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Abstract

We introduce a family of spectral partitioning methods.
Edge separators of a graph are produced by iteratively
reweighting the edges until the graph disconnects into the
prescribed number of components. At each iteration a small
number of eigenvectors with small eigenvalue are computed
and used to determine the reweighting. In this way spectral
rounding directly produces discrete solutions where as cur-
rent spectral algorithms must map the continuous eigenvec-
tors to discrete solutions by employing a heuristic geometric
separator (e.g. k-means). We show that spectral rounding
compares favorably to current spectral approximations on
the Normalized Cut criterion (NCut). Results are given for
natural image segmentation, medical image segmentation,
and clustering. A practical version is shown to converge.

1. Introduction
Several problems in machine perception and pattern

recognition can be formulated as partitioning a graph. In
general, most formulations of partition quality yield NP-
hard optimization problems. This raises two important
questions. First, does a particular optimization problem
capture good partitions for the image segmentation domain,
especially in light of the optimization being NP-hard and
thus we may never know the true optimum anyway. Sec-
ond, given that the optimal value is a good characterization
are approximations quickly constructible and do they return
good partitions?

One popular formulation, used in image processing and
clustering, is the normalized cut (NCut) of a graph intro-
duced by Shi and Malik [16]. The ideas contained therein
were further explored by Ng et al. [14] and Yu and Shi [20]
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both of whom motivated multi-way partitioning algorithms.
In part, our method was motivated by observations made in
[14, 20]. Now, how does the NCut optimization problem
fare against our two questions?

It is not difficult to construct image examples for which
common image percepts do not correspond to the optimal
NCut of the image (e.g. see Shental et al.’s example [15]
and see Figure 3 for similar sub-optima). This is unsurpris-
ing, and an acknowledged attribute of all objective measures
of cluster or partition quality (see Kleinberg [6] and Meilă
[10] for treatment of this issue). But, for many images, as
we shall show, there are segmentations with a smaller nor-
malized cut value than in those generated by earlier meth-
ods that are at the same time more pleasing. For example,
one of the main empirical advantages of spectral rounding
technique seems to be that it is less likely to split the im-
age in homogeneous regions, see Figure 2, while returning
smaller NCut values. Thus good image segmentations are
generated as graph partitions without reformulating the un-
derlying combinatorial problem.

The two common paradigms for approximating such
objective functions are 1) linear or semidefinite program-
ming [9, 19, 2]. and 2) spectral methods [4, 16]. In this
paper we introduce a spectral technique that empirically im-
proves upon existing spectral algorithms for quotient cuts.
Earlier spectral methods consisted of a two stage algorithm.
In the first stage a small collection of, say k, eigenvectors
with small eigenvalues are computed. While in the second
stage these vectors are used to map the graph vertices into
Rk and a geometric separator is then applied [3].

Our approach is to skip the geometric separator step by
iteratively reweighting the graph in such a fashion that it
eventually disconnects. At each iteration we will use the
eigenvalues and eigenvectors of the reweighted graph to de-
termine new edge weights. At first hand this may seem very
inefficient, since the most expensive step in the two stage
method is the eigenvector calculation. By using the eigen-
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vector from the prior step as a starting point, for finding the
new eigenvector, simple powering methods seem to work in
only a small number of steps.

1.1. Problems and Results

Let G = (V,E, w) be a graph on n vertices with con-
nectivity E; we wish to find a partitioning of vertices such
that some cut metric is minimized. An apparently equi-
table measure of the quality of a cut is the normalized cut
(NCut). As NCut minimizes the ratio cut cost over the bal-
ance in total degree of the partitions. The normalized cut
criterion is:

nc(G) = argmin
V1,..,Vp

:
1
p

p∑
i=1

vol(Vi, V \ Vi)
vol(Vi)

(1.1)

where vol(Vi) is the sum of edge weights associated with
the vertices in Vi, vol(Vi, V \ Vi) is the sum of the edge
weights connecting Vi to remainder of the graph, and Vi ∩
Vj = ∅ . The combinatorial problem in Equation 1.1 can
be stated as a Quadratically Constrained Quadratic Program
(QCQP)[20]. This QCQP admits a straightforward eigen-
vector relaxation, stated as minimization of the Rayleigh
Quotient over orthogonal functions.

1.2. Quality of the Spectral Bound

Spectral methods are so named because the second
smallest eigenvalue λ2 of the normalized Laplacian
bounds the best cut obtained from a continuous vector.
The associated eigenvectors provide a means of obtaining
a discrete solution that satisfies the eigenvalue bound. The
eigenvalue bound on the isoperimetric number of a graph
Φ(G), see [13, 4], can be ported to the normalized 2-cut
as 1

4λ2 ≤ nc(G) ≤ Φ(G) ≤
√

2λ2, as Φ(G) is an up-
per bound on nc(G). The upper bound on Φ(G) is loose
in general, as demonstrated by the pathological graphs con-
structed by Guattery and Miller in [5]. While, guaranteed
O( 1√

n
) cut bounds were exhibited for planar graphs in [17].

Equation 1.1 has been studied in the context of image
segmentation in the vision community [16, 20] and cluster-
ing in the learning community [14, 19]. In all cases a stan-
dard spectral algorithm is used. The methods [16, 20, 14]
differ primarily in how the eigenvectors are used to find a
feasible solution satisfying the constraints in Equation 1.1.

2. Preliminaries

Throughout this paper we let G = (V,E, w) denote an
edge weighted undirected graph without multiple edges or
selfloops, where V is a set of n vertices numbered from 1
to n, E is a set of m edges, and w : E → [0, 1] is the edge
weighting.

We associate four matrices with the graph: First, W the
weighted adjacency matrix,

Wij =
{

wij = w(i, j) if (i, j) ∈ E
0 otherwise (2.1)

The weighted degree of vertex i is di =
∑n

j=1 wij . We as-
sume that no vertex has zero degree. Second, the weighted
degree matrix D is

Dij =
{

di if i = j
0 otherwise . (2.2)

Third, the generalized Laplacian or simply the Laplacian
of G is L = D−W . Finally, the normalized Laplacian of
G is L = D−1/2LD−1/2.

Rather than working directly with the normalized Lapla-
cian we shall work with a similar system. Throughout this
paper we let f and g be functions from the vertices to the
reals. Such functions we will call vertex valuations or sim-
ply a valuations of G. We shall also view them as n by 1
column vectors. When convenient we may also view them
as eigenvectors of L or L.

If D1/2f = g and g is an eigenvector of L with eigen-
value λ, i.e., Lg = λg then it is an easy calculation to
see that f is a generalized eigenvector for the pair (L,D)
with eigenvalue λ. That is Lf = λDf . It will be conve-
nient to work with the generalized eigenvalues and vectors
of (L,D). In this case the normalized Rayleigh quotient is
fT Lf/fT Df of the valuation f .

We make a simple, but important, observation about
these Rayleigh quotients:

Lemma 1. Given a weighted symmetric graph G =
(V,E, w) then the normalized Rayleigh quotient can be
written as

fT Lf

fT Df
=

∑
(i,j)∈E,i<j(fi − fj)2wij∑

(i,j)∈E,i<j((fi)2 + (fj)2)wij
(2.3)

where fi = f(vi)

The main importance of Lemma 1 is that for each valua-
tion f and each edge eij we get the fraction (fi−fj)

2

(fi)2+(fj)2
. We

will use this fraction to reweight the edge eij . The simplest
reweighting scheme would be to replace the edge weight
wij with the weight (fi)

2+(fj)
2

(fi−fj)2
wij . There are several issues

with this scheme that will be address in the next section.

3. Spectral Rounding
In this section spectral rounding is introduced as a pro-

cedure for obtaining graph cuts. At each iteration a small
number of eigenvectors with small eigenvalue are computed
and used to determine the reweighting w′ for the graph
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G = (V,E, w). We show this process induces a k-way mul-
tiplicity in the k smallest eigenvalues of L (i.e. λi(L) = 0
for 1 ≤ i ≤ k). By obtaining a Laplacian with this
nullspace property we guarantee that the matrix represents
k disconnected subgraphs, whose vertex membership can
be read off directly from the first k eigenvectors.
§3.1 defines the spectral rounding algorithm. §3.2 con-

nects decreasing a Rayleigh quotient to reweighting the
graph. §3.6 the spectral rounding algorithm is shown to con-
verge for a reweighting scheme proposed in §3.1.

3.1. The SR-Algorithm

For a graph G = (V,E, w0) prescribe the number of
partitions k that the edge cut is to yield. Given a valid
reweighting scheme, iteration of the SR-Step produces
a sequence of N weightings {w(N)} such that the graph
GN = (V,E, wN ) is disconnected into k components by
the weighting wN .

Algorithm 1 SR-Step(w: ||w||k > 0)
Let Fk = [f1 ... fk] denote the k generalized eigenvectors
of L(G;w), D(G;w) associated with the k smallest eigen-
values Λk = diag([λ1 ... λk])

1. compute wr = R(Fk,Λk), set α = 1 & w′ = wr

2. while ||w′||k ≥ ||w||k
α← 1

2α, w′ = (1− α)w + αwr

3. return w′

The function R computes a new weighting of the graph
given the first k eigenpairs of L,D. The norm || · ||k is
taken over weightings of the graph, such that ||w||k = 0
iff the weighting w disconnects the graph into at least k
pieces. A pair R, || · ||k is called a reweighting scheme
if the SR-Step converges in a finite number of iterations.
We define Algorithm 2, the SR-Algorithm, as the itera-
tion of Algorithm 1 until ||w(N)||k u 0. In the following
sections we propose Rs and corresponding norms || · ||k
such that the SR-Step and SR-Algorithm converge in
the desired fashion.

In §3.6 the SR-Algorithm is shown to converge on
graphs with || · ||k < 1. In the case of a 2-cut this reduces to
λ2(L) < 1. The class of graphs satisfying this spectral con-
straint is very general, excluding an uninteresting collection
of graphs for our purposes. In particular, if λ2 ≥ 1 then no
subset of the vertices exists with more than half of its edge
volume contained within it (entailed by the Cheeger bound
2Φ(G) ≥ λ2 [4]). Such graphs are often called expander
graphs.

3.2. Fractional Averages: a reweighting function

By Lemma 1 we saw that the Rayleigh quotient could be
written as a sum of formal fractions where the numerators

are added separately from the denominators. Define a for-
mal fraction as a pair of real numbers a

b and its value as
the real number a/b. We call the average of a set of for-
mal fractions the fractional average. We now prove a few
simple but important facts about fractional averages.

Definition 1. Given formal fractions

a1

b1
, · · · , an

bn

the fractional average is the formal fraction∑n
i=1 ai∑n
i=1 bi

where the ai’s and bi’s are reals.

We will simply call formal fractions fractions and only
make a distinction between the formal fraction and its value
when needed. In the case when the ai’s and bi’s are nonneg-
ative we first observer that the fractional average is a convex
combination of the fractions. That is we can rewrite the sum
as

n∑
i=1

bi

b̄
· ai

bi

where b̄ =
∑n

i=1 bi. Thus fractional average lies between
the largest and smallest fraction.

Possibly a more important interpretation is by viewing
each fraction ai

bi
as the point Pi = (bi, ai) in the plane and

the value of the fraction is just its slope. The fractional av-
erage is just the vector sum of the points. Since we are only
interested in the value of the fraction, the slope, we will
think of the fractional average as the centroid of the points.
If we multiply the numerator and denominator by a scalar
w we shall say we reweighted the fraction by w. Geo-
metrically, we are scaling the vectors or points Pi and then
computing the centroid.

In the next lemma we show that we can control the slope
of the fractional average by reweighting.

Lemma 2. If a1
b1
≤ · · · ≤ an

bn
and w1 ≥ · · · ≥ wn then∑n

i=1 ai∑n
i=1 bi

≥
∑n

i=1 aiwi∑n
i=1 biwi

The inequality is strict if for some pair 1 ≥ i < j ≤ n we
have that ai

bi
<

aj

bj
and wi > wj .

See [12] for the proof of Lemma 2.
The Rayleigh quotient in Lemma 1 associates a formal

fraction with each edge in G. One of the simplest ways
to get weights satisfying the hypothesis of Lemma 2, for
such a system, is to pick wi = bi

ai
= f(ui)

2+f(vi)
2

(f(ui)−f(vi))2
, if ai is

not zero. We shall call this inverse fractional reweighting.
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This reweighting scheme gives very large values for small
values of ai. We have found that using the stereographic
map to normalized the inverse fractions between zero and
one works well.

Observation 1. The stereographic projection Ψ : Rd →
Sd preserves the order of points on the real line, mapping
points at ∞ to 1 and points at 0 to 0. Thus the inverse
weight ordering of the edge update values is preserved by
the stereographic map.

If we think of the Φ as mapping points in Rd to Rd+1,
where we are only interested in the value in the d+1 dimen-
sion, then the images of v ∈ Rd is vT v

vT v+1
≥ 0. We use Ψh

to denote the map which returns the value in this dimension
(i.e. the “height” on the sphere).

3.3. Reweighting for Multiple Valuations (step 1)

In the discussion so far we have assumed only one val-
uation is being used. To produce cuts of higher degree (i.e.
k > 2) it is crucial that we simultaneously handle multiple
valuations in computing the reweighting. Given two valu-
ations, say f2 and f3, we need to pick a single new weight
per edge, i.e. a reweighting function R. We suggest two
approaches.

The first, Rfa, takes the fractional sum of f2 and f3 per
edge, yielding one fraction per edge. The second, Rsa,
applies the stereographic map to the vector of slopes of
the individual Rayleigh quotients for f2 and f3. Formally,
for an edge (uv), let ai(u, v) = 1

λi
(fi(u) − fi(v))2 and

bi(u, v) = fi(u)2 + fi(v)2. Define the reweighting func-
tions as

Rfa(F,Λ, wuv) = Ψh

(∑k
i=1 bi(u, v)∑k
i=1 ai(u, v)

)
wuv (3.1)

Rsa(F,Λ, wuv) = Ψh

([
b1(u, v)
a1(u, v)

...
bk(u, v)
ak(u, v)

])
wuv

To successfully link the reweighting functions R to
eigenvalue optimization we must specify a norm func-
tion || · ||k on weightings of G. For example, given
the function Rfa we specify the norm ||w′||k =Pk

i=1
P

(uv)∈E wuv(f ′i(u)−f ′(v))2Pk
i=1

P
(uv)∈E wuv(f ′i(u)2+f ′i(v)2)

, i.e. the fractional average

of the updated eigenvectors f ′i | L′f ′i = λ′iD
′f ′i . Given

the reweighting function Rsa the norm ||w′||k is the sum
of k smallest eigenvalues of L′, D′. We now connect linear
combinations of weightings to their eigenvalues.

3.4. From Rayleigh Quotients to Eigenvalues

In §3.2 we showed how to, given a valuation or set of
valuations of a graph, reweight the edges so as to reduce the
Rayleigh quotient. In general this does not mean that if the

valuation f is an eigenvector with eigenvalue λ of the old
graph that the corresponding eigenpair f ′ and λ′ of the new
graph will have the property that λ′ ≤ λ.

Given a new edge weighting w′ such that the fractional
average of an eigenvector is decreased, we show that there is
a linear combination of the weights of the form w+t ·w′ for
t > 0 such that the associated eigenvalue is also decreased.
This yields an algorithm which forces the target eigenvalue
to zero. And motivates a matrix where the entries are linear
functions of a scalar t and the following lemma.

Definition 2. Given two weightings w and w′ of G we de-
fine the matrix curve, a 1−dimensional family of matrices,
as:

W (t) = W + tW ′

for t ≥ 0.

A direct consequence of the scale invariance of the
Rayleigh quotient fT Lf

fT Df
is that any linear combination

W (t) = W + tW ′ may be expressed as a convex com-
bination W (α) = (1 − α)W + αW ′ on 0 ≤ α ≤ 1 (i.e.
α = t

t+1 ). The eigenstructure of normalized laplacians de-
fined on W (α) and W (t) are identical by the scale invari-
ance of the Rayleigh quotient.

Lemma 3. Given a weighted graph G = (V,E, w), ma-
trices L and D, the simple eigenpair (f, λ) | Lf = λDf ,
and a new weighting w′ such that fT L′f

fT D′f
< fT Lf

fDf = λ then
the derivative of the eigenvalue function1 λ(t) of the matrix
curve W (t) = W + tW ′ is well defined for small t and

dλ(t)
dt

< 0

at t = 0.

See [12] for a detailed proof.
To handle multiple eigenvectors one hope might be to

simultaneously bound the derivatives of the target eigenval-
ues {λ2, ..., λk} of L(t), D(t). To do this one arrives at
the update criteria for the re-weighting w′; select a w′ such
that fT

i L′fi

fT
i D′fi

<
fT

i Lfi

fT
i Dfi

insuring that λi(L(t)) < λi(L) for
2 ≤ i ≤ k. But in general this may be unrealistic since we
must use the same weight per edge for all the eigenvectors
fi. In the case where the aforementioned inequalities do
not hold, we determine w′ so as to decrease the fractional
average of the Rayleigh quotients (see Rfa in §3.3). The
average of the target eigenvalues tends to zero as a conse-
quence of the decrease in the fractional average.

1The proof that dλ exists follows from properties of the characteristic
polynomial of L, D and relies on the implicit function theorem. Details
can be found on the differentiability of λ and f in Lax [8] chapter 9.
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3.5. Termination of SR-Step

In order to prove that the algorithm SR-Algorithm con-
verges to a k-way partition we first need to show that each
step of SR-step terminates. In the next subsection we use
this termination to show convergence. To simplify the dis-
cussion we only consider using one eigenvector. The SR-
Algorithm has two majors steps. In the first step given a
valuation f it computes a reweighting wr. We claim with a
reasonable assumption about the Rayleigh quotient that

fT Lf

fT Df
>

fT Lrf

fT Drf
. (3.2)

By lemma 2 we know that equation 3.2 is true as long as
not all the fractions δij = (fi − fj)2/(f2

i + f2
j ) are equal.

We show that if the fraction are all equal the Rayleigh quo-
tient is at least one, contradicting how we construct affinity
graphs.

Lemma 4. Let G = (V,E, w) be a connected graph and
f a valuation such that all the fractions δij = (fi −
fj)2/(f2

i + f2
j ) are equal then fT Lf

fT Df
≥ 1

Proof. Let f be a valuation of G with Rayleigh quotient λ.
Suppose all δij = (fi− fj)2/(f2

i + f2
j ) over all edges of G

are the same value. Observe that: 1) δij > 1 if the sign of fi

and fj differ, 2) δij = 1 if fifj = 0, 3) δij < 1 if fifj > 0.
If we are not case 1) then the value of each fraction is at
least one. Thus by Lemma 1 the Rayleigh quotient is at
least one.

The proof of termination for multiple eigenvectors is
similar.

Lemma 5. Algorithm SR-step terminates for graphs such
that λ2 < 1

Proof. Follows from Lemma 3 and Lemma 4.

3.6. Convergence of SR-Algorithm

By Lemma 5 we know that each step of procedure SR-
step produces a new weighted graph such that the norm || ||k
is strictly decreasing. We show that in fact the limit norm
must be zero, i.e., SR-Algorithm converges.

Again for simplicity of the exposition we only consider
the case of a single eigenvector. Let Gi, Di, λi, and xi be
the ith graph, its degree matrix, its second eigenvalue, and
eigenvector. That is Gixi = λiDixi. We also assume that
each xi is a unit length vector. Thus all the eigenvectors
all belong to a compact region in Rn, the unit sphere. The
Bolzano-Weierstrass theorem dictates such a space contains
an accumulation point, say, x. Let {x(i)} be a subsequence
of eigenvectors that converge to x, and let G′, D′, and λ′ be
the corresponding graph, degree matrix and eigenvalue. The
eigenvectors converge to x and the eigenvalues converge to

some value λ. To insure that the graph also converges to
a unique graph we apply the Bolzano-Weierstrass theorem
again to the weighted graphs which belong to a compact set
in Rm. Thus, we may also assume the graphs and degree
matrix converge to G′, D′, and λ′ such that G′x′ = λ′D′x′.

Lemma 6. The limit of the sequence of λi, as defined above,
converges to λ = 0

Proof. Suppose that λ′ > 0. We know by Lemma 5 that if
we run SR-step on G′ we will get a new graph with λ′′ < λ′.
Let ε = λ′ − λ′′. We can also run SR-Step on each G′

i

getting a new eigenvalue λ′′i . Let εi = λ′i − λ′′i . Since SR-
step is a continuous function in G′

i and x′i we get that the
εi converge to ε. For sufficiently large i it follows that εi ≥
ε/2. But this implies that λ′i goes to −∞ which contradicts
the fact the they a bounded below by zero.

4. Empirical Evaluation
We show that spectral rounding compares favorably to

recent spectral approximations for the Normalized Cut cri-
terion (NCut). For the purpose of our evaluation we com-
pared our method, denoted SR, to that of Yu and Shi [20],
denoted EIG, as it reliably returns superior cuts relative to
methods which use K-means and less of the eigenvectors,
those based on [14]. In the following sections results are
given in geometric clustering, natural image segmentation,
and medical image segmentation. In all cases, the same
graph G = (V,E, w), is passed to both algorithms. To
compare the partitioning we report the expected improve-
ment in NCut value, on the initial graph G = (V,E, w),
and the variation of information between clusterings.

The first comparison, the expected improvement in
value, can be expressed as a positive scaler c such that
nc(SR) u c · nc(EIG) on average. In the case where
c < 1 spectral rounding finds an improved cut on average.

Throughout this section we report the variation of infor-
mation described in [11] to measure the difference between
two partitionings, Pa and Pb of the vertex set V , defined as

Dvi(Pa, Pb) = H(Pa) + H(Pb)− 2I(Pa, Pb) (4.1)

with I(Pa, Pb) = −
∑p

i=1

∑p
j=1

ni,j

n log ni,j

n , H(P ) =
−
∑p

k=1
nk

n log nk

n , where nk is number of vertices in the
kth partition, ni,j the size of the overlap between the ith

partition in Pa and jth partition in Pb, and n = |V |. The en-
tropy term H(P ) can be thought of as the number of bits re-
quired to represent the distribution of partition sizes. Where
as I(Pa, Pb) is the mutual information between the two par-
titionings Pa and Pb. And so, Dvi can be thought of as the
number of bits needed to represent the cumulative disagree-
ment between the overlapping partitions of Pa and Pb. As
expected Dvi(Pa, Pa) = 0.
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Geo-Graph nc(SR)=.064 nc(EIG)=.109
Figure 1. A (|V | = 300) geometric graph, and two 5-way cuts.

4.1. Random Geometric Graphs

We compare SR and EIG in the expected partition cost
on a collection of random geometric graphs. The vertices
of G = (V,E, w) are associated with uniformly distributed
coordinates in Rd. The edge set of E(G) is then constructed
using the following rule, for {u, v ∈ V |u 6= v}, (u, v) ∈
E ⇐⇒ dist(u, v) < r. We sampled 10000 graphs
with 1000 vertices and chose the radius r such that the ex-
pected degree of each vertex was approximately log(|V |).
As shown in Figure 1 such graphs afford a large number
of relatively small cuts. Table 1 contains the improvement
factor, and the cluster divergence. We note that the diver-
gence distance, relative to partition entropy H(SR), high-
lights that the NCut improvements are not due to a small
number of boundary vertex exchanges, but rather that SR
and EIG return significantly different subgraphs.

Dvi(SR,Eig) nc(SR) = c · nc(EIG)
geo-graph 0.910± .219 c = .690± .113

Table 1. Comparison between spectral rounding SR and the multi-
way cut algorithm of Yu and Shi [20] EIG. The partition entropy
for SR was H(SR) u 1.935.

4.2. Image Segmentation

The parameters used in constructing a weighted graph
from an image were fixed for all the results presented in
this section. The graph G = (V,E, w) represents an image
as follows. For each pixel in the image a vertex in V is as-
signed. If two pixels are connected in E a weight in w is
determined based on the image data. The graph connectiv-
ity, E, was generated by connecting pixels to 15% of their
neighboring pixels in a 10 pixel radius. The initial weight-
ing w of the graph G = (V,E, w) was determined using
the Intervening Contour cue described in [16]. This cue as-
signs small weights to pixels which lie on opposite sides of
a strong image boundary, and large weights otherwise.

4.2.1 Natural Image Segmentation

We compiled a set of a 100 images from Google Images
using the keywords farm, sports, flowers, mountains, &
pets. Examples from this data set, and segmentations can
be found in Figure 2. Again, we note that changes in

the cut value often correlate with large changes in the co-
membership relationships on the image pixels. To quantita-
tively compare the methods on natural images we report the
divergence distance and NCut improvement factor c.

Dvi(SR,Eig) nc(SR) = c · nc(EIG)
natural 1.23± .160 c = .536± .201

Table 2. Comparison between spectral rounding SR and the multi-
way cut algorithm of Yu and Shi [20] EIG on segmentations of nat-
ural images. The average cluster entropy over SR-segmentations
of the image collection is 1.62± .4.

4.2.2 Medical Image Segmentation

To a degree, clustering methods are only successful in that
are useful in servicing a particular task. We have selected
a simple medical task, segmenting out the left ventricle (a
fluid sack located in the brain), as it is well defined – i.e. the
boundary of the percept is agreed upon by experts. While
this task would seem to be relatively easy, a successful au-
tomatic method represents a significant reduction in human
effort for a common labeling task.

The test set was constructed from a collection of 200
NMR images containing the left ventricle. The collection
was built by taking 5 slices each from scans of 40 individu-
als. Images were selected randomly from slices containing
the left ventricle. As shown in Figure 5 the appearance of
the ventricle varies substantially in shape and size.

The comparison of segmentations obtained from spectral
rounding and the eigenvector method of Yu and Shi [20]
with the human labels is given in Table 3. The divergence
distance and expected cut improvement are given in Table
4. The average cluster entropy for SR was 0.611 ± .131.
As this is a two-class problem, this suggests that one of the
segments tends to be much smaller than the other. This is
due to the often small size of the ventricle in the image.

nc(SR) nc(EIG)[20]
Pr(v ∈ T (Im)) .95± .04 .37± .12

Table 3. The value Pr(v ∈ T (Im)) is reported over the popula-
tion of images, where T (Im) is the expert’s hand segmentation
and Pr(v ∈ T (Im)) is the probability that a pixel v in a segment
is also contained in T (Im) – this statistic was computed for the
segment with the largest overlap with T (Im).

Dvi(SR,Eig) nc(SR) = c · nc(EIG)
medical 1.856± .192 c = .598± .237

Table 4. The divergence and expected value improvement for the
medical image data set. The average cluster entropy for SR seg-
mentations on the medical data set was 0.611± .131.
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Input Data Feature Map Eig [20] SR

k=4 nc(EIG) = .0151 nc(SR) = .0064

k=5 nc(EIG) = .0119 nc(SR) = .0030

k=5 nc(EIG) = .0069 nc(SR) = .0033

k=5 nc(EIG) = .0019 nc(SR) = .0015
Figure 2. The first four rows illustrate with qualitative examples the improvements in NCut value for natural images. Column three contains
segmentations generated by the published code of Yu and Shi [20]. Column four contains results for Spectral Rounding. The number of
segments k is fixed for each comparison. We emphasize that the cut cost was evaluated on identical combinatorial problems (graphs).

Input Data Feature Map Eig [20] SR

k=2, comparison nc(EIG) = .0021 nc(SR) = .0021
Figure 3. The second to last row illustrates a 2-way cut in which the NCut values are nearly identical, but which support very different
percepts.

5. Discussion

We have presented a new rounding technique for the
eigenvectors of graph laplacians in order to partition a
graph. The method was shown to converge and demon-
strated empirical improvements over the standard rounding
strategy on a variety of problems. In ongoing work we are

seeking a theoretical bound for the SR-algorithm.

The initial eigencomputation remains as a hurdle to the
integration of spectral methods into large scale vision and
data-mining systems. At present the best known [7, 1] av-
erage case time bound on ε−approximate estimation of an
extremal eigenpair is Õ(m

√
n
ε ), for generalized Laplacians

7



Input Data Eig [20] Intermediate SR final

k=6, SR iteration nc(EIG) = .0074 i = 1, nc(SR) = .0062 i = 4, nc(SR) = .0057
Figure 4. A sequence of iterations projected onto the feasible set, starting left with solution from Yu’s method and ending with the fourth
and final SR iteration on the right. Notice that the large cuts in the sky and field shift to small cuts in the area around the farm.

nc(SR)=.019 nc(EIG)=.061 nc(SR)=.024 nc(EIG)=.057

nc(SR)=.021 nc(EIG)=.021nc(SR)=.048�� nc(EIG)=.068

Figure 5. Examples of the left ventricle, and qualitative results
for the SR and EIG algorithms. Segmentations required approx-
imately 1.2 seconds for EIG and 1.9 seconds for SR.

with n = |V | and m = |E|. Fortunately, recent theoretical
results hold out the promise of nearly-linear time eigencom-
putation. Recent work by Spielman and Teng [18] on linear
time linear solvers suggests that ε−approximate eigencom-
putation may soon fall into same time complexity.

References
[1] S. Arora, E. Hazan, and S. Kale. Fast algorithms for ap-

proximate semidefinite programming using the multiplica-
tive weights update method. FOCS, pages 339–348, 2005.

[2] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geo-
metric embeddings and graph partitioning. In STOC, pages
222–231, 2004.

[3] T. F. Chan, J. R. Gilbert, and S.-H. Teng. Geometric spectral
bisection. Manuscript, July 1994.

[4] F. R. K. Chung. Spectral graph theory. Number 92 in Re-
gional Conference Series in Mathematics. Amer. Math. Soc,
Providence, 1997.

[5] S. Guattery and G. L. Miller. On the quality of spectral sep-
arators. Matrix Analysis & Applications, 19(3), 1998.

[6] J. Kleinberg. An impossibility theorem for clustering. Ad-
vances in Neural Information Processing Systems, 2003.
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