are pairwise disjoint, each indices 

* : fi(p) 7̂  0 occurs in exactly one of M/'s. Let m; = |A//|. We claim m; < 6dad^i. 
We now prove the claim. For each i € Mi, by the definition of Mi and /,-, 2 ' - 1 < 7,- < 2'. Let 

B be a ball centered at p with radius 2' + 2 ' - 1 . Since ||p — p,|| < 7,-, it follows B{ C B. Because 
the density of the neighborhood system is /i, 

M .vo l (5)> ^ v o l ^ ) 

Let Vd(r) be the volume of a ball in IRj of radius r. We have for all j 6 M/, vol(i?j) > 
Vd(2('-2)/a). Consequently, (i • Vd(2l + 2'"1) > \Mi\Vd{2V-2)la), which implies \M,\ < 6dadn, 
completing the proof of the claim. 

Now, we have 

d 
S=i 

d 
•3=1 

(f(p))d = E E /*(p)(*-1} 

< ( f ) m,(2-'+1)d-1 

\ /= -oo / 

< 2d ( f ) m,(2-')d-1 J 

where mj < 6dadn. 
Setting 0 = 6dad/j. and applying Lemma 6.7, we obtain 

f(p)d<cd2d(6dadn)** ] T m/2 - / d 

/=-oo 

This summation is a lower bound on g(p)d because for each i 6 Mi, fi{p)d > 2~,d. This 
concludes the proof of the lemma. O 

Consequently, there exists a (g±i)-splitting sphere S of P with Area/(5') = O (fa/i3n"ir~J. 
where £ = 2d-1Vd. 
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6.2.3 A vertex separator from a continuous one 

This step is somewhat more involved for overlap graphs than for intersection graphs. Nevertheless, 
the intuition is the same. First notice that the set of balls intersecting S is not a vertex separator 
in general, because some neighborhoods are dilated; and the number of balls whose a-dilations 
intersect S can be as big as fi(ra) in the worst case (otherwise we would prove that all a-dilation 
graphs have small separators). 

One way to construct a vertex separator is to remove one of the two balls of each edge cut by 
S. We say S cuts an edge (Bi,Bj) if the line segment between p,- and pj, the centers of Bi and 
Bj, respectively, has a common point with S. Let g,j denote this common point. For each edge 
(Bi,Bj) cut by S, without loss of generality, assume r,- < Tj. Notice that either qtj is in Bj or in 
a - B{. We call Bj an overlap neighborhood of S in the first case and Bi an overlap neighborhood in 
the second case. Immediately, 

Lemma 6.13 For all positive reals a > 1 and 0 < S < 1, let S be a sphere that 6-splits the centers 
of a neighborhood system E, and D the set of all overlap neighborhoods of S. Then D 6-splits the 
a-overlap graph of E. • 

However, in the above construction, one have to check the structure of an overlap graph to 
induce a vertex separator from a sphere separator, in contrast to the fact that a vertex separator 
of an intersection graph can be computed directly from the neighborhood system given a sphere 
separator. This is a serious drawback for various applications including mapping sparse structures 
to parallel architectures and computational geometry (see chapter 9). We now show how to induce 
a vertex separator from a sphere one more directly. 

First notice that the set D above can be partitioned into two subsets D\ and D2, where 

Dx = {BieDiBiHS^fD} 
D2 = D-Dx 

Lemma 6.14 For all B{ € D2, r; < r. 

Proof: If B( € D2, then Bif] S = 0. There are two possible cases: 

• Case 1: If p,- G int(5), then it simply follows from B{ D S = 0, that rt- < r; 

• Case 2: If p,- e ext(5), then from Bi G D?, it follows a-BiHS ^ 0, and there is a neighborhood 
system Bj such that (1) pj € int(S); (2) B{ n S = 0; (3) r,- < r,-; and (4) a • B{ n Bj ^ 0. But 
rj < r, and hence rj < rj < r. • 

In the remaining of the thesis, a ball B{ is an overlap neighborhood of a sphere S if either 
Bi D S ^ 0, or a • 5,- n 5 ^ 0 and r,- < r. The number of the overlap neighborhoods of S is 
called overlap number of S, denoted by tis(S). By Lemma 6.14, Lemma 6.13 holds when the new 
definition of overlap neighborhoods is used. The set of overlap neighborhoods of a sphere can be 
computed in 0(n) time directly from the neighborhood system. 
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Lemma 6.15 Suppose E = {Bi,...,Bn} is a neighborhood system with density \i in JR.d. Let 
h > • • • •> fn be local density function defined for the a-overlap graph ofE and let f = Ld-i(fi,..., fn). 
For each sphere S, 

MS) < 0(ad)» + (^j J-Aiezf(S) 

Proof: Let D be the set of overlap neighborhoods in E which intersect S. D can be partitioned 
into two subsets D = D\ U D%, where 

Di = {Bi e D : an < r} 
D2 = {BieD:an>r} 

By Lemma 3.6, ID2I < 0{adn). To bound the the size of D\. first notice that 

A r e a / ( 5 ) = / f ) / ^ " 1 {dvf1 > £ / fi{v))d-\dv)d-\ 

By the definition of D\, for each i € D\, S has a common point with either B{ or aJB,-. Further, 
radius(S) > 7;. By lemma 6.2, the area of 5 f~l (2 • J3,) is at least ( ^ 7 ; ) Vd-i-

Therefore, 
d-i 

ijfiW-'W-1 ^ Area(̂  n (2 * %)) (^) ̂  * ( x ) Vr<i-

Area/(5) > W /.(i;))^1^)'-1 > | ^ | (^) Vd_ 

, d - l Thus, iPil < (±f) yL-ArezfiS). • 
Theorem 6.10 follows from Lemmas 6.11, 6.15, and Theorem 5.9. 

6.3 Lower Bounds 
Using a method described in Leighton [55], assuming that k is big with respect to d. we get a lower 
bound of fl(fc3an"5~) on a-overlap graphs of ^-neighborhood systems. An Q, (an~ J bound on 
a-density graph appeared in [94]. 

Let P be the set of all points of the m X m X • • • X m regular grid in TR.d. We write each point 
p 6 P as a vector (01 , . . . , ad) of integers with 1 < a,- < m. 

Let / be the largest integer satisfying 

Vd(l + Vd)d<±, (6.1) 

where Vd denotes the volume of a unit ball in d-space given by (see [63, 40]) 

27Td/2 

d dT{d/2) 
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By (6.1), we have 

<=K-^T) -v /dJ -
2(K,)a 

(6.2) 

Consider the following graph Gk (see Figure 6.3 for examples), where V(Gjt) = P and 

E(Gk) = {[(a1,...,ad),(b1,...,bd)]-
if there is 1 < i < d such that |a,- — 6,| < Z and a,j = 6j for j ^ i.} 

• W . V . - W . . 

t-

.'.-fcwttw.-fe 

f * 

W: 
'•. 

Figure 6.3: G2 in one dimension and G4 in two dimensions 

Lemma 6.16 The graph Gk is a subgraph of the k-nearest neighborhood graph Mk of P. 

Proof: Let B be the ball of radius / centered at o and B' be the ball of /+y/d centered at o. The set 
of all integer points, those with all integer coordinates, induce an infinite set of unit cubes. Clearly, 
all cubes that intersect B must be contained in B'. Since the volume of B' is Vj(l + Vd)d the 
number of cubes intersect B is bounded from above by Vd(l + Vd)d. Since each cube has 2d integer 
points, it follows from the definition of / (6.1) that B contains no more than k integer points. By 
translating the center of B to each grid point in P, it follows that all grid points in B are among 
the k nearest neighbors of its center. Hence, Gk is a subgraph of the fc-nearest neighborhood graph 
Mk on the points P. • 

Clearly, the degree of Gk is 2dl. We next show how, in the VLSI sense (i.e., mapping vertices 
onto vertices and edges to paths), to embed the complete graph Kn containing n = md vertices onto 
Gk with edge conjession at most m ; , where edge conjession of an embedding is the maximum 
number of paths embedded on an edge. 

We start with the case when the dimension is one. For each positive integer /, the l-line graph 
of n vertices (See Figure 6.4) has vertices V = {l,2,...,ra} and edges E = {(i,j) '• if \i — j \ < ' } • 
An edge (i, j ) with |i — j \ = s (1 < s < I) is called an s-edge. 

Lemma 6.17 The complete graph of n vertices, Kn, can be embedded in an l-line graph G of n 
vertices with conjession at most ^5-. 

Proof: We prove the lemma by induction on /. When / = 1, we map edge (i,j) of the complete 
graph to the path (i, i + 1), (i + l,i + 2),..., (j - l,j). Clearly, the edge in the l-line graph with 
the largest conjession is the edge ([§J, ff]), whose conjession is ([§J • ffl) < n2. 
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, * * # • ' • • • • * " * C • • • 

3-edge 
2-edge 
1-edge 

Figure 6.4: A 3-line graph 

Now suppose the lemma is true for / — 1. Let 

Let G' be the subgraph of G induced by vertices {1,2, . . . , n\}. Applying the induction hypoth-
esis on / — 1 and n\, we obtain an embedding of an rii-clique on G', which does not use any /-edge of 
G'. To embed Kn on G, we take the above embedding on the first n\ vertices, i.e., embedding the 
first Tii vertices of Kn onto G'. For each remaining edge (i, j) with i < j , let j ' be the largest integer 
such that 0 < j — j 1 < k and (j' — i) mod k = 0. To complete the embedding of the complete graph 
on to G, we embed each remaining edge (t, j) to the path (i, i + k)(i + k, i + 2k) • • • (j' — k,j')(j',j). 
Clearly, each /-edge in G' has conjession at most n\{n — n\)/l < ^ and each /-edge (z,z + /) in 
G — G' has conjession at most i(n — i)/l which is also no more than ^- because i > n\. The edge 
( i '» i) defined above has conjession at most j'/l which is also smaller than ^- . Q 

We now generalize Lemma 6.17 to higher dimensions. 

L e m m a 6.18 There is a constant c depending only on d such that the complete graph of n = md 

vertices, Kn, can be embedded in Gk with conjession at most c m , . 
kd 

Proof: For simplicity, we view each vertex of Kn as a vector ( c i , . ..,a<*) of integers with 1 < a,- < m. 
We first map Kn to G\ by sending each pairs of vertices ( a i , . . . , aj) and (&i , . . . , bj,), to the natural 
path which goes through the vertices: 

( a i , . . . , a d ) , (&i,a2, . . . ,a*), • • • (&i , . . . , &,-,a,-+1, • • • ,a j ) 

This embedding has conjession at most m d + 1 . To see this, consider an edge 

e = [ (c x , . . . , Ci,..., cd), ( c i , . . . , c,- + 1 , . . . , bd)] 

then the pairs of points (p, q) whose path contains e will be those of the following form: 

[ ( a i , . . . , ai, c + i , . . . , Cd), ( c i , . . . , c,_i, bi,..., cj.)] 

where a,- > c,- > 6,- or 6,- > c,- > a,-. The number of such pairs is at most m ^ 1 . 
Notice that each dimension of Gk is a collection of one dimensional Gi (see Figure 6.3), where 

/ is given by (6.2). So, we can use Lemma 6.17 to embed edges along each dimension. Therefore, 
we reduce the conjession to at most m

[i , which is c m , for an appropriate choice of constant c, 
because we have assumed that k is big with respect to d. O 



44 CHAPTER 6. SEPARATOR THEOREMS 

Since each edge separator with constant splitting ratio of Kn must have size fi(n2), Lemma 6.18 
implies a lower bound of ft f"2^^"2 j = ft \k~3md~xJ on the edge separator of a ^-dimensional 
Gfc. Furthermore, because the degree of a d-dimensional Gk is 2dl, the lower bound on the edge 
separator of Gk implies a lower bound of Q,(k^md~1) on the vertex separator of Gk- Therefore, 

Corollary 6.19 Any edge separator for Gk with constant splitting ratio must have size fi(A;3m<i'~1) 
and any vertex separator for Gk with constant splitting ratio must have size fl(A:Hmd~1) 

Consequently, because Gk is a subgraph of the A-nearest neighborhood graph of P, we get 
a lower bound of ft(fc3n~3~) on the separator size of the intersection graphs of ^-neighborhood 
systems. Moreover, for each fc-neighborhood system 5 with centers P, there is an adfc-neighborhood 
system E' with centers P such that the a-overlap graph E is a subgraph of the intersection graph 
of E'. We thus get a lower bound of ft^aan'i-) on the separator size of the a-overlap graphs of 
fc-neighborhood systems. Therefore, the separator bounds in Theorem 6.1 and Theorem 6.10 are 
best possible in term of n, /z, and a. In summary, 

Theorem 6.20 (Lower bounds) For all positive integers d,k, and for each positive real a > 1, 
there is a d-dimensional k-neighborhood system E, letting G be the a-overlap graph of E, such that 
each separator of G with a constant splitting ratio must have size O (k?an~3~). 



Chapter 7 

Graphs in Minkowski Spaces 

Immediately, one may ask: does the separator theorem for fc-nearest neighborhood graphs still hold 
if the L\ norm or the L^ norm is used as metrics for the distance? Which metric space has the 
property that every a-overlap graph of a ^-neighborhood system in it has a small separator? 

7.1 Metric spaces 
A metric space is a set M with a distance function <1M satisfying for all x, y, z 6 M, 

1. <LM{X, y) > 0 and d\f(x, y) = 0 iff x = y; 

2. dM(x,y) = dM{y,x); (symmetry) 

3. dM(x,y) + dM(y, z) > dM(x, z). (triangle inequality) 

Like an Euclidean neighborhood, each M-neighborhood B has a center p and radius r, where B 
is the set of points in M whose distance from p is < r. A neighborhood system in M is a collection 
of neighborhoods. E = {B\,..., £?„} is a ^-neighborhood system if the interior of each B{ contains 
no more than k points from P, where P is the set of centers of E. The classes of intersection graphs, 
overlap graphs, and dilation graphs can be naturally extended to a metric space M. 

Clearly, not all metric space has a small separator theorem for its overlap graphs. An example 
is a graph-based metric space, MG, which contains all vertices of a graph G with the distance 
between each pair of vertices the length of the shortest path between the two vertices in G. 

If G is a complete graph, then the intersection graph of a 1-neighborhood system is a complete 
graph, and hence it has no small separator. If G is a star graph with m vertices, however, the 
intersection graph of a 1-neighborhood system is either a graph which has no edges, or a star 
graph. Thus it has a small separator. While the intersection graph of a 2-neighborhood system is 
always a complete graph. For any integer k, let the k-fuzz of a graph G be the graph Gk obtained 
from G by adding an edge between vertices u and v if it is possible to go from u to v in at most k 
steps. It is not hard to see that if G has an /(re)-separator and the maximum degree is 6, then the 
fc-fuzz of G has an £fc/(ra)-separator. The small separator property of G can thus be extended to 
the metric space defined by G. 

In this chapter, small separator theorems of Euclidean space are extended to normed linear 
spaces or Minkowski spaces. See below for the formal definitions. Consequently, for each positive 
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integer p, each fc-nearest neighborhood graph in d-space with the Lp norm as the metric for the 
distance has an 0(fc1/dn(d_1)/d)-separator that g±|-splits. 

7.2 Overlap graphs in Minkowski spaces 
Suppose {D, +, •, 0} be a linear space. M is a normed linear space of D provided there is associated 
with each element of D a nonnegative real number, called its norm, and denoted by ||*||, such that 

1. ||*|| = 0iffx = 0; 

2. A • x = |A| • ||z|| for all A € IR; 

3- \\x + y\\ < ||SB||+ ||y||, for all pairs of a, y€.D. 
The distance between any pair of elements * and y is defined to be ||* — y\\. Immediately from 

property (3), the distance yields a metric space. 
The dimension of a linear space is the largest set of elements that are linearly independent. 

As shown in [14], each normed linear space with dimension d < oo is equivalent to a Minkowski 
space of dimension d. 

+~X 

z 

m(x,y) = 2(xylpq) 

Figure 7.1: An example of Minkowski distance 

Let T be the boundary of a bounded central symmetrical convex set in IRd, whose center is at 
0. The distance m(x, y) of a pair of points x and y £ IRd is defined by m{xy) = 2(xy/pq), where 
xy is the Euclidean distance of points * and y and pq is the Euclidean length of the chord of T 
contained in the line space through the center of T that is parallel to the line determined by * and 
y (See Figure 7.1). The corresponding space is denoted by Minkowski(r). 

For example, the Euclidean space of dimension d is a Minkowski space with the choice of T 
to be a unit (d — l)-sphere; the L^ normed space is one with the choice of T the unit cube (See 
Figure 7.2), and in general the Lv normed space is the one with 

r = |*:p*,)d = i|. 
For each normed linear space M of dimension d, let T be the unit ball centered at 0. It 

can be shown that M is equivalent to Minkowski(r); and conversely, each Minkowski space in 
d dimensions, Minkowski(r), is a normed linear space of dimension d, whose unit ball is T (see 
Blumenthal and Menger [14] page 18-21 for a proof). 

The following is the main result of this chapter. 
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Figure 7.2: Cubes and co-cubes 

Theorem 7.1 Let M be a normed linear space with dimension d. For all positive integers \i and 
k, for each positive real a > 1, for each d-dimensional neighborhood system S with density fi, the 
a-overlap graph of E has an O (fj.1fdan~^~j-separator that £k±splits. Further, such a separator 
can be computed in random linear time. 

7.3 Some basic geometric properties 
Define the kissing number of a normed linear space M, TMI to be the maximum number of nonover-
lapping unit .M-balls which can be arranged so that they all touch a central unit M-ball. Also, 
for each positive real 6, define AM(8) to be the maximum number of points that can be arranged 
on a unit X-sphere, such that the distance between each pair of points is at least 6. By a volume 
argument, TM < 3d — 1 for each normed linear space M of dimension d. 

Suppose E = {B\,...,Bn} is a neighborhood system in a d-dimensional normed linear space 
M. For each p € M, define density=(p) to be the number of neighborhoods in E that contain p. 

All proofs in Chapter 4 and Chapter 5 can be applied to normed linear space to obtain the 
following set of lemmas. 

Lemma 7.2 (Density Lemma) For each k-neighborhood system E in a d-dimensional normed 
linear space M, for each p € IRd, densitys(p) < Tj^k. 

Lemma 7.3 (Ball Intersection) Let E = {Bi,...,Bn} be a k-neighborhood system in a d-
dimensional normed linear space M. Then for each ball B G M (with center p and radius r), 
and for each a, 

\{i :BinB^<DandpieM-a- B}\ < AM(^—^)k, 

where p,- is the center of B{ (1 < i < n). 

Lemma 7.4 The intersection graph of a k-neighborhood system in a normed linear space M is 
2AM(1 /2)k-inductive. 

Lemma 7.5 For each d, there is a constant cj, which only depends on d, such that the a-overlap 
graph of a k-neighborhood system in a d-dimensional normed linear space M is (cd.Q-dk)-inductive. 
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7.3.1 Linear transformation and the small separator property 

We prove Theorem 7.1 in this section. First recall the steps to prove the counterpart of Theorem 
7.1 in Euclidean spaces. 

1. Dilate each neighborhood by a factor of 2a and assign a uniform local density within each 
dilated neighborhood; 

2. Define the global density to be the Ld-i norm of the local ones; 

3. Show that the global density is linearly related with the Ld norm of local ones at each points 
in IRd, and hence bound the total volume of the global density; 

4. Apply Theorem 5.9 to compute a sphere separator of low surface area; 

5. Pull the sphere separator back to a vertex separator. 

To prove Theorem 7.1, we follow the same outline. Let E = {B\,. ..,Bn} be a neighborhood 
system in M with density fi. Let r̂  be the radius of Bi and let 7,- = 2ar,-. Let /,• be uniform within 
7,- • Bi so that the total volume of /,• is VMI the volume of a unit ball in M. 

Let f(x) = £(d_i)(/ i , . . . , /„) be the global density, and let g = i d ( / i , . . . , / n ) . Clearly, 
Total-volume(fir) = Vj^n. Similar to Lemma 6.12 is the following lemma. 

Lemma 7.6 For all x £ JR.d, (g(x))d < (f(x))d < cd2d(6<V/*)1/(''"1) • (sOO)*-

Therefore, by Theorem 5.9, there is a (d — l)-dimensional Euclidean sphere of surface area 
0(n1/dan(d-1Vd) that ^ - sp l i t s the centers of E. 

To derive a small vertex separator from a sphere separator, we would like to use a similar 
construction of Section 6.2.3. But there is one problem - the unit ball in a normed linear space 
may have unbounded aspect-ratio, so that even a sphere separator intersects a neighborhood B, it 
may only pick up a very small amount of surface area from 2a • B (See Figure 7.3). 

Figure 7.3: The problem with unbounded aspect-ratio 

Fortunately, this problem can be solved using the observation that the structure of an a-overlap 
graph is preserved by a linear transformation. 

Let M be a normed linear space with the norm ||x||. Let L be a linear transformation, i.e., 
L(x+y) = L(x)+L(y) for all x, y 6 M. Let L(M) be the normed linear space transformed from M 
by i , with a norm denoted by ||a;||L) where ||i(x)||L = ||x||. Clearly, L transforms a neighborhood B 
in M to one in L(M), denoted by L(B). In term of Minkowski space, Minkowski(r') is transformed 
from Minkowski(r) by a linear transformation L provided I" = L(T). 
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Lemma 7.7 Suppose E = {B\,..., Bn} is a neighborhood system in M with density fi. Let L be 
a linear transformation of M and let L(Z) = {L(Bi),---,L(Bn)}- Then L(E) is a neighborhood 
system in L(M) with density fi; and the a-overlap graph E is isomorphic to the a-overlap graph of 
1(3). 

Proof: The lemma follows straightforwardly from the claim that for each neighborhood B and a 
point q e M, q € 'mt(B) iff L(q) 6 int(L(B)). 

Let p be the center of B and r the radius. The center of L(B) is L(p) and the radius is still 
r. Notice that ||I(g)||L = IMI and \\L(p) - L{q)\\L = \\L(p- q)\\L = \\p - q\\. The distance is 
preserved by L and hence the claim follows. • 

Linear transformation can be used to relate all normed linear spaces. 

Lemma 7.8 For all bounded central symmetrical convex figure V, there is a linear transformation 
L such that 

CC C i ( r ) C C 

where CC — {x : ]>Zt=i lxt'l = 1} is the unit co-cube and C = {x : max^=1 |x,-| = 1}, the unit cube ( 
see Figure 7.4). 

Figure 7.4: All symmetrical convex figures can be mapped between the cube and the co-cube 

Proof: Here we give an informal description of a proof due to Lovasz [50]. 
Let pi,..., pd be d points on T such that the volume of the convex hull defined by p i , . . . , pd 

and o is maximum. Linearly transform pi to e,-, the unit vector on the ith dimension. Denoted the 
linear transformation by L. By the convexity and central symmetricity of T, we can conclude that 
CC C X(r); by the maximality of the volume, we can deduce that L(T) C C . O 

Therefore, without loss of generality, we can assume that all normed linear spaces under 
consideration have the property that their unit balls T satisfy the following inequalities. 

CC C L(T) C C. 

Lemma 7.9 Let B be the co-cube in d dimensions with radius r and S a (d— l)-sphere of radius 
at least 2r. If S intersects B, then the surface area of S f\ (2 • B) is at least ( ^ F i n Vd-\, where 
Vd-\ is the volume of a unit (d— l)-dimensional ball. 

Proof: For simplicity, we only prove the lemma when d = 2. The general case can be proved 
similarly. In the case when d = 2, the common area of S and B is just the length of the curve of 
S within B, 
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Assume 5 is a sphere with smallest common area with 2 • B satisfying the condition of the 
lemma. The optimality of S implies that the radius of S is equal to 2r. For otherwise, the sphere 
5', which has radius 2r and the same center as 5, would have smaller common area with 2 • B than 
that of S. The optimality also implies that the line passing the center of S and the center of B is 
parallel to z-coordinate axis and S touches B (See Figure 7.5). 

Figure 7.5: The common area of S and 2 • B. 

Let u and v be the common points of S and the boundary 2 • B. Clearly, the length of the 
curve of 5 in B is longer than the length of the line segment between u and v. As shown in Figure 
7.5, the line segment oq is perpendicular to the line segment uv and the length of the line segment 
ow is r. Since B is a 2-dimensional co-cube, the angle Lwuq = z/4. Hence, the length of the line 
segment wq is equal to the length of the line segment uq. Let x be the length of uq, we have 

(2r)2 = x* + (r + x)2, 

which implies that x = Y^~1r, and the length of the line segment of uv is y/7 — 1. • 
Consequently, 

Corollary 7.10 Let T be a d-dimensional central symmetrical convex figure satisfying CC C T C 
C. Let B be a ball in Minkowski(r) with radius r and S a (d— l)-dimensional Euclidean sphere of 
radius at least 2r. If S intersects B, then the surface area of S fl (2 • B) is at least {—f^-Tj Vd-\-

Using a similar argument and construction as in the Euclidean space, we can deduce a vertex 
separator from a sphere separator, whose size is linearly bound by the surface area of its continuous 
counterpart, and thus Theorem 7.1 follows. 



Chapter 8 

Center Points and Point Divisions 

The central algorithmic issue in computing sphere separators is the one of finding a center point 
of a given set of points (see chapter 5). Although many applications, such as computing sphere 
separators, are in fixed dimensions, some applications (for example in decision theory [53]) require 
efficiently computing a center point in variable dimensional spaces. By variable dimension I mean 
that the dimension is also specified as part of the input. For this reason, I will study this problem 
in both fixed and variable dimension. 

I have proved some structural and complexity-theoretical properties of center points which 
are quite interesting. Although those results are somewhat peripheral to the main theorem of the 
thesis, I have decided to include them. 

This chapter is self-contained. Results are given for computing, approximating, and testing 
center point and also for some related problems. 

8.1 Introduction 
Foe each positive real 0 < a < 1, a d-dimensional point c is an a-center point of a set of d-
dimensional points P if every hyperplane containing c a-splits P. The set of all ^py-center points 
are center points of P, denoted by center(P). 

Although the existence of center points follows simply from Helly's Theorem (Theorem 5.5), no 
efficient algorithm is known for computing center points. There is a straightforward method which 
requires solving a set of Q(nd) linear inequalities. The only nontrivial result, due to Cole, Sharir, 
and Yap [17], is that a center point in two dimension can be computed in 0(nlog5 n) time, and in 
three dimensions 0(n2log7 n) time. No subquadratic algorithm is known that always returns an 
approximate center point. 

A closely related problem is the one of testing whether a given point is a center point of a set 
of points. This problem will be referred as TESTING CENTER. The importance of this problem 
is illustrated in the following lemma. 

Lemma 8.1 The problem of computing a center point is polynomial time reducible to TESTING 
CENTER. 

Proof: The lemma follows from the general Ellipsoid method of Grotschel, Lovasz, and Schrijver 
[40] that a point in a convex set can be found in polynomial time using the membership oracle. O 

51 
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However, I will show that TESTING CENTER in variable dimensions is co-NP complete. As 
an interesting contrast, I will present a deterministic linear time algorithm for testing whether a 
point is an approximate center point in fixed dimensions. 

The above co-NP completeness result motivates the following fundamental question: does 
there always exist a center point which has a succinct witness? By a succinct witness, I mean a 
space-efficient witness, with the help of it, we can efficiently determine whether the given point is 
a center point. If there is such a point, can it and its witness be computed in polynomial time? 

This question is important for the following reasons. 

1. Each point computed by a polynomial time center point algorithm has a short-
proof of being a center point - such an algorithm itself serves as a proof. Therefore, 
the structure of center points with a short-proof can be used as a road-map for 
designing efficient center point algorithms. 

2. Since the problem of testing center point is co-NP complete, it is especially impor-
tant to design center point algorithms which also output a succinct proof of or a 
witness to the point it computes. 

To prove a given point p is not a center point of P, it is enough to demonstrate a hyperplane 
whose splitting ratio is larger than -A^. Then, how to prove a point is a center point? One way 
to do this is to show that each hyperplane denned by p and (d — 1) other points of P has splitting 
ratio bounded by d/(d+ 1). However, this requires checking ft(n(d-1)) hyperplanes! 

Suppose one have found a partition of P into r = f JXT] disjoint subsets, P i , . . . , Pr (magically), 
such that for all i : 1 < i < r, p is in the convex hull of P,-, conv(P,). Then he can claim that p is a 
center point of P. To see this, let H be a hyperplane containing p. For each i : 1 < i < r, since p G 
conv(Pj), there must be one point from P,- in each closed halfspace of H. This implies that there 
are at least r points in each closed half space of H. So, p is a center point. H. Tverberg [88] is the 
first who made this observation. The above discussion motivates the following definition. 

Definition 8.2 (Point Division) Suppose P is a set ofn points in TR? and k be a positive integer. 
A point p 6 IRd is ^-divisible w.r.t P if P can be partitioned into k pairwise disjointed subsets 
P i , . . . , Pfc, such that p 6 com^P,) for all 1 < i < k. Such a k-partition P i , . . . ,Pk is said to be a 
^-division of P. 

Let tver(P) be the set of all [3x7]-divisible points of P. It is known from Birch [10] that when 
d = 2, the convex hull of tver(P) is equal to center(P) and from a remarkable result of Tverberg 
[88] that tver(P) is not empty (in all dimensions). However, it is not known whether in higher 
dimensions the convex hull of tverberg points is always equal to the set of center points. 

Interestingly, the co-NP completeness result of TESTING CENTER implies that the equality 
does not always hold, unless NP = co-NP! This claim follows from the following lemma. 

Lemma 8.3 Each point in the convex hull o/tver(P) has a short proof of being a center point of 
P. 

Proof: It follows from the Caratheodory's theorem: when P C IRd, each point of conv(P) is a 
convex combination of d + 1 (or fewer) points of P, that for each p in the convex hull of tver(P), 
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there are d + 1 points pi,...,pa+i 6 tver(P) whose convex hull contains p. Therefore the -^-
divisions of p,'s together with the proof that p is in the convex hull of pi , . . . ,p j+i yields a proof 
that p is a center point of P . • 

In contrast, I will show that the problem of testing whether a point is a ^-divisible point (or in 
tver(P)) is NP-complete in general. Together with the co-NP completeness TESTING CENTER, 
it implies an interesting structural picture of center points (see Figure 8.1). 

center( p) 

NP-complete 

Figure 8.1: The Structure of Center Points 

Geometrically, this means that if NP ^ co-NP, then conv(tver(P)) is in general properly 
contained in center(P). Each point outside center(P) has a short proof of not being a center point 
of P, and each point in conv(tver(P)) has a short proof of being a center point. However, it is 
computational hard to prove whether a point is in center(P) or outside conv(tver(P)). 

Define DIVISIBILITY to be the problem of testing whether a given point is fc-divisible. When 
k = 1, this problem is known as the Caratheodory problem or the Convex Hull Problem. The 
Caratheodory problem is computationally equivalent to LINEAR PROGRAMMING [76] and hence 
can be solved in polynomial time. DIVISIBILITY with k > 1 is a natural generalization of the 
Caratheodory Problem. However, I will show that DIVISIBILITY is NP-complete even when k = 2. 

This contrasts interestingly with the following observation: a 2-divisible point can be computed 
in polynomial time. 

Let radon(P) be the set of all the 2-divisible points of P, called Radon points. It follows from 
Radon's proof of the Radon Theorem that a point in radon(P) can be computed in 0(<f3)-time. But 
it is NP-complete to test whether a given point is a Radon point. This implies that the problem 
of computing a Radon point is polynomial time solvable but not polynomial time checkable (Blum 
and Kannan [13]). 

In the second part of the chapter, efficient sequential and parallel algorithms for approximating 
center points and point-division in a fixed dimensions will be presented. Our algorithms can be 
either randomized or deterministic. 

The randomized algorithm is based on the random sampling, and computes an approximate 
center point in random O(logn) time, using n/logn processors together with a division-type of 
proof of the point it computes. 

Further, the concept of point division is generalized to the integer lattice. Lower bound and 
upper bound are given on the number of points for the existence of a fc-divisible integer points. 

co-NP complete 
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8.2 The complexity of TESTING CENTER 
Theorem 8.4 In variable dimensions TESTING CENTER is co-NP complete. 

It is easy to see that TESTING CENTER is in co-NP. To prove it is complete for co-NP, the 
following NP-complete problem, the MAXIMUM 2-SATISFIABILITY, is shown to be polynomial 
time reducible to the problem of testing whether a point is not a center point. The later problem 
will be referred as TESTING NOT CENTER. 

Problem 8.5 (MAXIMUM 2-SATISFIABILITY) Given a positive integer N, a set Uofm 
variables, and a collection C of s clauses over U such that each clause c € C has \c\ = 2. Question: 
is there a truth assignment for U that simultaneously satisfies at least N clauses of C. 

It is known that MAXIMUM 2-SATISFIABILITY is NP-complete (See Garey, Johnson, and 
Stockmeyer [30]). 

To reduce MAXIMUM 2-SATISFIABILITY to TESTING NOT CENTER, It will be shown 
that given an instance of first problem (JV, U,C),a. set of points P and a point p can be constructed 
in polynomial time such that p is a center point of P iff there is no truth assignment for U that 
simultaneously satisfies at least N clauses of C. 

In the NP-completeness proof of the DENSEST HEMISPHERE PROBLEM (Johnson and 
Preparata [48]), Johnson and Preparata gave the following construction. Let t = [log(ms + 1)]. 
The dimension d in the construction is rn + 1 + 3t. For each 1 < i < m, define 

At = (o)i-i(i)(or-"(i){i,-i}3f 

Ai = (0)i-1(-l)(0)m-i(l){l,-l},tt 

Bi = (0) , -1(4)(0)m- '(-2)(0)2 '{l ,- l} ' 
Bi = (0 ) i - 1 ( -4 ) (0 r - ' ( -2 ) (0 ) 2 t { l , - l} < 

In the above definition, the sets .A,-, At, Bi, and Bi are points corresponding to the ith variable of 
U. Let A = \Ji{Ai U 34.) and B = (Ji(-Bt- U B{). 

Further, they define a set D which consists of one representative for each c € C, as following. 
Let Xj[l] = Xj and Xj[—1] = XJ. Suppose c = {&i[ei],£j[ej]}, with 1 < i < j < m and e,-,ej € 
{1,-1}. The points in D corresponds c is 

Pc = (0)i-1(4e,-)(0)'-"(46i)(0)m-'(l)(0)3', 

Let P' = A U B U D and M = 2m • 23t + m • 2t + N. Let o = (0)d be the origin of the space. 
Johnson and Preparata proved the following lemma. 

Lemma 8.6 (Johnson and Preparata) There is a truth assignment for U that simultaneously 
satisfies at least N clauses ofC iff there is a hyperplane passing o, such that one of its open halfspace 
contains more than M points of P'. 

Note that Johnson and Preparata's construction does not give a direct proof to Theorem 8.4, 
because M » \-A^\ • But some simple modification is sufficient. 
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Figure 8.2: A 4-pencil 

Let a k-pencil be 2k point {<?i,.. .,<7jt,<7u-••»<?*} s u c h tha.t for all i : 1 < i < k, o € 
conv({g,-,g,}). A A; pencil has the property that each hyperplane passing o partitions the fc-pencil 
evenly (see Figure 8.2). 

Let k be an integer solution of the following equation. 

2m • 23t + m • 2* + N + k = \{-^—){2m • 23t + 2m • 2* + JV + 2k)] 
d + 1 

Such solution always exists and is positive. Let Q be a fc-pencil and let P = P' U Q. The 
following Lemma follows from Lemma 8.6 and property that each hyperplane passing o partitions 
the fc-pencil evenly. 

Lemma 8.7 There is a truth assignment for U that simultaneously satisfies at least N clauses of 
C iff o is not a center point for P. 

Theorem 8.4 follows simply from the above lemma. 

8.3 The complexity of DIVISIBILITY 
Theorem 8.8 DIVISIBILITY is NP-Complete even when k = 2 and n = 2d, where n is the 
number of points and d is the dimension. 

It is easy to see that DIVISIBILITY is in NP. To prove it is NP-complete, we need to show 
that there is an NP-complete problem which is polynomial time reducible to DIVISIBILITY. This 
time, the reduction is from the partition problem. 

Suppose A = {a\,..., am} be a set of m positive integers. A is partitionable if there is a subset 
S C A, such that 

£«= E b-
aes beA-s 

The partition problem is formally defined as, 
Problem 8.9 (PARTITION) Given A = {ai,...,am}, a set of positive integers. Question: is 
A partitionable. 
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It is knows from Karp ([52]) that PARTITION is NP-complete. 
To prove PARTITION is polynomial time reducible to DIVISIBILITY, for each instance A = 

{Ai,...,Am} of PARTITION, we will show that a set of 2 m + l points p i , . ..,P2m and pin (m+1)-
space can be constructed in polynomial time such that p is a radon point of P = {pi, . . .,P2m} iff 
A is partitionable. 

Given an instance of the partition problem A = { a i , . . . , a m } , let M be an (TO + 1) by 2m 
matrix given below:. 

M = ( \m °T
m) 

where l m = (1,1,..., 1), 0m = (0,0, ...,0), and Im is the m by TO identity matrix. 
m m 

Let pi (1 < i < 2m) be the ith column of M - p,- can be viewed as a point in (TO + l)-space. 
Let a = ££Liai> b = ( | , a i , . . . , a m ) , and p = \b = (^,^-,—,3JL)- Also p can be viewed as a 

point in (m + l)-space. 
In the following subsection, I will prove the following lemma from which Theorem 8.8 follows. 

Lemma 8.10 A is partitionable iffp is a radon point of p%,.. .,P2m-

8.3.1 A connector: t h e transportation problem 

To illustrate the relation between the partition problem and DIVISIBILITY, Let us look at the 
following classical combinatorial problem, the transportation problem. 

The input to the transportation problem is a 2 by m complete bipartite graph G, with vertices 
{'lj '2} on one side and { r i , . . . , rm} the other side. Also there are \ £™ a,- units of goods respectively 
at vertices l\ and I2, and there are a,- units of requirement from r,\ The transportation problem is 
to find how many units should be shipped on each edge (h,rj), for all 1 < i < 2 and 1 < j < m 
(see Figure 8.3). 

'1 ^ 
r2 10 
r3 6 
r4 14 

'6 3 

Figure 8.3: A 2 by TO Transportation Problem 

Computationally, the above transportation problem is not very hard. The greedy method 
works just fine. But what is useful and interesting here is that this problem serves as a bridge 
connecting the partition problem with DIVISIBILITY. Let xttj denote the units shipped on edge 
(/,•, rj) in a solution of the transportation problem. It is not hard to see that 

X = («1 ,1 , —,Xl<m,X2,l, ...,X2,m) 
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Sl,m 
£2,1 

a/2 
= 6 = 1 fll I (8.1) 

is a solution of the following linear system (8.1). 

/ *U \ 

M-xT=(lc fc) 

The solution of linear system (8.1) has the following properties. 

Lemma 8.11 

1. Each solution of linear system (8.1) has at least m nonzero entries; 

2. If there are exactly m entries in a solution of linear system (8.1) are nonzero, then no entry 
is negative. 

Proof: Statement (1) follows simply from the observation that one of X\ti and X2,i must be nonzero; 
We now prove statement (2). In a solution to linear system (8.1) which contains exactly m nonzero 
entries, it must be the case that exactly one of xi|t- and i2,t are nonzero, (1 < i < m). Moreover, 
the nonzero one must be equal to a,- which is positive. • 

The following lemma show the relation between linear system (8.1) and the partition problem. 

Lemma 8.12 The linear system (8.1) has a solution which contains exactly m nonzero entries iff 
A = {a i , . . . , am} is partitionable. 

Proof: (=J>) Suppose that the linear system (8.1) has a solution X which contains exactly m nonzero 
entries. Let R\ = {i|ii,{ = a< ̂  0}. Clearly, 

ieRi i=i «'=i 

Therefore, A is partitionable. 
(•*=) Now assume that A is partitionable. Let S C Abe such a solution. Let Ri = {i|at- G S} 

and i?2 = {i\a.i &. S}. It is not hard to see that 

_ / a,- Hie Ri 
XU ~ | 0 if i G R2 

_ / 0 if i <= Ri 
X2-« - \ a,- if i G R2 ' 

is a solution to the linear system (8.1) and contains exactly m nonzero entries. • 
Therefore, Lemma 8.10 and Theorem 8.8 follows from the following lemma. 

Lemma 8.13 The linear system (8.1) has a solution which contains exactly m nonzero entries iff 
p is a radon point ofpi,...,p2m-
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Proof: (=*•) Suppose that p is a radon point of p i , . . . , p 2 m . Then there is U\ C {pi,. . .»P2n} 
and Ui = {pi , . . . ,P2m} — U\, such that p G conv(£/i) and p G conv(J72). Hence, there are 0 < 
" 1 , • • •, Q!2m < 1 SUch that EKP.GC/! "t = 1> Et:p,Gt/2 <*« = *» a n d 

E a«p»' = p 
E uiPi = p 

i-pi£U2 

Let 

... _ J aati if p,- G Ut Jl \ 0 otherwise 

, . _ / a": if Pi € J72 * \ 0 otherwise 

Clearly, both ( j / i , . . . , j/2m) and ( z i , . . . , z2m) are solutions of the linear system (8.1). Since the total 
number of nonzero entries in y's and z's are 2m, it follows from Lemma 8.11 that both solutions 
have exactly m nonzero entries. 

(•*=) Suppose that linear system (8.1) has a solution x = (aii,i,...,a;iInu*2,i—>a:2,m) which has 
exactly m nonzero entries. Let x = (a?i,i, —)X2,2n) where for each 1 < j < 2 and 1 < i < m, 

x" ~ \ a{ xjti = 0 

Clearly, x is also a solution to linear system (8.1). 
For notation simplicity, a;,- = a ? ^ and a;,- = affc.-./o where (fc,- — l )m + /,- = i. Note that k{ 

(1 < fa < 2) and /,• (1 < /,• < n) are uniquely determined by i : 1 < i < In. 
Let U\ = {pi\x{ = a/,.} and {/2 = {Pil^i = a/,}- It is not hard to see that t/2 = { p i , . . . , p 2 n } - # u 

and the above discussion implies that 

E x> ~ a 
i-.pieUi 

E *•' - a 
i-PiGUi 

E x<Pi = aP 

E Xipi = ap 
'••Pi 6^2 

We now show that p G conv(f/'1) and p G conv(t/2). Let a,- = x . /a and /?,• = x , /a (1 < i < 2n). It 
follows from x,- > 0 and af,- > 0, that a,- > 0, /?,• > 0, and 

E °« = i 
t:P(et/i 

E A = i 
i-Pi€.Ui 
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J2 PiPi = p, 

which implies that p € conv(#i) and p G conv(J72) and hence p is a radon point of {pi,... ,P2m}-
• 

This completes the proof of Theorem 8.8. Similarly, 

Theorem 8.14 The problem of testing whether a point p is a tverberg point of a given set of points 
P = {pi,. . . ,p„} is NP-complete. • 

8.3.2 Computing a Radon point 

The NP-completeness of DIVISIBILITY in the case when k = 2 contrasts interestingly with the 
fact that a radon point can be computed in 0(d3) time, where d is the dimension of the space. 

Theorem 8.15 (Radon) For all P > d+2, a radon point can be computed in 0(d3) time. 

Proof: Suppose P = {pi, . . . ,pn} with n > d + 2. Consider the system of n +1 homogeneous linear 
equations 

n m 
£ > = 0 = 5>i>* (i<j<d), 
i'=i i= i 

where pi = (p},...,pf) in the usual coordinate system of JR.d. Since n > d + 2, the system has a 
nontrivial solution ( a i , . . . , a„). Let U be the set of all i for which at- > 0, and V the set for which 
a < 0, and c = Zieuai > 0- T h e n E , e v" i = -c and Zieu(^)Pi = E i e v ^ P . -

Note that to compute a radon point of P, it is sufficient to compute a 2-division for the first 
d + 2 point. Hence, a radon point can be computed in 0(d3) time. O 

As a consequence of both Theorem 8.8 and 8.15, 

Corollary 8.16 The problem of computing a radon point is polynomial time solvable but not poly-
nomial time checkable. 

8.4 Point division versus center points 

The complexity results in the above sections imply that it is unlikely the convex hull of tverberg 
points is always equal to the set of center points. But is there a proof without using any computa-
tional assumption? 

It is not hard to see that in 1-space, the convex hull of tverberg points is precisely the set of 
all center points. To see this, considering the following two cases: If P has odd number of points, 
then there is only one center point, the median of P, which is also the only tverberg point of P; If 
P consists of even number of points (say P = {pi,.. .,P2n} with p,- < pt+i), then the set of center 
points is the closed interval between p„ and pn+i • But both pn and pn+i are tverberg of P. 

Then what is the smallest dimension that the convex hull of tverberg points is not always equal 
to the set of center points? 
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Suppose there are 3n points P = {pi , . . . ,P3n} in plane (2-space) and p is a center point of P. 
Let 9i be the angle between the ray ppi and the re-coordinate. Without loss of generality assume 
0i < 0t+1. It can be easily shown that if p is a center point of P , then p is in the convex hull of 
points p;,pn+,',p2n+t> for all 1 < i < n. This was first observed by Birch [10]. Therefore, 

Lemma 8.17 (Birch) For each P o/3n points in IR2, tver(P) = center(P). 

Now suppose there are 3ra + 1 points P = {pi, . . .,P3„+i} in the plane. It is implied in the 
proof of Lemma 5.7 that center(P) is a convex set and for each vertex c of center(P) there are four 
points Pi,Pj,Pfc,p/ from P such that c is a common point of line segments between Pi,pj and pjt,pj. 
So c is also a center point of points P — {p<,Pj»Pfc,P/}- Therefore, by lemma 8.17, c is a tverberg 
of P. Similarly, the same assertion can be proved when 3ra + 2 points. Thus, 

Corollary 8.18 For any set P of points in IR2, the convex hull oftvei(P) is equal to center(P). 

However, using the intuition behind the proof of Theorem 8.8, I have found the following 
example which implies that it is not always true the convex hull of tverberg points is equal to the 
set of center points in 3-space. 

Example 8.19 Let P = {pi,P2,P3,P4,Ps,P6}, where 

Pi 

P2 

P3 

P\ 
P5 

Pe, 

= 

= 

= 
= 

= 

= 

(1,0,0) 
(0,1,0) 
(0,0,1) 
( 0 , -1 , -1 ) 
( -1 ,0 , -1 ) 
( -1 , -1 ,0 ) . 

Then the convex hull o/tver(P) ^ centerP. 

8.5 Approximating center points 
Now we have shown that the problem of testing whether a point is a center point is co-NP complete. 
One may wonder how much of a hint the co-NP complete result gives about the complexity of 
computing a center point? Can we then conclude that it is computational hard to compute a 
center point in variable dimension? Unfortunately, I do not know the answer but I do not quite 
think so - the NP-completeness of testing a radon point does not mean too much for computing a 
radon point. 

Let us study the center point problem in fixed dimensions. After all, fixed dimensions are what 
we mainly care for applications of small separators. 

8.5.1 Computing an approximate center point in fixed dimensions 

In the remainder of this section, I will use the following notations. 
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Definition 8.20 (e-center points) A point p is an e-center point of X if all hyperplanes con-
taining p have splitting ratio < d/(d+ 1) + 6, where d is the dimension. 

The randomized algorithm uses random sampling [16, 75, 44] - an important algorithmic 
technique for designing efficient geometric algorithms. To illustrate the idea, we show how to 
use random sampling to compute an approximate center point in 1-dimension. In this case, the 
input is a set of n integers P = {px , . . . ,P2n}> without loss of generality assume p,- < pj. Clearly, 
center(P) = [p„,p„+i]. 

Now suppose we randomly select an element from P, say p. The probability that p 6 {pn>Pn+i} 
is i , while the probability that pp-j < p < Pr3ni is 0.5. So, with probability 0.5, a randomly selected 
element from P is an e = \ center point. 

We can improve e using larger samples! Suppose / random elements S = {r i , . . . , r /} are 
selected and their median r is the output. Let I(r) be the rank of r in P, it follows from a simple 
analyse that E[I(r)] = n, and V[I(r)] = < 2 n + 1 f c 1 ~ 2 / ) . By Chebyshev's inequality, 

P(\I(r)-n\)>t)<^ 

Thus, with probability at least 0.5, \I(r) — n\ < -j-, i.e., r is a -TJ center point of \P\. A -^» 
center point of |P | can be computed in 0(1) time. 

The above algorithm can be generalized to higher dimensions. In d dimensions, the randomized 
e-center point algorithm has the following form: 

Algorithm A: Random e-Center Point 
Input P CWLd 

1. Randomly (uniformly) select / points from P, say S C P; 
2. Compute a center point cs of S; 
3. Output cs-

The feasibility of the above algorithm is specified in the following question: What is the 
probability that cs computed above is an e-center point? 

We now introduce a notation which will be very useful in quantifying the quality of the cs 
computed by the above sampling algorithm. 

Definition 8.21 (e-Good Sample) For each P 6 IRd, S C P is an (.-good sample if 

\hns\ \hnp\ 
sup 

h<SHS \S\ \P\ 
< e 

Lemma 8.22 For each P € Md, if S C P is an e-good sample, then each center point of S is an 
(-center point of P. 

Proof: Let cs be a center point of S. Suppose cs is not an e center point of P, then there is a 
half-space h 6 HS passing cs with 

\hnp\ d 
\P\ > d + i + 



62 CHAPTER 8. CENTER POINTS AND POINT DMSIONS 

On the other hand, cs is a center point of of 5, thus 
\hnS\ d 

\S\ ~ d+1' 
This implies that 

\hnP\ \hr\S\ d d__ 
\P\ \S\ > d+l+€ d + l ~ € ' 

contradicting with the assumption that S is an e-good sample. • 
Now the question becomes: how often a set of / randomly chosen points forms an e-good 

sample? This is not a trivial question, but was in fact answered many many years ago by Vapnik 
and Chervonenkis [93]. 

8.5.2 A theory of Vapnik and Chervonenkis 

Let A" be a set called domain, S a set of subsets over X, and Vx a fixed distribution over X. Let 
XW denote the space of samples in X of size /. On the space X(l\ a probability measure V is 
defined as, for each (j/i , . . . , yi) in X^\ 

l 
V[(yi,...,yi)] = ]JVx(yi) 

i 

For any {xi , . . . ,x/} G X^, each A € <S induces a subsample, SA = {x,- € A}. Let 
As(xi,...,xi) be the number of all different subsamples induced by the set of S with respect 
to the sample {x\,.. . ,£ /} . The growth function m5(/) is defined as 

ms(l) = maxA5(xi,...,a;;) 

The VC dimension of S, denoted by VC(S), is defined to be the constant that 
VC(S) = min{/: ms(l) ? 2'}. 

For each A € S, let VA = V({x\x € A}). Each sample (x i , . . . ,xj) and A € <S determines a 
relative frequency, vy(xi,..., x/), which is equal to 

|{»: *i 6 A}\ 
I 

Let 7rO = sup^gs \VA — PAi the maximum difference over the class S between relative fre-
quency and probability. The quantity 7rO is a point function in X1. 

Note that if S = {A}, then the Bernoulli's Theorem states that limj-.oo P[|v^ — Pa|] = 0. 
Vapnik and Chervonenkis generalized the Bernoulli's Theorem and related the convergence of ir® 
to the VC-dimension of S. They prove the following result. 
Theorem 8.23 (Vapnik and Chervonenkis) For each 0 < e < 1 and I > — £ 2 ' 

i V > > c] < 4m5(2f)rf 

Corollary 8.24 / / the VC(S) = d, then P[TTV) > e] < n, provided 

; < H ( „ o g ^ + l o g i ) = 0 ( 4 l o g ? + logi) 



8.5. APPROXIMATING CENTER POINTS 63 

8.5.3 The probability of e-good-samples 

Let H be the set of all half-spaces in d space. For each set of points P C IR/*, let H(P) = {hDP\h € 
H}. It is not hard to see that for each P C IRd, the VC dimension of H(P) is bounded above by 
d + 1. For each P C IR/*, let X = P, S = H(P), and Vx be the uniform distribution over X. Let 
7rW = sup^6 5 |«y — T^l be the random variable of maximum difference over class S between the 
relative frequency and probability. It follows from the definition of e-good sample that 

Lemma 8.25 P[S C P, with \S\ = I, is an e-good sample] = P[irO < e]. 

Consequently, 

Theorem 8.26 (Algorithm A) For all P £ Md, an (.-center point of P can be computed in 

o(J-log7 + lo6-J j 
time, with probability at least 1 — n. 

Notice that all computation above can be efficiently implemented in parallel. 

8.5.4 Testing e-center points 

The above random sampling algorithm has a major drawback. It does not always output an e-center 
point. One way to overcome this problem is to design efficient algorithm to test whether a given 
point is an e-center point. Note that the problem to testing whether a point is an e-center point 
in variable dimensions is again co-NP complete. The proof is just a simple modification of the one 
for Theorem 8.4. When the dimension is fixed, there is a straightforward algorithm which runs in 
0(nd _ 1 ) time, which is too slow for any practical application. 

We now present an efficient algorithm which is based on point division and random sampling. 
The intuition behind the algorithm is expressed in the following lemma. 

Lemma 8.27 Suppose P is partitioned into r disjointed subsets Pi,..., PT. Then ifp is an e-center 
point of all P i , . . . , PT, respectively, then p is an e-center point of P. 

The above lemma motivates that following concept. Suppose P is a set of points in H . A 
partition (P\,..., Pr) is an (e, k)-partition of P, if there is a point p such that |P,| < k and p is an 
e-center point of Pi for all 1 < i < r. Such a partition (P i , . . . , Pr) is also called an (e,&)-partition 
w.r.t p. 

So if an (e, &)-partition w.r.t p could be computed such that k is of manageable size, then 
the 0(fcd-1)-time algorithm can be used to prove that p is an e-center point of each member of 
the partition and hence p is an e-center point of P. However, no deterministic method known 
to generate an (e, fc)-partition efficiently. Fortunately, a random partition works well with high 
probability. 

A partition (P x , . . . , Pr) is a regular k-partition iff k -1 < |P{| < k, for all i : 1 < i < r. Clearly, 
r = [n/fcj. The following lemma estimates the probability that a random regular ^-partition is an 
(e, fc)-partition. 
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Lemma 8.28 For each P C IRd, for each 1 < e < 1, and for all k > ^, the probability that a 
random k-partition is an (e,k)-partition is at least 1 — &n(2k)de~B- . 

Proof: Note that if S is a random fn/2]-sample of P, then P — S is also a random [w/2j-sample 
of P. Similarly, if (P i , . . . , Pr) is a random regular fc-partition of P, then each P,- is a random |P,| 
sample of P. Therefore, the probability that (P i , . . . , Pr) is a regular (e, &)-partition is equal to the 
probability that all P,- are e-good-sample, which is at least r times the probability that a random 
fc-sample is an e-good-sample. Thus, the lemma follows from Theorem 8.23. • . 

So we can efficiently generate an (e, &)-partition of P . But how often it is also an (e, fc)-partition 
w.r.t an 6 center point pi This question is partially answered in the following lemma which follows 
directly from the definition of e-good-sample. 

Lemma 8.29 If S is an e-good-sample, then each 6 center point of P is an (e + S)-center point of 
S. 

Consequently, 

Corollary 8.30 Let (P i , . . . ,P r ) be an (t,k)-partition of P and p a S-center point of P. Then 
(P i , . . . , Pr) is a (6 + e, k)-partition w.r.t p. 

Simply from Corollary 8.30 and Lemma 8.28 and the fact that a center point of n points in 
d-space can be computed in 0{nd) time is the following observation. 

Observation 8.31 For all P C JR.d, for each e center point p of P, for each S = 0{ • t*g / n \ ) , 
and for all r\ = 0( 0<

1vnv)> a proof that p is an (S + e) center poivt of P can be computed in 
0(n • polylog(n)) time sequentially, and O(logn) time, using in 0(n • polylog(n)) processors, with 
probability at least 1 — n. 

Combining with the randomized algorithm of the last section, we can in random O(logra) time, 
compute an e center point and an division type of proof, using 0(n - polylog(n)) processors. 

8.5.5 An improved algorithm 

In this subsection, we present a random linear time algorithm for computing an e center point. 
This algorithm is always correct. It never outputs a point which in not an e center point. The idea 
of this algorithm will used in the next section to design a deterministic linear time algorithm for 
computing an e center point. 

By Lemma 8.22, if S is an e-good-sample of P , then the center point of S is an e center 
point of P . So it is sufficient to design a random linear time algorithm which always outputs an 
e-good-sample of size 0{^ log \). 

One method is to test whether a randomly selected sample S is an e-good sample of P . 
However, we know of no efficient way to do this. There is a straightforward 0(nd)-time algorithm 
which simply tests whether the condition of the e-good-sample holds for each (d — l)-dimensional 
hyperplane defined by d points of P , which is too slow for any practical purpose. But we will apply 
this algorithm on sets of small number of points. The following lemma is used to reduce the size 
of the problem. 
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Lemma 8.32 (Union Lemma) Suppose P is partitioned into r disjoint subsets P\,...,Pr and 
Si is an e-good-sample of Pi (1 < i < r). Then (\J^=1Si) is also an e-good-sample of P. 

The lemma itself is very simple and follows simply from the definition of e-good-sample. It 
suggests the following procedure for computing an e-good-sample. 

Procedure 

1. Partition P into r disjointed subsets P i , . . . , PT of about equal size; 
2. Randomly select a sample Si for P,- and prove 5,- is an e-good-sample using the 

0(nd)-t\me algorithm; 
3. If S{ fails to be an e-good-sample of P,, then choose another random sample and 

prove again until succeed; 

4. Output S = Ur
i=lSi. 

By Lemma 8.32, S is an e-good-sample of P. If all subsets P,-'s (1 < i < r) are of constant size, 
then the above procedure runs in random linear time. But, the number of elements in S is fairly 
big. In fact it is a constant fraction of n. To further reduce the size of the sample, we can apply 
the above procedure on S. However, this might decrease the quality of the sample. Then how bad 
can it be? This question is answered in the following lemma which follows straightforwardly from 
the definition of good sample. 

Lemma 8.33 (Composition Lemma) Let P be a set of points in d-space, S\ an e-good-sample 
of P, and S2 a 6-good-sample of S\. Then S2 is an (e + 6)-good-sample of P. 

Now, to compute a small e-good-sample, we just repeatedly apply above procedure. The key 
point to maintain the quality of the sample is the following observation: The problem size is reduced 
after each round and hence we can spend more time in finding better samples. To guarantee that 
the quality of the final sample is as good as that of the top level sample, the quality factor is 
improved at each round geometrically, i.e., if the quality factor at the ith round is e,-, then the 
quality factor of the (i + l)at round is e,+i = e,/2. By the Composition Lemma above, the set 
obtained after iterative applications of the above procedure is an J2i=i e/2* < 2ei good sample of 
P . 

Let us now work out the detail number. To compute an e,-good-sample randomly, we have 
to choose a sample of size O(-^log^r). Let U be the constant of the above big-0 notation. Let 
/,• denote the size of subsets in the ith round; let Si be the size of random sample for each subset 
in the itk round; and let ra; be the total number of points at the beginning of the itfi round. The 
expected time of the ith round is T; = ^f/f = n,/f-1. Let 7 = 7, = / , /SJ . We have n,- = n,_i/7,\ 

To maintain the quality of the sample, st- is chosen as 

Si= \U-5\0g-]. 

So Si < 5s,_i. Let 7 = 2 • 5d _ 1 , and let /,• = 73,-. 
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The expect time Tt- of each round is bounded as below. 

Ti = n,-Z? d - l 

" t ' - l f d - 1 
7.' *" 

7t 
< (n,-i(/,_i)l i-1)/2 
< 2i- i /2 

Therefore the total time is bounded by £],• T,- < 2I \ . However, The above approach has one serious 
problem. The sample size of the iih round is five times as big as that of the (t — l)3t round. But 
this problem can be fixed. The idea is decrease the sample size s,- after a predefined round. Of 
course, this is done at the cost of reducing the quality factor of the sample. But this will not cause 
any problem if it is done in a controlled fashion. More specifically, let j be the smallest integer such 
that si = n/7J . After the (j/2)th round, the sample size is decreased, but in a backward fashion. 
For i > j/2, assign e,- = 2e,_i, and st- = s,- = |77-Vlog i ] , and /,• = / ,_i /7 . (See Figure 8.4). 

« l 

• • 

• 

« * ' " 

• 

SJ • 

« l 

• 

Si 

Figure 8.4: The change of e,- and s,-

By the similar time analysis, T,+i < 2T,-. The algorithm stops when e,- = e\. Hence the 
total complexity is bounded by AT\ which is linear in n if Si is a constant. The number of points 
left is approximately equal to si. Thus if the algorithm starts with £i = e/4, then it outputs an 
e-good-simple of size 0(^-log \). 

Theorem 8.34 There is a random linear time algorithm which always outputs an e center point. 

Notice that the above algorithm can be easily parallelized. It can be implement on an CRCW 
PRAM in O(logn) time, using n processors. 

8.5.6 A deterministic algorithm 

In this section, we present a deterministic linear time algorithm for computing an e-center point. 
This algorithm is basically a de-randomization version of the random one given in the last section. 

I have to point out that Matousek [62] recently gave an linear time deterministic algorithm 
for this problem independently. The basic idea of his algorithm is quite similar to ours. But his 
algorithm is more general - it can be applied to all abstract range spaces with bounded VC dimen-
sions. Because his result has already been published in conference proceedings, I refer interesting 
readers to his work. Here I will only present the high level idea of our construction. 
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The result of the last section can be phrased as: if there is an 0(npoly^) time algorithm for 
computing an e-good-sample of size 0(^ log \), where n is the size of inputs and d the dimension, 
then there is an linear time algorithm for computing an e-center point in d-space. Moreover, if the 
former algorithm is deterministic, then the later one is also deterministic. 

We first notice that the problem of computing small e-good-sample in fixed dimensions can be 
expressed by a integer linear programming with n variables and nd inequalities. 

Let P = {pi,.. ,,pn} be the set of input points. Let x,- be a boolean variable which is 1 if p,- is 
chosen in the sample and 0 otherwise. Clearly, for each hyperplane, the condition of e-good sample 
can be expressed by a linear inequality. Since, it is sufficient to check nd hyperplanes, those which 
are defined by d points from P. To compute a small e-good-sample, the sum J2?=i X{ is minimized 
provided all inequality holds. 

Using the general derandomization technique of Raghavan [74] and the fact that linear pro-
gramming can be solved in polynomial time, an small e-good-sample can be computed in 0(ripoly(d)) 
time. 

Theorem 8.35 There is a deterministic linear time algorithm for computing an e-center point in 
fixed dimensions. 

8.6 Point divisions on the integer lattice 
In this section the point division problem is investigated over a natural convexity space Zd. On one hand, it 
will be shown that each set of rd2d points in Zd has an r-division, i.e., it can be partitioned into r subsets, 
such that the convex hull of the r disjointed subsets has a common integer point. On the other hand, the 
argument of Shmuel Onn is generalized to show that for each r, there is a set of (r — l)2d + 1 points which 
does not have an r-division. 

8.6.1 An upper bound 
Definition 8.36 (a-Center Points) A point c S Zd is an a-center point of a finite set of points P C Zd 

provides every hyperplane containing c has a splitting ratio no more than a. The set of a-center points of P 
is denoted by a-center(P). 

Similar to the relation between center points and division point, the following basic relation holds 
between a-center point and r-division in integer lattice. 

Lemma 8.37 For each set P C Zd, 

1. If (Pi,..., Pr) is an r division of P, and c E ((Xi-i conv(Pi)) f) Zd, then c is a (1 - -fa) center point 
ofP; 

2. IfcE Zd is an a-center point of P, then there is a [(x~°0lplj division of P such that c is contained 
in the convex hull of all the subsets. 

Proof: Statement 1 follows simply from the definitions of a-center points and r-division. Statement 2 can 
be easily proved by applying the Caratheodory theorem. n 

The upper bound result is stated in the following theorem. 

Theorem 8.38 Each set P S Zd of rd1d points has an r division. 
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By Lemma 8.37, it is sufficient to prove the following lemma. 

Lemma 8.39 Each set P G Zd of rd2d points has an ^-^—center point. 

Proof: Let H be the set of all half-spaces that contain more than 2 ^ 1 points from P. We will show 

\heH ) 

We use the following result due to Bell and Scarf [78]. 

Proposition 8.40 (Bell and Scarf) Let F be a finite collection of closed half spaces in Md. If(C\F)C\Zd = 
0, then there exists a subfamily L C F such that \L\ < 2d and (C\L) D Zd = 0. 

Since P is finite, there is a finite subset H' C H such that C\H' = C\H. 
Assume relation (8.2) is not true, i.e., (n/P) f~l Zd = 0. By Proposition 8.40, there is L C H' such 

that \L\ < 2d and (rU) D Zd = 0. For each h G L, let h' = IRd - h. We have \hf C\ X\ < ^\X\. Thus 
|(Uhg£,/»')nXd\ < \X\, which implies \X\ — (U/,ei/i') ?t 0. A contradiction to our assumption. Therefore the 
lemma holds. CD 

8.6.2 A lower bound 
Let 6(r, d) denote the smallest integer such that each set of 6(r, d) points in Zd has an r-division. 

The result in this section is motivated by the result of Onn [70] who gave a lower on the radon number 
of the integer lattice. Since the radon partition is a 2-division. The Onn's lower bound can be specified as 

Theorem 8.41 (Onn) For all d>2, 6(2, d)>2d + 2d~1 + 1. 

We now generalize the Onn's lower bound to all r. 

Theorem 8.42 (Division Number: A Lower Bound) For all d>l, for all r, 

S(r,d)>2dr-2d + l. 

Proof: The claimed lower bound follows from the following inequality. 

6(r,d+l)>2S(r,d)-l (8.3) 

Assume S(r,d+ 1) < 2S(r, d) - 2. Let A C Zd, \A\ = S(r, d) — 1 be a set that has no r-division. Let 

Xi = {(a,i):aeA} (« = 0,1). 

Let X = X0 UXi G Zd+1. Since |X| = 2(6(r,d)- 1) > 6(r,d+ 1), it follows from the assumption that 
X has an r-division, say (Y\,..., Yr). Let c be an integer division point of (Vi, . . . , Yr), i.e., c G Zd+1 and 
c G nj=1(conv(y;-)). So, c G (Zd x {0,1}), i.e., if c = (c i , . . . , c d + i ) , then c<j+i G {0,1}. Without loss of 
generality, assume c<j+i = 0. Then let Zi = Yi n Xo, it follows that c G n^=1(conv(Y;)). This contradict with 
the assumption that A does not have an r division. Hence, the Inequality (8.3) holds. Note that for all r, 
S(r, 1) = 2r - 1. It follows by a simple induction on d that 6(r, d)>2dr-2d+l. O 
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8.6.3 On An points in the planar integer lattice 
In 2-dimensional integer lattice, the upper bound of the division number can be tighten. We shall show that 
each set of An lattice points has an n-division. The proof is based on the idea of Birch [10]. 

Theorem 8.43 Each set Z G Z2 of An points has an n-division. 

Proof: It follows from Lemma 8.39 that each Z € Z2 (of An points) has an | center point. Let c 6 Z2 be 
a | center point of Z. Since division and center point are preserved by any affine transformation. Without 
loss of generality assume c = (0,0). Each point z = (x,y) € Z determines a vector zc. Let 0t be the angle 
formed by Tc and (1,0)c, the x coordinate. Let Z = {zi,..., Z4„} be a sorted list of Z by 0,-, the angle of 
zfc and x ray. That is 0,- < 0,+i. 

Define an n-partition (Zo, ...,Z„-i) of Z by Zi = {ZJ \j = i mod n}. We claim that (Zo,..., Zn-i) forms 
an n-division of Z. More specifically, we shall prove that for all 0 < » < n — 1, c G conv(Z,). 

Let Zi = {po,Pi)P3.P3}, where pj = 2(t+jn). 0 < j < 3. Let hj be the closed half-space (containing c) 
defined by the line passing pj and pj + 1 mod 4. Since Z = {z i , . . . , z4n} is a sorted list of Z by 0,-, the angle 
of z7c and x ray. Hence, 

hj D Z D Z — {Zi+;n+lmod4n, •2i+jn+2mod4n, •••, ^t+(j+l)n-lmod4n}i 

which implies |A,-| > ^ . It follows that c is an | center point that c £ hj, for all 0 < j < 3, thus c e 
conv(Zi). n 

However, if \Z\ ^ An, it is not true that every |-center point is a f|Z|/4]-division point. Moreover, 
there is a set Z, \Z\ ^ 4, such that the convex hull of all [|Z|/4] division points does not contain all integer 
2-center points of Z. This contrast interestingly with the relation between center points and division points 
in IR2, where the convex hull of [|Z|/3]-division points is equal to the set of |-center points. 
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Chapter 9 

Separator Based Divide and Conquer 

In this chapter, a divide and conquer paradigm is presented based on the separator results proved 
in previous chapters. The usefulness of this paradigm in computational geometry is demonstrated. 
The new paradigm is compared with a commonly used paradigm for solving geometry problems 
- the multi-dimensional divide and conquer of Bentley [8]. It will be shown that this paradigm 
outperforms the multi-dimensional divide and conquer on various geometry problems. The new 
paradigm also provides a good support for designing efficient parallel algorithms for geometry 
problems in fixed dimensions. 

In this chapter, we are more concerned with expressing the concept of the separator based 
divide and conquer paradigm than examining the detail of a particular algorithm. For this reason, 
we will omit some more sophisticated but asymptotically faster algorithms which are based on the 
same paradigm. 

In Section 9.1, we present an efficient search structure for a geometric query problem. This 
search structure will be used in subsequent sections. In Section 9.2, we develop a separator based 
divide and conquer algorithm for constructing the intersection graph of a given neighborhood 
system. We also give an efficient parallel implementation of this algorithm. This algorithm will be 
modified in Section 9.3 to compute the overlap graph of a neighborhood system. In Section 9.4, 
we present a separator based divide and conquer algorithm for computing ^-nearest neighborhood 
graphs in fixed dimensions. This algorithm can be implemented on parallel machines more efficiently 
than the known parallelization of Vaidya's algorithm [91]. 

9.1 The neighborhood query problem 
The neighborhood query problem is defined as: given a neighborhood system E = {Bi,...,Bn} 
in d-space, preprocess the input to organize it into a search structure so that queries of the form 
"output all neighborhoods that contain a given point p" can be answered efficiently. 

Like other geometry query problems, there are three costs associated with the neighborhood 
query problem: the preprocessing time T(n, d) required to build the search structure, the query 
time Q(n, d) required to answer a query, and the space S(n,d) required to represent the search 
structure in memory. 

If E is an arbitrary neighborhood system, then there may exist some point p such that the 
density of p - the number of neighborhoods that cover p - is ft(n). In this case, just to print the 
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output would require fi(n) work. However, if E is restricted to be a ^-neighborhood system or a 
neighborhood system with density ft, then the number of balls in the output is bounded by r̂ fc or 
H, respectively. Can the neighborhood query problem be solved more efficiently? 

To our knowledge, there are no prior result on this problem. Nevertheless, it is relatively 
straightforward that the multi-dimensional divide and conquer yields a search structure with the 
following properties. 

T{n,d) = 0(Tilogd-an) 
Q(n,d) = 0(n + logdn) 
S(n,d) = 0(nlogd-1n) 

In contrast, using separator based divide and conquer, we are able to construct a search 
structure with the following properties. 

T(n,d) = random 0(nlogn) 
Q(n,d) = 0(n + logn) 
S(n,d) = 0(n) 

By saying an algorithm runs in random t(n) time we mean that the algorithm never give a 
wrong output but may not terminate. The probability of success, namely, it produces a correct 
output in t(n) steps, is at least 1 — j ^ - ^ . The probability of success of randomized algorithms in 
this chapter can be easily amplified to 1 — £ at the cost an O (log log n) factor increasing in the 
run time. More sophisticate analysis can be used to eliminate this extra O(loglogn) overhead (see 
Frieze, Miller, Teng [28]). To simplify the discussion, in the following sections, we assume that the 
density /x is a constant. 

9.1.1 A separator based search structure 

The main idea is to use a sphere separator which intersects substantial small number of balls to 
partition the neighborhoods into two subsets of roughly equal size, and then recursively build search 
structures for each subsets. 

Given a neighborhood system E with density /z, we will build a binary tree of height 0(log n) 
to guide the search in answering a query. Associated with each leaf of the tree is a subset of 
neighborhoods in E, and the search structure has the property that for all p 6 IRd, the set of 
neighborhoods that covers p can be found in one of the leaves. 

In the following construction, any sublinear separator with constant splitting ratio can be used. 
The asymptotical complexity is the same. Hence, I will not refer to any particular constant. All 
that matter is that 0,6 and c are constants with the property that 0 < /? < 1, 0 < 6 < 1 and c is 
a positive real that only depends on the dimension d. If not further specified, it is assumed that 
P = ^ p , S = 3±i, and c is the constant term in Theorem 5.3. 

Let 5 be a sphere separator with intersection number c • rfi that ^-splits centers of E. Let Eo 
be the subset of neighborhoods which intersect either S or the interior of 5; and Ei the subset of 
neighborhoods which intersect either S or the exterior of S. Clearly |Eo|,|Ei| < 6n + c • n'3, and 
l-iI + I-2I < " + c • nP. We store the information of S, its center and radius, in the root of the 
search tree, and recursively build binary search trees for EQ and Ei, respectively. The roots of the 
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tree for Eo and Ei are respectively the left and right children of the node associated with 5 . The 
recursive construction stops when the subset has cardinality smaller than mo, for a parameter mo 
satisfying cmg < (^f^) mo, to be specified later. 

To answer a query when given a point p 6 HLd, we first check p against 5 , the sphere separator 
associated with the root of the search tree. There are three cases: 

• Case 1: if p is in the interior of S then recursively search on the left subtree of S; 

• Case 2: if p is in the exterior of S then recursively search the right subtree of 5 ; 

• Case 3: if p is on 5" then recursively search on the left subtree of S. 

When reaching a leaf, we then check p against all neighborhoods associated with the leaf and 
print all those which cover p. 

The correctness of the search structure and the above searching procedure is obvious and can 
be proved by induction: if p is in the interior (exterior) of S, then all neighborhoods which cover p 
must intersect either S or the interior (exterior) of 5 , and hence are in the left (right) subtree of 
S. The time complexity to answer a query is clearly bounded by 0(h(n) + mo), where h(n) is the 
height of the search tree, given by the following recurrence. 

h(m) < { I x if m < mo /g •> \ 
h(Sm 4- cvnfi) + 1 if m > mo. * ' ' 

Lemma 9.1 Let h be a function defined above. Then h(n) = O(logn). 

Proof: By definition of mo, for all m > mo, cmP < f^f^) m. Because h(m) is a nondecreasing 
function in m, we have 

f 1 if m < mo 
M"»)<| ^( (1^)^ + 1 i fm > m o. 

Since 6 < 1 and hence ^ > 1, we can infer h(n) = [log 2 n\ = O(logrc). • 
Consequently, 

Q(n, d) = 0(log n + m 0 ) . 

We now analyze the space requirement of the search structure. First observe that each internal 
node requires a constant amount of space and each leaf requires O(mo) space. To bound the total 
space, it is sufficient to bound the total number of leaves in the tree. 

Let s(m) denote the number of leaves in the search tree for m neighborhoods. Clearly s(m) is 
given by the following recurrence. 

/ \ ^ - / l if m < mo /Q n\ 
s^m) - \ siSxm + cmP) + s(( l - S^m) if m > m0, { ' 

where I — 6\ < 6\ < 6. 

Lemma 9.2 Let s be the function defined above. Then s(n) = 0(n) for a sufficient large constant 
mo that depends only on d, 6, /?, and c. 
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Proof: For any constant 7 : f3 < 7 < 1, we use induction to establish s(n) < C(n — n~*) for a 
sufficient large constant mo that depends only on d, S, /?, and c and an appropriate choice of the 
constant C > 1. 

Because s(m) = 1 for m < mo, we need to choose C, and mo such that C(mo — m^) > 1. 
Because 7 < 1, this condition holds for a sufficient large mo, establishing the base for the induction. 
Now assume that the lemma is true for all m < n, using the substitution method of [18], we have 

s(n) < s(6in + cnP) + s((l-6i)n) 
< C(81n + cn(}) + C((l-61)n)-C(61n + cnf3)'t - C((l - ^ n f (By induction) 
= Cn- CTC + Cii1 + Ccrfi - C(6m + en0)'1 - C((l - S^n^ 
< Cn- Cn* + CTI1 + Ccn0 - C{61n)'1 - C((l - 8x)ny 
< Cin-n1), 

as long as we choose C and mo such that 

C ( M F + C{{\ - Si)ny - Cn> - CcvP > 0. (9.3) 

By Taylor expansion of around the point 1, we have 

(*ir+(i-*ir>(*i)7+1-7*1. 
Because 0 < 7 < 1 and 1 < 61 < S < 1, the above inequality (9.3) holds if 

C[{jP - -yS)^ - cn*3] > 0. (9.4) 

Because 0 < /? < 7 < 1, inequality 9.4 holds for all 

- ys-y-^s) 
1 

Therefore, the lemma hold for a sufficient large constant mo and C which only depend on d, 
5, /? and c. • 

Because the number of nodes in a proper binary tree is no more than twice the number of 
leaves, we have for all sufficient large mo satisfying cm5 < f^fM "io and the condition of Lemma 
9.2, 

s(n) = 0(n/mo). 
Therefore, the total space requirement of the above search structure is bounded by 

S(n,d) = 0(n). 

Now let us look at the time required in building such a search structure. 
From the previous chapters, each tZ-dimensional neighborhood system of m balls and with 

density // has a sphere separator with intersection number O (/z2n~5~ J that ^^-splits. If we could 
compute such a sphere separator in 0(n) time, then the time required in computing such a search 
structure, T(m), would be given by the following recurrence. 

T{m) < J T^m + cm^ + T ( ( 1 _ Sjm^ + 0 ( m ) if m ~ m ° ) (9.5) 

where 1̂ < 6. 
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Lemma 9.3 Let T be the function defined above. Then T(n) = 0(nlogn) for a sufficient large 
constant mo that depends only on d, S, /?, and c. 

Proof: We use induction to establish T(n) < Cn log ra for an appropriate choice of the constant 
C>\. 

Clearly, T(m) = 1 < C for m < mo. This is the base of the induction. Now, assume the 
lemma is true for all m < n, we have 

T(n) < r ( ^ n + cn/?) + r ( ( l - ^ i ) n ) + c2n 
< C(6xn + cn/3)log(«1ra + cnP) + C((l - ^)n)log((l - 6i)n) + c2n (By induction) 
< Cn log(6n + cnp) + Ccnp \og(6 + cn0) + c2n 

< Cn log!—-—n)+Ccn(3log(6n +cnP) +c2n 

= Cn log n- Cn log ( - — - J + Ccn13 \og{8 + cn*3) + c2n 

< Cn log n, 

as long as we choose C and mo such that 

Cn log (-Z—\ - Cc^ log(6 + cn13) - c2n > 0. (9.6) 

Because /3 < 1 and 6 < 1, inequality (9.6) holds for a sufficiently large mo and C > c2 which 
only depend on d, 6, @ and c. n 

Consequently, 
T(n,d) = 0{n log ra). 

However, we know of no deterministic linear time algorithm to compute a sphere separator with 
intersection number 0(/z37i~3~) for a neighborhood system of density fi. Instead, as shown in the 
previous chapters, such a sphere separator can be computed in random linear time. From Chapter 
5, if fl = ^ j i + e for some constant /3 : 0 < /? < \, then the probability such a randomized algorithm 
outputs a sphere separator with intersection number 0{^n^) is at least 1 — ^ . Moreover, we can 
check whether the intersection number of a sphere separator is 0(/i1/dra'5) in linear time. If the 
construction above stops when mo = O(logra), then it follows from Lemma 9.3 that the search 
structure can be constructed in random O(ralogn) time with a probability of success 1 — I ^ J -
To amplify the probability of success, if the subproblem is of size m, we run the randomized 
sphere separator algorithm 0(^^) times. It can be easily shown that with probability £ the 
above algorithm terminates in O(ralognloglogn)-time with a correct search structure. This extra 
O(loglogn) overhead can be eliminated using a more sophisticate analysis (Frieze, Miller, and Teng 
[28]). 

9.1.2 A parallel construction 

We now examine the parallel time required in computing a search structure of the neighborhood 
query problem. In this context, the time complexity has a new parameter p, the number of pro-
cessors used in the algorithm. For the neighborhood query problem, let T(n,d,p) represent the 
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preprocessing time required to build the search structure with p processors. We now show that the 
search structure presented in the above subsection has the following properties. 

Q{n,d) = 0(/x + logn) 
S(n,d) = 0(n) 

T(n,d,n) = random O(log2 n). 

The space complexity and the query time is the same as they used to be. The 0(log2 n) parallel 
time follows from the observation that with n processor, we can in random O(logn) time compute a 
sphere separator S with intersection number 0(/z3n~3~) and decide which neighborhoods intersect 
with 5, whose centers are in the interior or exterior. Since the height of the search tree is O(logn), 
the total time complexity is 0(log2n) on a CRCW PRAM. However, if we use a SCAN CRCW 
PRAM, i.e., we assume prefix sum can be performed in constant time, [11], then we can check to 
see if the sphere S has a small intersection number in constant time and divide neighborhoods into 
two sets, those balls that intersect the interior of the sphere and those that intersect the exterior, 
in constant time. Therefore the algorithm runs in random O(logn) time with total work at most 
O(ralogn). 

Without assuming the scan primitive, we know how to improve the parallel time bound to 
random O(lognloglogn) on a CRCW PRAMs. However, the solution is much more complex and I 
have decided not to present it here. Nevertheless, I believe the parallel time bound can be reduced 
to random O(logra). 

In comparison, the search structure constructed by the multi-dimensional divide and conquer 
has the following properties. 

T(n,d,p) = O(logdn) 
Q(n,d) = 0(fi + \ogdn) 
S(n,d) = 0(n\ogd-1n) 

9.2 Constructing intersection graphs 
The problem of this section is to construct the intersection graph of a given neighborhood system. 
There is a simple solution for this problem: testing each pair of neighborhoods to decide whether 
they intersect. Since there are 0(n2) pairs and the testing of each pair can be performed in constant 
time, the whole construction can be done in 0(n2) time. If we require the algorithm to report all 
edges of the intersection graph, the above algorithm is optimal if we are working with general 
neighborhood systems. This is because that there could be as much as fi(n2) number of edges in 
some intersection graphs. However, if the neighborhood system is restricted to the one with density 
H, then the intersection graph has at most 0(fJ,n) edges. Is there a more efficient way to compute 
the intersection graph when fx is small and d is fixed? 

We answer this question in the affirmative by presenting two algorithms. The first one, us-
ing the separator based divide and conquer, is a randomized algorithm with time complexity 
O(^ralogn). The second one is deterministic and has the similar time complexity 0{kn\ogn), 
although is only for ^-neighborhood systems. The deterministic algorithm uses an idea of Vaidya 
[91]. However, the second algorithm is sequential in nature and we know of no efficient method to 
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implement it in parallel. In contrast the first algorithm can be efficiently parallelized in random 
0(log2 n) time1 using O(fin) processors. 

9.2.1 A separator based algorithm 

To illustrate the idea, let us view the graph construction problem as a search problem: a problem 
of exploring the structure of an unknown graph with the help of some oracles. First, assume that 
n, the number of vertices, is known in advance and we have an oracle - the edge oracle - which 
answers the question of the form "is there is an edge between vertex u and u?" in constant time. 
It is not hard to see that even though the number of edges is known in advance, fl(n2) queries have 
to be asked in the worst case. 

Now suppose that there is more information available: it is known in advance that the graph 
has a cn^-separator that ^-splits and moreover each subgraph of m > mo vertices also has a cmP-
separator that ^-splits, for some constant c, mo, and 0 < (5 < 1. Can the number of queries be 
reduced? It is a nice question, but I have no answer. 

However, suppose in addition, we have an oracle - a separator oracle - which when presented 
with a subset of m vertices, delivers three sets, A, B, and C, where C is an cm^-separator that 
5-splits the subgraph induced by those m vertices into A and B. Then it is sufficient to consult 
with the oracle 0(n) times to compute the structure of the unknown graph G 

The strategy is divide and conquer. We first present the separator oracle the whole set of 
vertices and get back from the oracle three sets A, B, C, where C is a cn^-separator that ^-splits G 
into A and B. We then recursively search the structure of subgraphs induced by A U C and BDC 
until the size of subproblems is below mo. Finally, we use the edge oracle to finish off. 

The total number of query q(n) to the separator oracle is clearly given by the following recur-
rence. 

f w f 0 if n < m0 
9 W ~ \ q(6in + en?) + q((l - S^n) + 1 if n > m0, 

where S\ < 6. 
By a similar argument as Lemma 9.2, it can be shown q(n) = 0{n). 
Now suppose each query to the separator oracle costs 0(m) time, where m is the size of query. 

It is not hard to see that the total time T(n) needed to search the structure of the graph is given 
by the following recurrence. 

T{n) < { 0(1) i f rc<m 0 
T(6xn + cnP) + T((l - <5i)n) + 0(n) if n > m0, 

By Lemma 9.3, we have T(n) = O(nlogn). 
The divide and conquer algorithm for constructing intersection graphs is based on the following 

interesting observation: we do not need to have the intersection graph in order to compute a small 
separator efficiently - all we need is the neighborhood system! 

To see this, let us recall how we compute a small separator of an intersection graph. First we 
find a sphere separator S of low cost. This step involves computing an approximate center point 

'Again, if we use Scan CRCW PRAM, the we can reduce the time to random O(logn). We also know a parallel 
algorithm with time complexity random 0(log n log log n) on a CRCW PRAM. 
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and a conformal map. We then compute a vertex separator from the sphere separator S. The 
rule of choosing vertices is very simple: If ball B{ has a common point with S, then the vertex 
corresponding to B{ is placed in the separator. The time complexity of the above step is 0(n). 

One important aspect of the above separator based divide and conquer algorithm is that it can 
be efficiently parallelized. In particular, the above algorithm can be implemented on an CRCW 
PRAM with fin processors in random 0( log 2 n) time, as shown in the last section. In conclusion, 

Theorem 9.4 The intersection graph of a neighborhood system with density ft in a fixed dimen-
sional space can be computed in random O(finlogn) time sequentially and in random O(log2n) 
time using fin processors on a CRCW PRAM. Moreover, the algorithm uses only 0(n)-space. 

In contrast, we can only derive an 0(finlogd~1 n) time, O^ralog1*-1 n)-space algorithm for 
computing an intersection graph from the multi-dimensional divide and conquer paradigm. 

9.2.2 A deterministic algorithm 

In this section, we present an O(knlogn) time deterministic algorithm for computing the intersec-
tion graph of a given ^-neighborhood system in a fixed dimensions. This algorithm is optimal up 
to a constant factor when A; is a constant. The lower bound result of Ben-Or [7] implies that in 
the algebraic decision tree model of computation, there is a lower bound of fi(nlogn) in the time 
complexity for this problem even when d = 1. 

The basic idea of our algorithm is motivated by the method of Vaidya [91] for solving the k-
nearest-neighbors problem. However our specific construction is quite different and the complexity 
argument is more sophisticated. 

The algorithm constructs a sequence of graphs Go, G i , . . . , G m where Go is a graph with a 
single node and G m is the desired intersection graph. For each 1 < i < m, G,- is a refinement of 
G,_i and is obtained from G,_i by a constant number of modifications. 

More specifically, we start with the smallest d-dimensional cube 60 that contains all centers P 
of the neighborhood system, and Go is the graph with vertex {6o}. At each stage of refinement, 
from G,_i to G;, a cube b in G,_i of the largest size is chosen and b is split into 2d equal-size cubes 
b\,..., b2d by d hyperplanes each passing through the center of b and being perpendicular to one 
of the coordinate axes. The splitting induces a partition of points in 6 into sets b{ D P. We discard 
those cubes whose interiors are empty and shrink each of the remaining boxes as much as possible 
to the extent that the resulting boxes contain the same set of points. A cube is reduced if it contains 
less than k points from P. Each reduced cube is further decomposed into cubes, and each contains 
exactly one of the points in the reduced cubes. Such cubes are called singleton cubes. The set of 
shrunk cubes and singleton cubes are called children of b, and b their parent. The set of cubes of 
Gi is then the set of all cubes in G,_i but b plus the set of children of b. 

Graph G; has vertices, one for each cube in it. There is an edge between two nonreduced cubes 
c,- and Cj if 2 • c,- and 2 • Cj have a common point; between two singleton cubes containing points 
Pi and p j , respectively if B{ and Bj have a common point; between a nonreduced cube c,- and a 
singleton cube containing pj if 2 • ct- and Bj have a common point. Such a graph is called a pseudo 
2-dilation graph of cubes in G,-. 

Note that the refinement from G,_i to G,- is performed by locally changing the structure of 
G,_i. To be more specific, let JV,_i(6) denote the set of cubes connected with cube b in G,_i. 
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Clearly, G,- can be obtained from G,_i by inserting vertices one for each cube in children(i) 
and deleting the vertex corresponding to b and making proper connections between iV,_i(6) and 
children(6). 

We know that the number of children(6) is bounded by k2d. The following lemma bounds the 
size of iV,_1(6) for all nonreduced cubes b. 

Lemma 9.5 There is a constant a that depends only on d such that if b is nonreduced in G,_i, 
then the number of cubes in iV,_1(6) is bounded from above by cj. 

Proof: First observe that at each stage, the set of nonreduced cubes forms a 1-neighborhood system 
in the L^ norm. For each b' in Ar,_i(6), we know the size of parent{b') is at least as large as that of 
b, because b' is split before 6. There are two cases depending on whether parent(b') is an ancestor 
of b. Let Ei be the set of all parent(b'ys which are not ancestors of 6, together with 6. Clearly, all 
cubes in Ei are nonreduced and Ei is a 1-neighborhood system and b is the smallest cube in this 
neighborhood system. Therefore, (2-6) can only intersect some constant number of such cubes (See 
Ball Intersection Lemma I and II). Let this constant be c'. Also it is not hard to see that 2 • b can 
only intersect some constant number of the first type of parent cubes, say c". To combine these, 
let c'" = (c' + c")2d, we know (2 • 6) can not intersect more than c'" nonreduced cubes of G,_i. 
The same argument when applied to cubes in Ei also implies that for each V € E i , 2 • V can not 
intersect more than c"' cubes from S\. Therefore, E2 = {2 • V : b' € E i} forms a c'"-neighborhood 
system, and 2 • b is the smallest cube. By Ball Intersection Lemma I and II again, we know that 
there is a constant c'd such that 2 • 6 can not intersect more than c'd number of cubes from E2. 
Letting cj = 2dc'd, we conclude the degree of 6 in the pseudo 2-dilation graph of cubes in G,_i is 
bounded from above by cj . • 

Consequently, G,- can be obtained from G,_i by a constant number of modifications. 
The remainder of the algorithm is very like the one of Vaidya [91] for computing nearest 

neighborhood graphs. We maintain a heap of cubes in G,-. This allows us to pick a cube that has 
the largest volume in constant time. Since the total size of the cube tree is bounded by 2n, the total 
time for heap maintenance is thus O(nlogn) . To split the set of centers in a cube 6 efficiently, we, 
like Vaidya, use d ordered lists Listi(b), 1 < i < k, the ith list containing the centers in bC\P ordered 
on the incoordinate . When b is split, we can obtain similar lists for all cubes in children(b) from 
the ordered lists for b. We use exactly the same splitting procedure of Vaidya. By the Splitting 
Lemma 1 of Vaidya, we can bound the total splitting time by 0(kn\ogn). For details, we refer the 
reader to Vaidya [91]. 

Therefore, we have shown 

Theorem 9.6 The intersection graph of a k-neighborhood system can be computed in 0{kn\ogn) 
time deterministically. 

9.3 Constructing overlap graphs 
In this section, we generalize the construction algorithm in the last section to overlap graphs. Here 
the problem is to compute the a-overlap graph of a neighborhood system for a positive real a > 1. 
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Again, the divide and conquer algorithm uses an important fact of overlap graphs: we do not 
need to have the overlap graph in order to compute a small separator - we can directly compute 
one from the neighborhood system itself. 

To see this, let us go back to the construction in Chapter 6 when proving the overlap graph 
has a small separator. In that construction, we first find a sphere separator S with low surface area. 
Then we compute a vertex separator from S. Here is the rule for choosing vertices in a separator: 
if ball B{ intersects S, then the vertex corresponding to B{ is chosen. Otherwise, if a • Bi intersects 
with S and the radius of B{ is no more than the radius of S, the vertex of J5t- is also chosen. Hence 
this step can be computed in 0(n) time sequentially and in constant time if we have n processors. 

Therefore, we have a random linear time oracle for computing a small separator for an overlap 
graph. Incorporating this into the generic algorithm presented in the last section, we have 

Theorem 9.7 The a-overlap graph of a neighborhood system with density fi in a fixed d-dimensional 
space can be computed in random 0(ad/inlogn) time sequentially and in random 0(log2n) time 
using ad/xn processor on a CRCW PRAM. Moreover, our algorithm uses 0{n) space. 

In contrast, we can only derive an O(adfin\ogd~1 n) time, 0{n\ogd~x n) space algorithm for 
computing an overlap graph from the multi-dimensional divide and conquer paradigm. 

Similarly, we can generalize the deterministic algorithm of the last section to overlap graphs. 
In particular, we can prove, 

Theorem 9.8 The a-overlap graph of a k-neighborhood system can be computed in deterministic 
O(adknlogn) time. 

9.4 Constructing /c-nearest neighborhood graphs 
Now we come to a more interesting but harder problem - to compute the fc-nearest neighborhood 
graph when given a set of n points P = {pi, ...,pn} in a fixed dimension. The reason that we say 
this problem is harder is the following: the neighborhood of each point is not known in advance 
and thus it is harder to compute a small separator of the graph by only looking at the points. 

The nearest neighbor problem has been intensively studied [8, 91, 75, 16]. The simplest algo-
rithm for this problem, the one that compares each point with all other points, runs in 0(ra2)-time. 
Using the multi-dimensional divide and conquer, Bentley was the first to develop an O(ra(log n)rf-1)-
time algorithm in d-dimensions (Bentley [8]). Clarkson presented a randomized algorithm for the 
problem with expected run time O(nlogn) (Clarkson [16]) and Vaidyagave an optimal O(knlogn) 
time algorithm for the ^-nearest neighbor problem in any fixed dimensions (Vaidya [91]). How-
ever, there is no optimal parallel algorithm known for this problem in arbitrary fixed dimensions. 
Vaidya's algorithm is very sequential. A straightforward parallelization of Bentley's algorithm 
runs in O(logd n) time using n processors, although the work of Cole and Goodreich pushes the 
time complexity down to 0(logd_1 n). When randomization is allowed, Reif and San presented an 
O(logn) random time n processor algorithm for this problem in 2 dimensions by reducing it to the 
Voronoi problem. We know of no other parallel results in an arbitrary fixed dimensions. 

We now present a random O(log3 n) time, n processors parallel algorithm for constructing a 
A:-nearest neighborhood graph in a fixed dimensions. To our knowledge, this is the first logarithmic 
time linear processors parallel algorithm whose exponent in the logn term (of the time bound) 
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is independent of d. This new algorithm uses the separator based divide and conquer paradigm. 
Recently, Frieze, Miller, and Teng [28] obtained an improved divide and conquer algorithm using a 
more sophisticate construction and a new probabilistic lemma. 

We first present an random 0(ralog2n) time sequential algorithm. The algorithm works as 
follows. The first step chooses a hyperplane h perpendicular to the x\ -coordinate axis, dividing 
the points P into two subsets Pi and Pr, each containing n/2 points. The second step recursively 
computes the A;-nearest neighbor graph of A and B, respectively. Let B{ be the ball associated with 
point pi from the recursive construction. Assume pi € Pi. There are two cases: 

• Case 1: B{ does not intersect h. In this case, B{ is the correct ball in the sense that B{ is the 
largest ball center at p,- with less than k points from P in its interior. Hence, the fc-nearest 
neighbors of p,- is correctly computed. 

• Case 2: 5,- intersects h. In this case, B{ could be bigger than what it is supposed to be 
because there might be points from PT in the interior of B{. So we have to correct the radius 
of Bi. 

The key observation is that the correction step for case 2 is just a neighborhood query problem 
which can be solved in random 0(nlog n) time. It is interesting to point out that the correction step 
is where Bentley used the multi-dimensional reduction. So, he can not simply stop the recurrence. 
Instead, he reduces the problem to one lower dimensions. The separator based divide and conquer 
removes the necessity of a multi-dimensional recursive call and hence improves the algorithm. 

Let E/ be the set of balls from P/ that intersect h. Clearly E/ is a fc-neighborhood system. 
So we can build a search structure for the neighborhood query problem of Ej. Using this search 
structure, we can decide in O(logn) time for each p € Pr the set of balls in S; whose interior 
contains p and we correct 5,'s in E; accordingly. Thus in random 0(nlogn) time, we can correct 
all balls in E;. Similarly, we can correct all balls in Er, the set of balls from Pr that intersect h. 

The time complexity of the above algorithm is given by the following recurrence. 

T(n) = T{6in + cnP) + T((l - Si)n) + O(nlogn). 

Therefore, T{n) •=• random 0(ralog2 ra). 
The above algorithm can be implemented in parallel. The first step can be done in constant 

time using n processors if we presort the points according to their a;i-coordinates. The second step 
can be performed in random 0(log2 n) time using n processors. Hence the total time complexity 
is bounded from above by 0(log3n). Using a more sophisticated construction, we can reduce the 
time complexity to random O(lognloglogn) without increasing the number of processors (Frieze, 
Miller, Teng [28]). 

9.5 Testing A>neighborhoodness 
Finally, we give an efficient algorithm for answering the following question: whether a given neigh-
borhood system is a ^-neighborhood system. We refer this problem as testing k-neighborhoodness. 

There is a straightforward 0(n2)-time algorithm for testing fc-neighborhoodness. This algo-
rithm tests for each pair of centers to see if one is in the interior of the neighborhood of another. 
However, a much more efficient algorithm exists which is based on the following observation. 
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Lemma 9.9 Let E = {B\,..., Bn} be a neighborhood system with centers P = {pi , . . . ,p n } , and 
for all 1 < i < n, let qi be the point among pi's (k + l)-nearest neighbors that is furthest away from 
Pi. Then E is a k-neighborhood system iff for all i, qi is not in the interior of Bi. 

Proof: If qi is in the interior of Bi, then the interior of Bi contains at least (k + 1) points from P, 
and hence E is not a ^-neighborhood system. On the other hand, if g,- is not in the interior of Bi, 
then we know that no more than k points from P can be there, and the lemma follows. D 

Immediately from the above lemma, we get the following algorithm for testing fc-neighborhoodness. 

Input: A neighborhood system E = {B\,...,Bn}. 
1. Let P = {pi, ...,pn} be the set of centers of E; 
2. For all i, compute the set JV,- of k + 1-nearest neighbors of p,-; 
3. for all i, compute for each p,-, the point g,- in JV,- that is farthest away from p,-; 
4. if there is an i, such that g,- is in the interior of Bi, then output E is not a k-

neighborhood system otherwise output E is a k-neighborhood system. 

Consequently, 

Theorem 9.10 The problem of testing k-neighborhoodness can be solved in O(fcralogn) time se-
quentially and in random 0(log2 n) time using kn processors on a CRCW PRAM. 



Chapter 10 

Final Remarks 

Now that we have proved that each neighborhood system with a bounded density in a fixed di-
mensions has a sphere separator with a small cost (in term of the intersection or overlap number). 
Furthermore, we have presented a randomized algorithm that computes such a sphere separator 
in random linear time with high probability if given a random number generator which uniformly 
generates a real number from [0,1] (Knuth [54, 41]). 

However, if the number of random bits is bounded, then it may be the case that all points 
in the sample space are "bad" in the sense that they do not correspond to any sphere separator 
with a small cost. How to use only a finite number of random bits to generate a small cost sphere 
separator is thus of a major concern. 

In this chapter, a new method to derive the separator property of intersection graphs and 
overlap graphs is presented. This approach not only provides a mean to bound the number of 
random bits required in computing a small cost sphere separator but also generates a more direct 
and elementary proof of the main separator theorem (Theorem 6.1 and 6.10). 

To simplify the discussion, I will present proofs only for bounding the intersection number. 
The argument can be easily generalized to the overlap number. It is worthwhile to mention that it is 
still not known how to bound the number of random bits for the general case as stated in Theorem 
5.9. The result to be presented relies on the structural properties of neighborhood systems. 

10.1 Great rings of the unit sphere 

As shown in Chapter 5, a (/-dimensional neighborhood system E = {B\,..., Bn} can be conformally 
mapped to a unit d-sphere Ud so that each (/-dimensional hyperplane containing the center of Ud 
^-sp l i t s E. Notice that each B{ is mapped to a patch !>,• on Ud, whose boundary C; has the 
shape of a (d-l)-sphere. The radius of £),- is defined to be the radius of C,-. Clearly, the density of 
{£>,• : 1 < i < n} is \i iff the density of E is fi. Let Ad be the surface area of {/<*. Since the number 
of patches with surface area greater than Ad/2 is bounded by 0((i), without loss of generality, we 
assume that each patch has a surface area at most Ad/2. Let r,- be the radius of C,-. The volume 
of the d-dimensional ball with boundary C; is then equal to Vd(r,)d, which is a lowerbound on the 
surface area of the patch /?,-. In the remaining of this chapter, I will identify B, with D{, and 
assume that E = {Bi,..., Bn} is given on the unit d-sphere. 

83 
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10.1.1 Great rings 

Recall that a great sphere of Ud is the intersection of Ud with a hyperplane passing through the 
center of Ud. Each great sphere GS can be identified with the pair of points pas and qGs on U 
that lay on the normal to GS (see Figure 10.1 for an example in 2 dimensions). 

Figure 10.1: GC and its pas, QGS 

There is a dual relation between points on Ud and their great spheres: 

Proposition 10.1 (Duality) For each pair of great spheres GS andGS' ofUd, GS contains pas> 
(and hence qQs> as well) if and only if GS' contains PGS (and hence qGs)-

Proof: If pas> € GS, then the hyperplane associated with GS is perpendicular to the hyperplane 
associated with GS'. Therefore, pas is contained in the hyperplane of GS', and hence contained 
in GS'. a 

Let a great ring be the set of points of Ud that lay between a pair of parallel hyperplanes 
symmetric to the center of Ud- The width of a great ring is then the distance of its two hyperplanes. 
Notice that a great sphere is a great ring with width 0. Clearly, the surface area of a great ring of 
width r is bounded by Vd-\r, where Vd-i is the volume of a unit (d — l)-ball. 

It simply follows from the duality of points and their great spheres (Proposition 10.1) that 

Lemma 10.2 Suppose E = {B\,..., Bn} is a neighborhood system on Ud- Then for each 1 < i < n, 
there is a great ring R{ such that a great sphere GS intersects Bi iff pas and qas is contained in 
Ri. Moreover, the width of R{ is equal to 2r,-, where r,- is the radius of Bi (see Figure 10.2). 

For each point a; on Ud, let i-={x) be the number of neighborhoods in E that intersect the great 
sphere GS(x) associated with x. Let 

By the duality of points and their great spheres (Proposition 10.1), we have 

Proposition 10.3 The above defined tj}(S) is equal to the expect intersection number of a random 
great sphere of Ud-

Lemma 10.4 Suppose E = {JBJ, . . . , Bn} is a neighborhood system on Ud. Let Ri be the great ring 
defined by Bi. Then 

V<S) = ^ ( | > e a ( * , ) ) 
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Figure 10.2: The great ring induced by 2?,-

Proof: For each 1 < i < n, for each a; £ Ud, Let $,-(a:) be the function which takes value 1 if GS(x) 
intersects B{ and 0 otherwise. 

= j - d (J [|{* : GSW n B, ft 9}|] (i»)J) 

• i (g [ A r M ( J ! i ) I ) 
The first equality follows from the definition of t=(cc); the second equality is obvious; and the 

third equality follows from Lemma 10.2. • 

10.1.2 The total area of great rings 

The above relation (Lemma 10.4) enable us to obtain an upper bound on X)?=i Area(J2,-). This 
upper bound will be used in the next section to bound the number of random bits required in 
computing a small separator for the intersection graph. 

Lemma 10.5 Suppose E = {B\,...,Bn} is a neighborhood system on Ud with density \i. Let R{ 
be the great ring defined by B{. Then 

n 
y^Area(-R,) = 0 (/z3n~3~J . 
»=i 

Proof: Let w be the stereographic projection which maps TR.d onto Ud- Let E' be the pre-image of 
E in Htd, i.e., E' = {B[,..., B'n} such that TT(B^) = 5,-. Clearly, E' is a neighborhood system in IRd, 
whose density is also fi. 
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Let / / be the local density function defined on B\ as in Chapter 6 and let / ' = Ld-i(f[,..., f ' n ) . 
It follows from Lemma 6.8 that 

Total-Cost(/') = O (p&n) . 

Let / be the density function on Ud obtained from / ' via the stereographic projection ir. We 
have 

Total-Cost(/) = Total-Cost(/') = O ( / z ^ n ) . 

It follows from Proposition 5.1, that avg(/) = 0 \u'in~^r\ recall that avg(/) denotes the 
average area of great spheres of {/</. We now relate avg(/) with V>(E). 

For each great sphere GS of Ud, let S be the pre-image of GS in JELd, i.e., S is a (d — l)-sphere 
ntd such that 7r(5) = GS. By the definition of / and the fact that IT is conformal, Area//(5) = 
Area/(G5). Furthermore, the intersection number of GS over E is equal to the intersection number 
of S' over E'. Let cx = 3d and 

It follows from Lemma 6.5 that f={pGs) < ci/x + C2Area/((?5). 
In other words, for each point x G Ud, i=(^) < l̂M + c2Area/(<j5(a;)). Therefore, 

< 4-(f [clti + c2ATezf(GS(x))](dx)d) 
Ad \Jxeud J 

= — (ciAdfJ, + c2i4davg(/)) 

= ci/j, + c2avg(/) 
= O f^3n~3~J 

The lemma then follows from Lemma 10.4. • 

Remark 10.6 In fact, the analysis of Chapter 6 can be adapted to prove the above Lemma directly. 
The direct proof leads to much smaller constant term in the Big-0 notation. However, the proof 
is quite lengthy (as long as Chapter 6), I have decided not to include it in the thesis. In section 
10.3, I will present a simpler and more elementary proof of a weaker version Lemma 10.5 as well 
as Theorem 6.1. 

10.2 The number of random bits and a deterministic algorithm 
From the last section, we have Y^%\ Area('#,•) < 0(/x3n~a~). Hence, there is a point on Ud which 
is contained in at most 0(/x3n~3") great rings from {R\,...,Rn}. For each given set of points 
Q = {gi,...,9m} on Ud, let 

1 m 

1=1 
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Now the question becomes: can we find a finite (hopefully small) set Q of points on U so that 
<t>(Q) = O^i inT 1 )? 

An affirmative answer to this question has two consequences: 

1. If the cardinality of this set is m, then we only need O(logm) random bits to do the sampling 
in computing a sphere separator with a low cost; 

2. If m is polynomial in n, then we will have a deterministic polynomial time algorithm for 
computing a small (sphere or vertex) separator1. 

Lemma 10.7 For each positive real e < 1, let Q — {qi,.. .,qm} be a set of points on the unit 
d-sphere U such that each great ring R of width r > e satisfies \RC\Q\ < c<jArea(.R)m, where Cd is 
a constant that depends only on d. Then there is a constant c> Cd depending only on d such that 
for each set of great rings {Ri,..., -Rn}» 

n 
4>{Q) < cne + cj^ Area(iZ,-) 

i = l 

Proof: Partition {R\,...,Rn} into two sets, Ai and A2, where 

Ai = {Ri:n<e} 
A2 = { i? i , . . . , i 2„} -A! 

Notice for each R{ 6 Ai, R{ is contained in a great ring with width e, and there is a constant 
c' such that the area of a great ring of width e is c'e. Hence there is a constant c> Cd depending 
only on d such that \R{ n Q\ < cem. Since |Ai| < n, we have 

y^ |.R,- n Q\ < cnem. 

It follows from the condition of the lemma, we have 
n 

y^ \Rif\Q\< ^2 CdArea(iZ,)m < ^cArea(i2,)m. 
fi,eA2 H,eA2 ;=i 

Therefore, 

4>(Q) = - ( y ; | J R , n Q | ) <cne + cf>rea( .R,) 

a 
By Lemma 10.5, we have 

Tl 

^Area( i? , ) = O (ji*n-7T) 
«=i 

So if € = (^)3 , then the assumption of Lemma 10.7 implies that 

4>{Q) = O ( / i 3 n ^ ) . 

The following lemma must be known before. But I did not find any reference. 

'Recall that an approximated center point can be computed in deterministic linear time (Chapter 8). 
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Lemma 10.8 There is a constant c which depends only on d such that for each positive reale < 1, 
there is a set Q of m = (2d + 2) u\]) points on the unit d-sphere Ud (whose center is o, the 
origin) such that each great ring R of width r > e covers at most cArea(i2)ro points of Q. 

Proof: Without loss of generality, assume 1/e is an odd integer. Let C be the unit (d + l)-cube 
centered at o and let C be -4- • C, i.e., C" can be obtained from C by shrinking by a factor of A-. 

Let Qc be the set of (d + l)-dimensional grid points of resolution e on the surface of the unit 
cube C. Algebraically, 

Qc = {(xi,.. . ,Xd+i): 
3i such that a;,- = ±1 and for all j ^ i XJ = ±lje for some integer 0 < lj < ^ } 

Clearly, the cardinality of Qc is m = (2d + 2) (\ J . 
For each point qc € Qc, the line segment between o and qc has a unique common point 

with Ud as well as with C", denoted by q and q'c respectively. Let Q = {q : qc € Qc} and 
Qc = {Qc : Qc € Qc}. Notice that Q'c is the set of (d+ l)-dimensional grid points of resolution -T-? 
on the surface of C". 

We now show that the set Q satisfies the lemma. For each great ring R of width r, let hi and 
h2 be the pair of parallel hyperplanes that define R. Let A be the set of points of Q'c which lay 
between hi and h2, let B be the set of points of Q which lay between hi and h2, i.e., covered by 
R. By convexity, B C {q : q'c € A}. Therefore, the number of points of Q covered by R is at most 
the number of points from Q'c that lay between hi and h2. To bound the later number, we dilate 
the whole (d+ l)-dimensional space by a factor of y/d, i.e., C is mapped to the unit cube centered 
at o. Notice that Q'c is mapped to the set of (d+ l)-dimensional grid points of resolution e on the 
surface of the unit cube and hi and h2 to a pair of parallel hyperplanes of distance yfdr. Lemma 
10.8 follows from Lemma 10.9 below. • 

Lemma 10.9 Let Q be the set of grid points of resolution e on the surface of the unit (d + 1)-
dimensional cube centered at o. Let hi and hi be a pair of parallel hyperplanes that are symmetric 
to o and have distance r, with r > \fde. Then the number of points of Q which lies between hi and 
h2 is bounded from above by (2d + 2)2d(Vdr + 2) (\) . 

Proof: Each cube in (d + 1) dimensions has 2(d + 1) d-dimensional faces. So, it is sufficient to 
bound the maximum possible number of grid points on each face that lay between hi and h^. 

Let F be a face of the unit cube which intersects hi or h2. Let h\ and h'2 be the pair of parallel 
<f-dimension hyperplanes induced by hi and h2, respectively, on F (or on the hyperplane defined by 
F). Since hi and h2 are symmetric to the center of the cube, it follows that the distance between h\ 
and h'2 is bounded by yfdr (because of the bounded angle). Notice that no d-dimensional hyperplane 
on F can intersect more than (-M grids of F, and there are no more than y/dr (M grids of F 
that lay between h\ and h'2 (by a volume argument). Therefore, the number of grid points of F 
that are between hi and h2 is at most 2d(2 + y/dr) ( i ) , because each grid contains 2d grid points. 
A more careful analysis can be used to reduce this number. O 

Corollary 10.10 In the randomized algorithm for computing a small sphere separator, it is suffi-
cient to use O(logn) random bits. 
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It is worthwhile to mention that in the randomized algorithm for computing a small sphere 
separator, it is more suitable to choose grid points on C, the unit cube, as sample points rather 
than those from the unit sphere. This is because the grid points on C have rational coordinates. 

Because an approximate center point in a fixed dimension can be computed in deterministic 
linear time (see chapter 8). It follows from the above lemmas (with c = O f(£)3))> 

Corollary 10.11 Given a d-dimensional neighborhood system E with density \i, a sphere S can 
be computed in deterministic 0(n2) time, such that S has an intersection number 0(/x3n~5~) and 
^-splits S. 

10.3 An elementary proof of the separator results 
In this section, we give a very simple proof of the following lemma. 

Lemma 10.12 Suppose E = {Bi,.. .,Bn} is a neighborhood system on Ud with density \i. Then 

V>(E) = O f/i3+i'7ld+Tj . 

Although the bound in the above lemma is weaker than what have been proved in Theorem 6.1 
and Lemma 10.5,1 hope this proof will shed new light on the separator property of neighborhood 
system and lead to more elementary proof to Theorem 6.1 and Lemma 10.5. 
Proof: It follows from Lemma 10.4 that 

where rt- is the radius of Bi. The second inequality follows from Lemma 10.2, 
Let 7 = ( - J 3 ^ . To establish the lemma, we partition E into disjoint subsets Ei and E2, where 

Hi = {Bi : r,- > 7} and E2 = {B{ : n < 7}, Clearly, V(H) = V(=i) + V(=2). 
For each Bi G Ei, Area(5,) > Vdrf. Because the density of E is (i, 

n 
y*l Area(i?,-) < (lAj. 
«=i 

Therefore, |Ei| < O (fi'3^n^+TJ, and hence V'(Hi) = O {a^^n^^j. By Lemma 10.4, 

V>(=2) = j - ( £ Area(iE,)) < ^-2Vr
d_m7 = O (ji^n^) . 

Therefore, ip(E) = 0 (fj,^n^+^). D 
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10.4 Open questions 
There are still some interesting questions unanswered. They may represent the future direction to 
extend the work of this thesis. The following is a set of open questions. 

1. Can a disk packing representation of a planar graph be computed in polynomial time? 
The proof of Thurston [83] hinges on the convergence of an iterative procedure. But it is 
not clear that his iterative procedure converges in polynomial time. Notice that an efficient 
algorithm for the above problem together with the results of this thesis would provide a new 
method for computing a small separator of a planar graph. 
Concerning about disk packing representation of planar graphs, Brightwell and Scheinerman 
[15] recently generalized Andreev-Thurston's theorem and deduced from their new results 
the following theorem: each 3-connected planar graph G and its dual can be represented 
simultaneously in the plane with straight line edges so that edges of G cross the dual edges 
at right angles, answering an question first asked by Tutte [87]. 

2. We have showed that each neighborhood system with density (x has a sphere separator of in-
tersection number 0(fi'3n~d~). Does it also have a cube or other symmetrical figure separator 
of intersection number 0(/iZn~5~)? 

3. Is there a geometrical characterization of graphs with bounded genus and bounded excluded 
minor? 
In general, we would like to know whether all graphs that have a family of 0(y/n) separators 
are A;-embeddable in 2-space for some constant k. 

4. Do other geometrical graphs, such as relative neighborhood graphs or the 1-skeleton of Voronoi 
diagrams, have a small separator? 

5. Can the separator results of this thesis be applied to other problems such as the iV-body 
problem? 

6. What is the complexity for deciding whether a graph is (a, fc)-embeddable? Can we compute 
a center point in fixed dimension in O(npolylog(n)) time? Can we compute a sphere separator 
with a small intersection number or overlap number in deterministic O(npolylog(n)) time, 
when given a neighborhood system with density jil 
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